STATUS OF THE INTRINSIC QUANTUM SPREAD ON DIFFERENT CARBON SUBSTRATES

Angelo Esposito

SAPIENZA Università di Roma

PTOLEMY collaboration meeting, October 2022

OUTLINE

• Super quick recap of the quantum spread issue

Carbon nanotubes

• Preliminary results on C_{60} fullerenes

Outlook

RECAP OF THE ISSUE

- One of the goals of Ptolemy is to hunt for the cosmic neutrino via the absorption process: $\nu_e + {}^{3}\text{H} \rightarrow {}^{3}\text{He}^{+} + e^{-}$
- Expectation in vacuum:
- Cosmic neutrino absorption appears as a peak distant from the β -decay end-point roughly $2m_{\nu}$

SAPIENZA

RECAP OF THE ISSUE

$$\Delta K_e \simeq \left| \frac{\mathbf{p}_e \cdot \Delta \mathbf{p}_T}{m_{He}} \right| \sim 0.82 \text{ eV for graphane}$$

[Cheipesh, Cheianov, Boyarsky - PRD 2021, 2101.10069; Nussinov, Nussinov - PRD 2022, 2108.03695; PTOLEMY - PRD 2022, 2203.11228]

• Full quantum mechanical calculation:

[PTOLEMY - PRD 2022, 2203.11228]

- 3 He⁺ is freed from graphene \rightarrow most likely event but affected by quantum spread
 - 3 He⁺ remains in the ground state \rightarrow no spread but exponentially unlikely

SAPIENZA

Angelo Esposito

WHAT SUBSTRATE?

- Potential for tritium on graphene depends on the local geometry

→ Nanotubes Substrate with large concavity?

The tritium potential inside a nanotube is [PTOLEMY - PRD 2022, 2203.11228]

- To avoid sticky walls one can passivate the nanotube with hydrogen
- The new potential is

[PTOLEMY - PRD 2022, 2203.11228]

two extra minima are now gone

Angelo Esposito

Ideally carbon nanotubes realize the following

- Assuming tightest packing without the formation of T_2 molecules one gets optimistically 10 20 g of ³H per kg of nanotubes
- A factor of 10 less than fully loaded graphene

- Aspects to be addressed:
 - A. What's the *B* field necessary to prevent dimerization? Is it compatible with PTOLEMY's needs?
 - B. How much tritium can we realistically store in nanotubes?
 - C. How do we grow and load the nanotubes according to our needs?

OTHER IDEAS?

- How delocalized should the tritium be?

$$\Delta E_e \sim \frac{p_e}{m_{He}} \frac{1}{\Delta x_T} = 0.05 \text{ eV} \implies \Delta x_T \sim 2 \text{ Å}$$

- Might not be that much
- Can we find a substrate that confines the tritium in a radius of around 2 Å?

• A proposal is that of using fullerenes

[see, e.g., Guo et al. - Nature 1991; Frapiccini, Mitnik - EPJD 2021, 2010.15050; Deshmukh et al. - EPJD 2021]

³H confined in the center

Lattice spacing is $a \simeq 14.3$ Å and a cubic cell contains 4 atoms

possible density of tritium $\rho_T \simeq 6.8 \text{ mg/cm}^3$

• Seems like a possible ideal middle ground

 Preliminary ab initio calculations for a naked isolated fullerene give (see Valentina's talk!)

³H sticks to ⁄ the wall

> Potential in the center is well approximated by $V(r) \simeq (0.04 \text{ eV/Å}^6) r^6$ What consequences for us?

• Wave function of tritium at the center of a fullerenes

13/16

Angelo Esposito

Sapienza

• (Very) preliminary quantum calculation returns:

- I suck at numerics, but... some things to understand about fullerenes:
 - A. What is the exact potential? → include many cells in a crystal, compute for a hydrogenated structure, bigger cells, ...
 - B. How much tritium can we load on it?
 - C. How do we do it?
- Stay tuned!

WISHLIST

• For a binding potential $V(r) = k r^n$ the momentum uncertainty roughly follow the empirical formula:

$$\Delta p_T(k,n) \simeq \frac{\sqrt{\frac{n}{2}+1}}{2} \left(2m_T k\right)^{\frac{1}{n+2}}$$
(good up to $n \simeq 10$)

• What we want from Santa this year:

OUTLOOK

- PTOLEMY's goal is an ambitious one
 —> worth the effort!
- Storing ³H on a solid has great advantages... but also raises issues
- If we stick to ³H, the solution to the problem of intrinsic uncertainty must come from a judicious choice of the host material
- Quoting Alexey, also several other effects to be understood and taken into account

Thank you for your attention!