The target for relic neutrino detection. An overview.

Alexey Boyarsky

Yevheniia Cheipesh, Ivan Ridkokasha, Oleksii Mikulenko, Vadim Cheieanov

October 6, 2022

$C\nu B$ and CMB

- Gamov: Early Universe is radiation dominated ρ_{rad}/ρ_{matter} ~ 10¹⁰.
- Early Universe has equal populations of γ/ν.
- As Universe expands, γ/ν decouple, relic backgrounds (CMB /CνB), keep a "frozen" pictures of the Universe.
- Right now, in your room, there are 411 relic photons and 339 relic neutrinos in every 1 cm³.
- The "ν freezout" is much earlier than photons.
- CvB: one of the few yet untested predictions of the SM.

Detecting $C\nu B$ is a strategic goal for fundamental physics. [Weinberg , 1962]

Why have we not discovered $C\nu B$ yet?

Why have we not discovered $C\nu B$ yet?

Bethe and Peierls in 1934 estimated

 $\sigma \sim 10^{-44} \text{ cm}^2$ $\sigma_{\text{Thomson}} \sim 10^{-25} \text{ cm}^2$ $\sigma_{\text{nuclear}} \sim 10^{-26} \text{ cm}^2$

"I have done a terrible thing. I have postulated a particle that cannot be detected." (W. Pauli)

Neutrinos are massive

- In the last few decades neutrino flavor oscillations where convincingly observed, meaning that neutrinos are massive
- Neutrino oscillations can only measure Δm and hierarchy.

β -decay and neutrino capture

- Neutrino capture is threshold-less soft relic neutrino detection [Weinberg, 1962].
- The 2 parts of the spectrum are separated by $2m_{\nu}$ ¹
- Before the relic neutrino detection one would be able to measure the neutrino mass m_{ν}

¹Schematic picture that assumes only one neutrino flavour.

Relic neutrinos leave a signature in the spectrum of a radioactive atom

Is this goal technically achievable?

Challenges

Requirements:

- High energy precision (order of $m_{\nu} \sim {
 m meV}$)
- Sufficient activity rate (several events per year)

Challenges

Requirements:

- High energy precision (order of $m_{\nu} \sim \text{meV}$)
- Sufficient activity rate (several events per year)

Experimental setup:

- Mesurement device
- Target

Challenges

Requirements:

- High energy precision (order of $m_{\nu} \sim \text{meV}$)
- Sufficient activity rate (several events per year)

Experimental setup:

Mesurement device

High enough activity

High enough activity

 Low emitter Q-value (Cocco et. al., 2007)

High enough activity

 Low emitter Q-value (Cocco et. al., 2007)

 $(\sigma v)_{
u} \propto rac{1}{\tau Q^3}$

High enough activity

- Low emitter Q-value (Cocco et. al., 2007)
- High number of emitters (order of 10²⁵)

High enough activity

- Low emitter Q-value (Cocco et. al., 2007)
- High number of emitters (order of 10²⁵)
- Lifetime of emitter: small enough to have a high decay rate, but large enough not to decay instantly

High enough activity

- Low emitter Q-value (Cocco et. al., 2007)
- High number of emitters (order of 10²⁵)
- Lifetime of emitter: small enough to have a high decay rate, but large enough not to decay instantly

High enough activity

- Low emitter Q-value (Cocco et. al., 2007)
- High number of emitters (order of 10²⁵)
- Lifetime of emitter: small enough to have a high decay rate, but large enough not to decay instantly

High enough precision

Low emitter Q-value

High enough activity

- Low emitter Q-value (Cocco et. al., 2007)
- High number of emitters (order of 10²⁵)
- Lifetime of emitter: small enough to have a high decay rate, but large enough not to decay instantly

- Low emitter Q-value
- Low emitter densities electron free path bigger than the system size

High enough activity

- Low emitter Q-value (Cocco et. al., 2007)
- High number of emitters (order of 10²⁵)
- Lifetime of emitter: small enough to have a high decay rate, but large enough not to decay instantly

High enough precision

- Low emitter Q-value
- Low emitter densities electron free path bigger than the system size

$$\lambda = (\sigma n)^{-1} = \left(R_{\text{atom}}^2 \frac{N}{L^3}\right)^{-1} > L$$
$$L > R_{\text{atom}} \sqrt{N} \sim 1 \text{ km}$$

Very naive estimate! In reality much bigger

High enough activity

- Low emitter Q-value (Cocco et. al., 2007)
- High number of emitters (order of 10²⁵)
- Lifetime of emitter: small enough to have a high decay rate, but large enough not to decay instantly

- Low emitter Q-value
- Low emitter densities electron free path bigger than the system size
- Low volume

$$\Delta E \sim rac{V_{
m source}}{V_{
m detector}}$$

High enough activity

- Low emitter Q-value
- High number of emitters (order of 10²⁵)
- Lifetime of emitter: small enough to have a high decay rate, but large enough not to decay instantly

- Low emitter Q-value
- Low emitter densities electron free path bigger than the system size
- Low volume

High enough activity

- Low emitter Q-value
- High number of emitters (order of 10²⁵)
- Lifetime of emitter: small enough to have a high decay rate, but large enough not to decay instantly
- o Radioactive material in gaseous form does not suit $(0.93 \,\mathrm{eV}$ resolution)
- Need in the solid-state based experiment

- Low emitter Q-value
- Low emitter densities electron free path bigger than the system size
- Low volume

PTOLEMY² - state of the art

 $C\nu B$ detection experiment challemge:

High energy resolution combined with sufficient number of events.

- **Tritium** as a β -decay emitter.
- Tritium is deposed on graphene sheets (vdW forces).
- ► \approx 4 C ν B events per year.
- Outstanding energy resolution of the apparatus $\approx 10 \text{ meV}$.

 β -decay in Tritium ³

So that is it?

So that is it?

No

Jungle of many-body and chemical effects

The width of the peak (signature of $C\nu B$) is defined by

- energy resolution of the measurement
- physical smearing of the energies of individual electrons

We are interested in effects on $m_{
u} \sim 10\,{
m meV}$ scale

Real spectrum

Energy resolution is defined *not only by the resolution of the measurement device*, but also by **the interaction between the decaying nucleus and the substrate** that affects the energies of individual electrons.

Chemical bonding of the atom to the substrate

General mechanism of the broadening

- For a bonded system, recoil energy of the nucleus is not fixed by the kinematics but has some distribution.
- ▶ Uncertainty⁴ in the velocity of the centre of mass of the nucleus

$$\Delta u \approx \frac{\hbar}{m_{\rm nucl}\lambda_{\rm nucl}}.$$

The energy of the electron is measured in the laboratory frame of reference, where it acquires an uncertainty⁵

 $\Delta E \approx m_e v_e \Delta u.$

⁴from the Heisenberg uncertainty principle.

 $^{{}^{5}\}Delta E$ has the same distribution as Δu .

General mechanism of the broadening

$$\Delta E \approx \hbar rac{m_e v_e}{m_{
m nucl} \lambda_{
m nucl}},$$

λ_{nucl} is the spread of the ground state of the nucleus that is defined by the stiffness of the bonding potential *×*.

$$\lambda_{\rm nucl}^2 = \frac{\hbar}{\sqrt{m_{\rm nucl}\varkappa}}$$

Bonding potential

For the heavy atom one can expand the potential near its minimum

$$U=\frac{1}{2}\varkappa_{i,j}r_ir_j+U_0$$

The energy uncertainty very weakly depends on the binding potential

$$\Delta E \propto \lambda_{
m nucl}^{-1} \propto \varkappa^{1/4}$$

Energy broadening for the β -decay of the Tritium on graphene

The uncertainty in the electron energy ΔE :

- ls of the order of $0.5 \,\mathrm{eV}$.
- ► Is 2 orders of magnitude greater than the resolution needed to see the $C\nu B$ signal.
- Weakly depends on the potential stiffness.
- For molecular tritium the estimate is of the same order.
- Strongly depends on the radioactive nucleus.
- Agrees with the the fully quantum calculation⁶

Shape of the spectrum for the β -decay of the Tritium on graphene⁷

 \blacktriangleright \mathcal{G} - distr. of the electron velocity in the centre of mass ref. frame.

- *F* distr. of the velocity of the centre of mass.
- $\tilde{\mathcal{G}}$ distr. of the electron velocity in the laboratory ref. frame.

 $^{^{7}\}Delta E \approx mu\Delta u$, therefore ΔE has the same distribution as Δu .

The are two possible solutions

Two possible solutions

$$\frac{\Delta E}{\sqrt{\hbar m_e}} \approx \varkappa^{1/4} \sqrt{\frac{Q}{m_{\rm nucl}^{3/2}}} \equiv \varkappa^{1/4} \gamma$$

Changing the binding potential

[Apponi et.al., 2022]

- Making it very soft This will reduce the energy smearing
- Making it very stiff Recoil-less part of the spectrum at the very end does not get smeared, but is suppressed as

 $\mathcal{M} = \mathcal{M}_0 e^{-\lambda^2 k_\beta^2/4}$

 ω_{vibr} of *H*-based molecules vary within one order of magnitude.

- Changing the β -emitter [Mikulenko et.al., 2021]
- Finding a heavier β-emitter with low Q
 This will reduce the energy smearing
- However, one needs to double-check the capture rate

$$(\sigma v)_{\nu} = rac{p_e^{\max} E_e^{\max}}{\pi} imes rac{1}{2} \sum |\mathcal{M}_{\mathcal{H}}|^2$$
Two possible solutions

$$\frac{\Delta E}{\sqrt{\hbar m_e}} \approx \varkappa^{1/4} \sqrt{\frac{Q}{m_{\rm nucl}^{3/2}}} \equiv \varkappa^{1/4} \gamma$$

Changing the binding potential

[Apponi et.al., 2022]

- Making it very soft This will reduce the energy smearing
- Making it very stiff Recoil-less part of the spectrum at the very end does not get smeared, but is suppressed as

 $\mathcal{M} = \mathcal{M}_0 e^{-\lambda^2 k_\beta^2/4}$

 ω_{vibr} of *H*-based molecules vary within one order of magnitude. Changing the β -emitter [Mikulenko et.al., 2021]

- Finding a heavier β-emitter with low Q
 This will reduce the energy smearing
- However, one needs to double-check the capture rate Naive estimate for M_H = const

$$(\sigma v)_{\nu} = 5.3 \cdot 10^{-46} \,\mathrm{cm}^2 imes rac{1 \,\mathrm{year}}{\tau} imes \ imes \left(rac{100 \,\mathrm{keV}}{Q}
ight)^3$$

First solution: Changing the binding potential

Changing the binding potential: soft potential

- One way is to use carbon nanotubes [Apponi et.al., 2022] - full mobility along the axis of the nanotube.
- Bound on the emission angle

 $\theta_{\rm max} = \arcsin\left(\Delta E_{\rm allowed} / \Delta E_{\rm existing}\right)$

- Reduced event rate by $\sim \theta_{\max}^{-2}$ times.
 - Free Tritium tends to form molecules.
 - Non-zero recombination rate [Mehta et.al., 2007]

$$\frac{d\lambda}{dt} = -K_{1D}\lambda^3,$$

where λ is a linear density, K_{1D} recombination rate.

- For Tritium, with lifetime of $\tau \sim 100 \,\mathrm{d}$, we get $\lambda \sim 300 \,\mathrm{cm}^{-1}$.
- ▶ With 5 Å nanotubes spacing we get surface density of $\sim 10^{10} {\rm cm}^{-2}$ five orders of magnitude lower than fully loaded graphene.

Second solution: Changing the β -emitter

From the requirements of low γ and meaningfull τ_{1/2} by searching all existing transitions of all energy levels (not only ground states).

Parent	$\tau_{1/2}, [\rm yr]$	Daughter	$Q, [\mathrm{keV}]$	$\gamma/\gamma_{3}_{ m H}$
$^{171}\mathrm{Tm}$	1.92	$^{171}\mathrm{Yb}$	96.5	0.110
⁶³ Ni	101.	$^{63}\mathrm{Cu}$	66.9	0.193
$^{147}\mathrm{Pm}$	2.62	$^{147}\mathrm{Sm}$	225.	0.188
$^{151}\mathrm{Sm}$	90.0	$^{151}\mathrm{Eu}$	75.9	0.107

From the requirements of low γ and meaningfull τ_{1/2} by searching all existing transitions of all energy levels (not only ground states).

Parent	$\tau_{1/2}, [\rm yr]$	Daughter	$Q, [\mathrm{keV}]$	$\gamma/\gamma_{ m 3_H}$
$^{171}\mathrm{Tm}$	1.92	$^{171}\mathrm{Yb}$	96.5	0.110
⁶³ Ni	101.	$^{63}\mathrm{Cu}$	66.9	0.193
$^{147}\mathrm{Pm}$	2.62	$^{147}\mathrm{Sm}$	225.	0.188
$^{151}\mathrm{Sm}$	90.0	$^{151}\mathrm{Eu}$	75.9	0.107

- The **daughter** nucleus should be β **stable** or have **lower** Q than parent.
- ▶ This is **not the case** for ¹⁵¹Sm.
- ▶ ¹⁵¹Eu α -decays into ¹⁴⁷Pm which is β unstable with $\tau_{1/2} = 2.62$ years and with $Q_{147}_{Pm} > Q_{151}_{Sm}$.
- ► The lifetime of ${}^{151}Eu$ is $\tau_{1/2} = 10^{18}$ years, but we also need to have order of 10^{27} atoms of ${}^{151}Sm$.
- ► ¹⁴⁷Sm α -decays with $\tau_{1/2} \sim 10^{11}$ years and Q = 2311 keV which can scatter on β -electrons.

From the requirements of low γ and meaningful $\tau_{1/2}$.

Parent	$\tau_{1/2}, [\rm yr]$	Daughter	$Q, [\mathrm{keV}]$	$\gamma/\gamma_{\rm ^3H}$
¹⁷¹ Tm	1.92	¹⁷¹ Yb	96.5	0.110
⁶³ Ni	101.	⁶³ Cu	66.9	0.193

• The daughter is β - stable.

From the requirements of low γ and meaningful $\tau_{1/2}$.

Parent	$\tau_{1/2}, [\rm yr]$	Daughter	$Q, [\mathrm{keV}]$	$\gamma/\gamma_{3_{ m H}}$
¹⁷¹ Tm	1.92	¹⁷¹ Yb	96.5	0.110
⁶³ Ni	101.	⁶³ Cu	66.9	0.193

• The daughter is β - stable.

We need to know precise capture rates. Spoiler:

▶ For ⁶³Ni we can calculate it pretty precise theoretically

$$^{63}\mathrm{Ni}:~~\Gamma_{\mathsf{capt}}=7\cdot10^{-28}\mathsf{y}^{-1}rac{\eta_{
u}}{\langle\eta_{
u}
angle}$$
 per atom

- Typical size of the setup is $31 \text{ m} \times 31 \text{ m} \times 31 \text{ m}$.
- ▶ For ¹⁷¹Tm it is much more tricky.

Let us discuss how we calculate capture rates

Calculating neutrino capture rate

Both neutrino capture and β-decay are governed by the same weak interaction:

$$\mathcal{H} \propto ar{e} \gamma_\mu (1-\gamma_5)
u imes ar{p} \gamma^\mu (g_V - g_A \gamma_5) n$$

Neutrino capture rate for ^{171}Tm

▶ In some cases (such as for ³H and ⁶³Ni), $\sum |M_H|^2 = \text{const}$, hence:

$$(\sigma v)_{\nu} = 5.3 \cdot 10^{-46} \, \mathrm{cm}^2 \times \frac{1 \, \mathrm{year}}{\tau} \times \left(\frac{100 \, \mathrm{keV}}{Q}\right)^3$$

neglecting Coulomb field and assuming $Q \ll m_e$

- For ¹⁷¹Tm this **not the case**.
- The reason is that for ^{171}Tm $\sum |\mathcal{M}_{\mathcal{H}}|^2 \neq \text{const}$

Unique

 $\sum |\mathcal{M}_{\mathcal{H}}|^2 = C \cdot f(p_e, p_{\nu})$

Nonunique

$$\sum |\mathcal{M}_{\mathcal{H}}|^2 = c_1 \cdot f_1(p_e, p_{\nu}) + \dots$$

- one final state
- C single nuclear constant
- f known function of p_e , p_{ν}

- several possible final states
- c_i several nuclear constants
- f_i known functions of p_e , p_{ν}

Naive estimate

▶ In some cases (such as for ³H and ⁶³Ni), $\sum |M_H|^2 = \text{const}$, hence:

$$(\sigma v)_{\nu} = 5.3 \cdot 10^{-46} \, \mathrm{cm}^2 imes rac{1 \, \mathrm{year}}{\tau} imes \left(rac{100 \, \mathrm{keV}}{Q}
ight)^3$$

neglecting Coulomb field and assuming $Q \ll m_e$

- For ¹⁷¹Tm this **not the case**.
- One can still make the crude estimate using (σν)_ν ~ (Q³τ)⁻¹ gives

 $\Gamma_{capture}^{171} = 0.05 \ \times \ \Gamma_{capture}^{3}$

Naive estimate. How reliable?

▶ In some cases (such as for ³H and ⁶³Ni), $\sum |M_H|^2 = \text{const}$, hence:

$$(\sigma v)_{\nu} = 5.3 \cdot 10^{-46} \, \mathrm{cm}^2 imes rac{1 \, \mathrm{year}}{\tau} imes \left(rac{100 \, \mathrm{keV}}{Q}
ight)^3$$

neglecting Coulomb field and assuming $Q \ll m_e$

For some isotopes this not the case, but we can write

$$(\sigma \mathbf{v})_{\nu} = \delta \times (\sigma \mathbf{v})_{\text{est.}}$$

Isotope	Q, keV	au, year	$(\sigma v)_{\nu}$, $10^{-46} {\rm cm}^2$	δ
ЗН	18.591	17.8	39.2	0.86
⁶³ Ni	66.945	145	$6.9 \cdot 10^{-2}$	0.57
⁹³ Zr	60.63	$2.27 \cdot 10^{6}$	$1.20 \cdot 10^{-5}$	1.15
$^{106}\mathrm{Ru}$	39.4	1.48	29.4	0.51
¹⁰⁷ Pd	33	$9.38 \cdot 10^{6}$	$1.29 \cdot 10^{-5}$	0.83
¹⁸⁷ Re	2.646	$6.28 \cdot 10^{10}$	$2.16 \cdot 10^{-6}$	0.48

For many isotopes, $\delta \sim 1$, but we can not be sure about ¹⁷¹Tm.

Neutrino capture rate from experimental spectrum

- $\sum |\mathcal{M}_{\mathcal{H}}(p_e^{\max}, p_{\nu} \to 0)|^2 \propto (\sigma v)_{\nu}$ cannot be predicted from lifetime τ for nonunique transitions
- Measure it directly from the spectrum!

Neutrino capture rate from experimental spectrum

- $\sum |\mathcal{M}_{\mathcal{H}}(p_e^{\max}, p_{\nu} \to 0)|^2 \propto (\sigma v)_{\nu}$ cannot be predicted from lifetime τ for nonunique transitions
- Measure it directly from the spectrum!

$$(\sigma v)_{\nu} = \frac{7.0 \cdot 10^{-37} \,\mathrm{cm}^2}{(T_{\mathrm{m}} \text{ in hours})(\Delta E \text{ in keV})} \times \frac{1}{N_{\mathrm{at}}} \left(\frac{N(\varepsilon)}{(\varepsilon \,\mathrm{in \ keV})^2} \right) \Big|_{\varepsilon \to 0}$$

- ► Measure the number of electrons in energy bins $T_e^n \in [Q - \Delta En, Q - \Delta E(n-1)]$ with width ΔE (say, 1 keV)
- $\triangleright \varepsilon_n = \Delta E(n+1/2)$
- $N(\varepsilon_n)$ number of events in the *n*-th bin.
- $N_{\rm at}$ number of β -emitters
- T_m time of the measurement

Neutrino capture rate for ^{171}Tm

- ▶ For ¹⁷¹Tm no experimental spectrum is available
- To make an estimate of neutrino capture rate, we used BetaShape to compute the spectrum
- BetaShape calculates electromagnetic corrections to the spectrum. Still, it cannot compute nuclear constants and predict the spectrum – treats nonunique as unique

The results from BetaShape need to be verified by an experiment

Was experimentally tested at EPFL

Results

 \blacktriangleright With the BetaShape spectra, the capture rate for $^{171}\mathrm{Tm}$ is

 $\Gamma_{capture}^{\rm 171_{Tm}} = 3\cdot 10^{-2}\Gamma_{capture}$

- consistent with the crude estimate up to a factor of two

► Assuming local relic neutrino concentration $\eta_{\nu} = 56 \, \mathrm{cm}^{-3}$ and Majorana nature, we need

$$N_{\text{atoms for event/year}} = \begin{cases} 2 \cdot 10^{24}, & {}^{3}\text{H} \\ 10^{26}, & {}^{171}\text{Tm} \\ 1.3 \cdot 10^{27}, & {}^{63}\text{Ni} \end{cases}$$

With atom density on a graphene sheet 3.8 · 10¹⁵ cm⁻² and separation of mm between sheets, event/year target would have the volume

 $\label{eq:H} \begin{array}{ll} {}^{3}\mathrm{H}: & V \approx 1\,\mathrm{m}\times8\,\mathrm{m}\times8\,\mathrm{m} \\ {}^{171}\mathrm{Tm}: & V \approx 10\,\mathrm{m}\times15\,\mathrm{m}\times15\,\mathrm{m} \\ {}^{63}\mathrm{Ni}: & V \approx 31\,\mathrm{m}\times31\,\mathrm{m}\times31\,\mathrm{m}. \end{array}$

Imagine we mitigated the smearing from Heisenberg's uncertainty

Imagine we mitigated the smearing from Heisenberg's uncertainty

Our next main roadblock is...

Imagine we mitigated the smearing from Heisenberg's uncertainty

Our next main roadblock is...

finite lifetime of the ion

Finite lifetime of the daughter ion

- The daughter ion will not be in the ground state. Hence it will have finite lifetime τ.
- We will have Lorentz profile in energy distribution which is very slowly decaying at tails

$$\delta\left(E_{f}-E_{i}\right)\rightarrow\frac{4\tau}{1+(4\pi\tau(E_{f}-E_{i}))^{2}}$$

- This would introduce additional energy smearing to the β-spectrum.
- From requirement $\Delta E \leq 10 \text{ meV}$ for ¹⁷¹Tm we need to have the lifetime of the ion $\tau \geq 10^{-7} \text{s.}$
- The estimate of the lifetime of the ^{171}Tm is $\tau_{171Tm} \sim 10^{-15}s$.
- ► For ³H the situation is even worse. Its daughter, ³He⁺ is an inert gas, so its ionization energy is extremely big.
- From this perspective, transition metals are profitable.

Is that it?

Is that it? No, it is only beginning...

Mechanisms of the intrinsic energy broadening

- Chemical bonding of the atom to the substrate.
- Impurity screening by charges in the substrate.
- X-ray edge singularity.
- Lattice vibrations

- Emission of plasmons and surface polaritons
- Creation of shock wave emission due to the motion of the emitted electron at grazing angles at speeds exceeding the Fermi velocity
- Inhomogeneous broadening

Conclusions

- Fundamental questions of particle physics and the origin of our Universe could realistically be accessed only through the understanding of the condensed matter effects
- Limitations due to zero point motion bring us to the nessecity of changing the experimental design.
- There are 2 solutions to it: changing the binding potential and changing the emitter.
- Among the possible candidates for new β -emitters are ¹⁷¹Tm and ⁶³Ni.
- > Zoo of effects appear in the $E \sim 10 \text{ meV}$ which needs a much better understanding than usually in CM.

Backup slides

Typically, heavy isotopes are produced in two ways:

- From **nuclear waste** (¹⁴⁷Pm).
- From lighter stable isotopes by neutron irradiation (¹⁷¹Tm, ⁶³Ni, ¹⁴⁷Pm).

During both processes there is a substantial contamination by isotopes.

Typically, heavy isotopes are produced in two ways:

- From **nuclear waste** (¹⁴⁷Pm).
- From lighter stable isotopes by neutron irradiation (¹⁷¹Tm, ⁶³Ni, ¹⁴⁷Pm).

During both processes there is a substantial contamination by isotopes.

lsotope	¹⁷¹ Tm	¹⁷⁰ Tm	¹⁶⁹ Tm
Atoms	1.23×1019	7.4×10 ^{15b}	2.59×1017b
Activity (Bq)	1.40×10^{11a}	$4.6 imes 10^{8}$	-
Mass (µg)	3480	1.9	72.7
Uncertainty (%)	2.4	20	3

Figure: [Heinitz et.al., 2017]

• $Q_{170_{\rm Tm}} \approx 968 \, \rm keV$ bigger then $Q_{171_{\rm Tm}} \approx 97 \, \rm keV$ with $\tau_{1/2} = 130$ days which will completely cover the $C\nu B$ peak

_

Typically, heavy isotopes are produced in two ways:

- From **nuclear waste** (¹⁴⁷Pm).
- From lighter stable isotopes by neutron irradiation (¹⁷¹Tm, ⁶³Ni, ¹⁴⁷Pm).

During bot	h processes	there is a	substantial	contamination	by	isotopes.
------------	-------------	------------	-------------	---------------	----	-----------

Radio- isotope	Half-life	Radioactivity at processing time (127 d post-EOB)		
		(MBq/mg of ¹⁴⁶ Nd target)	(%)	
¹⁴⁷ Nd	10.98 d	0.83	3.13	
¹⁴⁷ Pm	2.62 y	$2.55 imes 10^1$	95.3	
^{148m} Pm	41.3 d	1.72×10^{-1}	0.64	
^{148g} Pm ^b	5.37 d	8.6×10^{-2}	3.2×10^{-2}	
¹⁴⁶ Pm	5.53 y	$\leq 1 \times 10^{-6c}$	$\leq 4 \times 10^{-6c}$	

Figure: [Broderick et.al., 2019]

_

Typically, heavy isotopes are produced in two ways:

- From **nuclear waste** (¹⁴⁷Pm).
- From lighter stable isotopes by neutron irradiation (¹⁷¹Tm, ⁶³Ni, ¹⁴⁷Pm).

During	both	processes	there	is a	substantial	contamination	by	isotopes.
--------	------	-----------	-------	------	-------------	---------------	----	-----------

Radio- isotope	Half-life	Radioactivity at processing time (127 d post-EOB)		
isotope		(MBq/mg of ¹⁴⁶ Nd target)	(%)	
¹⁴⁷ Nd	10.98 d	0.83	3.13	
¹⁴⁷ Pm	2.62 y	$2.55 imes 10^1$	95.3	
^{148m} Pm	41.3 d	1.72×10^{-1}	0.64	
^{148g} Pm ^b	5.37 d	$8.6 imes 10^{-2}$	3.2×10^{-2}	
¹⁴⁶ Pm	5.53 y	$\leq 1 \times 10^{-6c}$	\leq 4 \times 10 ^{-6c}	

Figure: [Williams et.al., 1993]

► All isotopes of ⁶³Ni are stable.

General shape of the spectrum

In case when the bonding potential is harmonic, the spectrum is

- Discrete near the edge.
- Continuous further from the edge.
- The envelope has a gaussian distribution.
- The distance between the discrete lines⁸ is $\varepsilon = \hbar \sqrt{\frac{\varkappa}{m_{\text{purel}}}}$.
- Biggest part of the $C\nu B$ channel overlaps with the continuum.

 $^{8}10\,\mathrm{meV}$ for the Tritium on graphene and $0.5\,\mathrm{eV}$ for the molecular tritium.

Comparison with molecular Tritium

Similarities:

- ▶ Bonded by a harmonic potential ($\varkappa_{graphene} \approx 0.1, \varkappa_{mol} \approx 75$).
- ► Localized and therefore are subjects to Heisenberg's uncertainty principle $m\Delta v\Delta x \sim \hbar$.

Differences:

Atomic Tritium on graphene:

- All of the recoil energy goes to the harmonic modes.
- May break the bound after the recoil.

Gaseous molecular Tritium:

- Half of the recoil energy goes to the transnational motion.
- Remains bound after the recoil.

Neutrino flux9

⁹E. Vitagliano et.al. "Grand Unified Neutrino Spectrum at Earth: Sources and Spectral Components", (2020)

Neutrino flavours

KATRIN

PTOLEMY

