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Introduction
Deep Inelastic Scattering: a lepton scatters from a proton.

Cq,g

fq, fg

Lepton

Proton

Quark or Gluon

q

xpp

Boson

Boson: γ,H,Z 0 (“Neutral Current”) or W± (“Charged Current”)

Cross-section: σ ∼ Fa(x ,Q2 =−q2>0) = Ca,q ⊗ fq + Ca,g ⊗ fg

Fa – Structure Function
x – Collinear momentum fraction
Q – Exchanged momentum

Ca,j – Coefficient Function (a = 2, 3, L, φ)
⊗ – Mellin Convolution
fj – Parton Distribution Function (PDF)
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Inclusive Deep-Inelastic Scattering
Integrate over all final states:
I to compute Ca,q,Ca,g , use the optical theorem.
I compute forward scattering amplitudes.

2

∼ Im

Loop integrals:
I use Dimensional Regularization (d = 4− 2ε).
I divergences manifest as poles in ε.

Renormalization removes UV poles, but “collinear” poles remain:

(p − k)2 → −2|~p||~k | (1− cosϑ) : propagator diverges as cosϑ→ 1 .
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Collinear/Mass Factorization
To deal with these collinear poles, renormalize the PDF:
I factorize F̃a,j : Ca,j is finite. Zji contains only poles in ε.

Fa = F̃a,j ⊗ f̃j = Ca,j ⊗ Zji

(
x ,as, µ

2
f , ε
)
⊗ f̃i = Ca,j ⊗ fj .

Factorization at scale µ2
f , implies fj has scale dependence:

d
d lnµ2

f
fj =

d
d lnµ2

f
Zji ⊗ f̃i =

[ d
d lnµ2

f
Zjk ⊗ Z−1

ki

]
⊗ fi =

[
Pji

]
⊗ fi .

I this is the DGLAP evolution equation
I Pji are the Splitting Functions

Know Zji from calculation of F̃a,j , so we can extract Pji .

PDFs are universal to all hadron interactions; Splitting Functions are also.
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Splitting Functions

DGLAP evolution: system of 2nf +1 coupled equations.

By defining the distributions

qs =

nf∑
i=1

(fi + f̄i), q±ns,ij = (fi ± f̄i)− (fj ± f̄j), qV =

nf∑
i=1

(fi − f̄i),

we have evolution equations in terms of 7 splitting functions:

d
d lnµ2

f

(
qs
g

)
=

(
Pqq Pqg
Pgq Pgg

)
⊗
(

qs
g

)
,

d
d lnµ2

f
q±ns,ij = P±ns ⊗ q±ns,ij ,

d
d lnµ2

f
qV = PV ⊗ qV .
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Mellin-N Space

Taking a Mellin transform, convolutions (⊗) become products,

f (N,Q2) =

∫ 1

0
dx xN−1f (x ,Q2) ,

I Fa = Ca,j ⊗ Zji ⊗ f̃i → Ca,j Zji f̃i

Computing in N space, quantities “live” on even or odd moments:

I even N
I F2,FL for e.m., (ν + ν̄) DIS, F3 for (ν − ν̄) DIS, Fφ for scalar-exchange
I P+

ns, Pij

I odd N
I F2,FL for (ν − ν̄) DIS, F3 for (ν + ν̄) DIS
I P−ns, PV

5/24



Introduction D-dimensional structure Non-singlet quantities Singlet Quantities Double-Logarithmic Equation Conclusion

Perturbative Series
Expand as a series in as = αs/(4π):

P = a 1
s P(0) + a 2

s P(1) + a 3
s P(2) + a 4

s P(3) + · · ·
C = a 0

s C(0) + a 1
s C(1)︸ ︷︷ ︸

NLO

+a 2
s C(2)

︸ ︷︷ ︸
N2LO

+a 3
s C(3)

︸ ︷︷ ︸
N3LO

+ · · ·

N2LO: known [Moch, Vermaseren, Vogt ‘04]

N3LO: partially known
I large-nf [Davies, Ruijl, Ueda, Vermaseren, Vogt ‘16]

I large-nc [Moch, Ruijl, Vermaseren, Vogt ‘17]

I numerical approx. based on Mellin moments
N4LO: P(4), a few moments only [Herzog, Moch, Ruijl, Ueda, Vermaseren, Vogt ‘19]

Expansion in ε: C(n) = c(n,0) + εc(n,1) + ε2c(n,2) + · · · .
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Computation

Compute N dependence directly (done at 3 loops, but not 4).

Or compute Mellin moments of F̃a,j , for even or odd N
I expansion about two-point (propagator) integrals, (q2 � q · p)
I compute with MINCER (to 3 loops), FORCER (to 4 loops)

[Larin,Tkachov,Vermaseren ‘91][Ruijl,Ueda,Vermaseren ‘17]

I try to find N dependence from some moments, and extra information

x-space expressions recovered via Inverse Mellin Transform.
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End-point behaviour

Coefficient and splitting functions are logarithmically enhanced:
I high-energy (x → 0): ln(x) I threshold (x → 1): ln(1− x)

These logarithms spoil the convergence of perturbation theory.

Resum to all orders in as?

I x → 1
[Almasy, Lo Presti, Vogt ‘16]

I x → 0 (discuss here)
[Davies, Kom, Moch, Vogt ‘22]
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Small-x behaviour
Power series in x , ln(x): (N space: xm lnk (x)↔ (−1)kk !/(N + m)k+1)

P(n),+
ns ∼+ x0( ln2n(x) + ln2n−1(x) + · · ·+ const

)
+O

(
x1),

C(n),+
a,ns ∼+ x0( ln2n−1−δa,L(x) + ln2n−2−δa,L(x) + · · ·+ const

)
+O

(
x1)

P(n)
ij ∼+ x−1( lnn−1(x) + lnn−2(x) + · · ·+ const

)
+ x0( ln2n(x) + ln2n−1(x) + · · ·+ const

)
+O

(
x1),

C(n)
a,i ∼+ x−1( lnn−2(x) + lnn−3(x) + · · ·+ const

)
+ x0( ln2n−1−δa,L(x) + ln2n−2−δa,L(x) + · · ·+ const

)
+O

(
x1)

x−1 single logs: resummed by BFKL formalism
I not covered by the discussion here: double logs only
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“Unfactorized” Structure Functions
Recall the parton-level structure function, before factorization,

F̃ = C Z . (suppressing indices and working in N space)

Inverting the definition P = d Z
d lnµ2

f
Z−1 = βas

d Z
das

Z−1 ,

Z = 1− as
1
ε

P(0) + a 2
s

{ 1
2ε2

(P(0) + β0)P(0) −
1
2ε

P(1)
}
− a 3

s

{ 1
6ε3

(P(0) + β0)(P(0) + 2β0)P(0)

−
1

6ε2

[
(P(0) + 2β0)P(1) + 2(P(1) + β1)P(0)

]
−

1
3ε

P(2)
}
+O

(
a 4

s

)

At a n
s : ε−n : P(0), β0,

ε−n+1 : P(0), β0, P(1), β1,

...

ε−1 : P(n−1)

NmLO knowledge (P(m), βm)
gives leading (m + 1) ε poles
of Z , and so also F̃ , to all
as orders.
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Resummation Ansatz

At a n
s : F̃ (n) = 1

ε2n−1 xp∑n
l=1x lε

(
A(n,l)

p + εB(n,l)
p + ε2C(n,l)

p + · · ·
)

2→ n + 1 real-emission phase space:
I poles up to ε−2n+1

I logarithmic factor xnε = 1 + nε ln(x) + n2/2 ε2 ln2(x) +O(ε3)

Mixed real-virtual contributions:
I poles up to ε−2n+1

I logarithmic factors xε, x2ε, . . . , x (n−1)ε

After ε expansion, A, B, C give LL, NLL, N2LL contributions to F̃ (n).

Shift xp gives sub-leading terms in x expansion.[
In N space: F̃ (n) = 1

ε2n−1

∑n
l=1

1
N+lε+p

(
A(n,l)

p + εB(n,l)
p + ε2C(n,l)

p + · · ·
)]
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Resummation Ansatz
Now we have two representations for F̃ , which we can equate.
I double poles ε−2n+1, . . . , ε−n−1 have to cancel! KLN theorem.
I once A,B,C are determined, further expansion in ε yields predictions

Example, consider F̃2,ns at LO, LL accuracy: (P(1) is unknown)

F̃2,ns = C2,ns Zns = 1 + as
1
ε

A(1,1)

N + ε
+ a 2

s
1
ε3

{ A(2,1)

N + ε
+

A(2,2)

N + 2ε

}
+ a 3

s
1
ε5

3∑
l=1

A(3,l)

N + lε
+ · · ·

= 1 + as

{
−1
ε

P(0) + ε0c(1,0) + · · ·
}

+ a 2
s

{ 1
2ε2

(
P(0)β0 + P(0)2)

− 1
2ε

(
2c(1,0)P(0) + P(1)

)
+ · · ·

}
= 1 + as

{N−1

ε
A(1,1) − ε0 N−2A(1,1) + · · ·

}
+ a 2

s

{N−1

ε3 [A(2,1) + A(2,2)] +
N−2

ε2 [−2A(2,1) − A(2,2)] +
N−3

ε
[4A(2,1) + A(2,2)] + · · ·

}
a 3

s : 3 unknown A(3,l), but ε−5 and ε−4 coefficients must vanish. ε−3 known from C Z .
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When does this work?
Recall that in N space, we can compute either even or odd N values.
I for even-N based quantities, ansatz holds for shifts xp with p even.
I for odd-N based quantities, it holds for shifts xp with p odd.

For the “wrong powers”, can’t consistently determine A,B,C constants.

For singlet structure functions, system is coupled. E.g,(
F̃2,q F̃2,g

F̃φ,q F̃φ,g

)
=

(
C2,q C2,g
Cφ,q Cφ,g

)(
Zqq Zqg
Zgq Zgg

)
,

where (
Pqq Pqg
Pgq Pgg

)
= βas

d
das

[(
Zqq Zqg
Zgq Zgg

)](
Zqq Zqg
Zgq Zgg

)−1

.

I Method works in the same way.
13/24



Introduction D-dimensional structure Non-singlet quantities Singlet Quantities Double-Logarithmic Equation Conclusion

Procedure

NmLO coefficient, splitting functions (small-x)
↓

NmLL F̃ = C Z , to “all” as, ε
↓

NmLL coefficient, splitting functions, to “all” as

I we don’t seek a closed expression/generating function for F̃
I work at the level of the coefficient, splitting functions

I “all” as: computer-limited order (C Z becomes large)
I non-singlet: a 60

s , singlet: a 20
s
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Non-singlet splitting function, N space

Using the above procedure, produce LL expansion:

P+
ns = −2asCF

N
− 4a 2

s C 2
F

N3 − 16a 3
s C 3

F
N5 − 80a 4

s C 4
F

N7 − 448a 4
s C 5

F
N9 + · · ·

I OEIS (https://oeis.org) [A025225]
I FindGeneratingFunction (Mathematica)
I . . .

= −N
2

(√
1− 4

2asCF

N2 − 1

)
= −N

2
(S − 1),

where S =
√

1− 4ξ , ξ = 2asCF/N2.
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Non-singlet splitting function, N space
Including also NLL and N2LL terms,

P+
ns = −

2asCF

N
− 2a 2

s CF

(
2CF

N3
+

6CF − 11CA + 2nf

3N2
−

[18 + 36ζ2]CF − 151CA + 22nf

9N

)
+ · · ·

guess a basis of all-order functions: {1,S,S−1,S−3}.
Then:

P+
ns =− N

2
(S − 1) +

as

2
(2CF − β0)(S−1 − 1)

+
1

96 CF
asN

{(
[156− 960 ζ2]C 2

F − [80− 1152 ζ2]CACF − 360 ζ2 C 2
A

−100β0CF + 3β 2
0
)
(S − 1) + 2

(
[12− 576 ζ2]C 2

F

+[40 + 576 ζ2]CACF − 180 ζ2 C 2
A + 56β0 CF − 3β 2

0
)
(S−1 − 1)

+ 3 (2 CF − β0)
2(S−3 − 1)

}
.

nf → β0: more compact typesetting.
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Non-singlet splitting function, x space

We can write P+
ns in x space in terms of “modified Bessel functions”:

Ĩn(z) =
(2

z

)n
In(z) =

∞∑
k=0

1
k !(n + k)!

(z
2

)2k
, here: z =

√
8CF as ln

1
x
,

P+
ns

2asCF
=
{

1 + (2 CF − β0) as ln
1
x

+
1
2
(2 CF − β0)

2a 2
s ln 2 1

x

}
Ĩ1(z)

+
{ 1

3
(11β0 + 10 CA − 6 CF )− 4 CF ζ2

}
as Ĩ0(z)

+
{

8 C 2
F − 2 ζ2( 15 C 2

A − 48 CF CA + 44 C 2
F )
}

a 2
s ln 2 1

x
Ĩ2(z) .

There are some interesting structures here—come back to it later.
I expression is not unique: recurrence relations between Ĩn(z).
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Non-singlet coefficient functions, N space
Similarly, produce LL, NLL, N2LL expansions of the coefficient functions.

Can be written in terms of F = S−1/2 =
(
1−42asCF

N2

)−1/4

: (+ odd powers)

C+
2,ns = F +

1
192CF

N
{
− 3(32CF + 11β0)(F −1 − 1) + 4(18CF + 11β0)(F − 1) + 6β0(F 3 − 1)

+12(2CF − β0)(F 5 − 1)− 5β0(F 7 − 1)
}

+
1

9216CF
as

{
− 128

(
[333− 1368 ζ2]C 2

F − [60− 1728 ζ2]CACF − 540 ζ2C 2
A

−87β0CF − 10β 2
0

)1
ξ
(F −3 − F −1 + 2ξ) + · · ·

}

C+
L,ns and C+

3,ns have similar forms.

In x space, F can be written in terms of 1F2(· · · ).
I not investigated in any detail...
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Large-nc Limit: all x powers
Recall that P(n),±

ns ∼ +x0( ln2n(x) + · · ·
)

+ x1( ln2n(x) + · · ·
)

+O
(
x2),

I for P(n),+
ns , resum only xeven, for P(n),−

ns , resum only xodd.

In the large-nc limit (CA → nc , CF → nc/2): P(n),+
ns = P(n),−

ns .
I we know all x powers in this limit
I order-by-order in as, can reconstruct coefficients of ln(x)

I fit to basis of {Harmonic Polylogarithms, (1− x)−1, x{0,1,2,3}}

P(3)
ns,L =+ ln6(x)

[
n 3

c CF

{
5

24

(
1−

16
15

(1− x)−1 + x
)}]

+ ln5(x)
[

n 3
c CF

{
−

4
3
(2(1− x)−1 − 1− x)H1 +

22
9

(
1−

13
11

(1− x)−1 +
17
11

x
)}

+n 2
c CF nf

{
−

7
9

(
1−

8
7
(1− x)−1 + x

)}]
+ ln4(x)

[
· · ·
]
+ ln3(x)

[
· · ·
]
+ · · ·

N2LL result helped determine analytic N3LO large-nc P(3)
ns,L → N3LL.

Works for C2,ns,L, CL,ns,L and C3,ns,L also.
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Singlet Quantities: Splitting Functions
Singlet splitting functions: Pqq,Pqg ,Pgq,Pgg . Separate diagonal P:

Pqq = P+
ns + Pps

qq ,

Pgg = P+
gg + Pps

gg .

Then LL P+
gg = −N

2 (S′ − 1), where S′ =
√

1− 4ξ′, ξ′ = −4CAas
N2 .

The rest, at LL accuracy, a n+1
s : (ρ = n − k − 2i − 1)

Pps(n)
qq =

2Cn2n

N2n+1

b n−1
2 c∑

i=0

n−1−2i∑
k=0

(−2)i+1+k (nf CF )
i+1C k

A C ρ
F

(
k + i

k

)(
ρ+ i + 1

ρ

)
,

and P(n)
qg , P(n)

gq , Pps(n)
gg can be written in a similar form.

2Cn are the expansion coefficients of S =
√

1− 4ξ (?!)

NLL, N2LL? We can only compute order-by-order.
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Singlet Quantities: Coefficient Functions

Similarly for the coefficient functions C2,q, C2,g , CL,q, CL,g , Cφ,q, Cφ,g ,

Ca,q = C+
a,ns + Ca,ps, a = {2,L, φ}

where C+
2,ns etc. were computed above.

The pure-singlet parts, at LL accuracy, a n
s : (ρ′ = n − k − 2i − 2)

C(n)
2,ps =

Dn2n

N2n

b n−2
2 c∑

i=0

n−2−2i∑
k=0

(−2)i+1+k (nf CF )
i+1C k

A C ρ′

F

(
k + i

k

)(
ρ′ + i + 1

ρ′

)
,

and C(n)
2,g , C(n)

L,ps, C(n)
L,g can be written in a similar form.

Dn = 1
n!
∏n−1

k=0(1 + 4k) are the exp. coeffs. of F = S−1/2. (?!)

NLL, N2LL? We can only compute order-by-order.
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Generalized Double-Logarithmic Equation
An alternative small-x description of P+

ns: [Kirschner,Lipatov ‘76][Velizhanin ‘14]

P+
ns

(
P+

ns − N + β/as

)
= R = O(1),

→ P+
ns = − β

2as
− N

2

(√
1 +

4R
N2 −

2β
N as

+
β2

N2a 2
s
− 1
)

I solving order-by-order yields N2m+1LL, given NmLO input.
I caveat: fails at N2LO, for terms ∼ ζ2(CA − 2CF ) (??)

I vanishes for large-nc , so try the known N3LO P(3)
ns,L =⇒ N7LL P(4)

ns,L

The N7LL resummation in x space, lets us further investigate the
apparent exponential structure:

P+
ns

2asCF
= exp

[
− (β0 − nc)as ln(1/x)

](̃
I1(z) +

1
3
(11β0 + 13nc − 18ζ2nc)as Ĩ0(z)

)
+ · · ·
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Generalized Double-Logarithmic Equation
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Conclusion and Outlook
The structure of the unfactorized structure functions provides a way to
obtain deep expansions of coefficient, splitting functions at small x ,
I for non-singlet quantities we can find all-order forms.

Fixed-order predictions of the logs have already been used to help
determine (parts of the) N3LO non-singlet splitting function,
I they will also help determine (or check) the remaining colour factors.

For the future...
I how to write the LL singlet quantities in a “nice” way?

I can this be generalized to NLL, N2LL?
I what is this apparent exponentiation in the non-singlet splitting

function’s x space expression?
I can we access the “wrong” x powers outside the large-nc limit?

I here, the leading (x0) behaviour of odd-N quantities is missing.
I what is wrong with the double-logarithmic equation?
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