Resummation of small-x double logarithms in QCD: inclusive deep-inelastic scattering

arXiv:2202.10362

Nikhef Theory Seminar
J. Davies

ONIVERSITY
March 31, 2022

Introduction

Deep Inelastic Scattering: a lepton scatters from a proton.

Boson: γ, H, Z^{0} ("Neutral Current") or $W^{ \pm}$("Charged Current")
Cross-section: $\sigma \sim F_{a}\left(x, Q^{2}=-q^{2}>0\right)=C_{a, q} \otimes f_{q}+C_{a, g} \otimes f_{g}$
F_{a} - Structure Function
x - Collinear momentum fraction
Q - Exchanged momentum
$C_{a, j}-$ Coefficient Function $\quad(a=2,3, L, \phi)$
\otimes - Mellin Convolution
f_{j} - Parton Distribution Function (PDF)

Inclusive Deep-Inelastic Scattering

Integrate over all final states:

- to compute $C_{a, q}, C_{a, g}$, use the optical theorem.
- compute forward scattering amplitudes.

Loop integrals:

- use Dimensional Regularization ($d=4-2 \varepsilon$).
- divergences manifest as poles in ε.

Renormalization removes UV poles, but "collinear" poles remain:

$$
(p-k)^{2} \rightarrow-2|\vec{p}||\vec{k}|(1-\cos \vartheta): \quad \text { propagator diverges as } \cos \vartheta \rightarrow 1
$$

Collinear/Mass Factorization

To deal with these collinear poles, renormalize the PDF:

- factorize $\tilde{F}_{a, j}: C_{a, j}$ is finite. $Z_{j i}$ contains only poles in ε.

$$
F_{a}=\tilde{F}_{a, j} \otimes \tilde{f}_{j}=C_{a, j} \otimes Z_{j i}\left(x, a_{s}, \mu_{\mathrm{f}}^{2}, \varepsilon\right) \otimes \tilde{f}_{i}=C_{a, j} \otimes f_{j}
$$

Factorization at scale μ_{f}^{2}, implies f_{j} has scale dependence:

$$
\frac{d}{d \ln \mu_{\mathrm{f}}^{2}} f_{j}=\frac{d}{d \ln \mu_{\mathrm{f}}^{2}} Z_{j i} \otimes \tilde{f}_{i}=\left[\frac{d}{d \ln \mu_{\mathrm{f}}^{2}} Z_{j k} \otimes Z_{k i}^{-1}\right] \otimes f_{i}=\left[P_{j i}\right] \otimes f_{i}
$$

- this is the DGLAP evolution equation
- $P_{j i}$ are the Splitting Functions

Know $Z_{j i}$ from calculation of $\tilde{F}_{a, j}$, so we can extract $P_{j i}$.
PDFs are universal to all hadron interactions; Splitting Functions are also.

Splitting Functions

DGLAP evolution: system of $2 n_{f}+1$ coupled equations.
By defining the distributions

$$
q_{s}=\sum_{i=1}^{n_{f}}\left(f_{i}+\bar{f}_{i}\right), \quad q_{n s, i j}^{ \pm}=\left(f_{i} \pm \bar{f}_{i}\right)-\left(f_{j} \pm \bar{f}_{j}\right), \quad q_{v}=\sum_{i=1}^{n_{f}}\left(f_{i}-\bar{f}_{i}\right)
$$

we have evolution equations in terms of 7 splitting functions:

$$
\begin{gathered}
\frac{d}{d \ln \mu_{\mathrm{f}}^{2}}\binom{q_{s}}{g}=\left(\begin{array}{cc}
P_{q q} & P_{q g} \\
P_{g q} & P_{g g}
\end{array}\right) \otimes\binom{q_{s}}{g}, \\
\frac{d}{d \ln \mu_{\mathrm{f}}^{2}} q_{n s, i j}^{ \pm}=P_{n s}^{ \pm} \otimes q_{n s, i j}^{ \pm}, \quad \frac{d}{d \ln \mu_{\mathrm{f}}^{2}} q_{v}=P_{V} \otimes q_{v} .
\end{gathered}
$$

Mellin- N Space

Taking a Mellin transform, convolutions (\otimes) become products,

$$
f\left(N, Q^{2}\right)=\int_{0}^{1} \mathrm{~d} x x^{N-1} f\left(x, Q^{2}\right)
$$

- $F_{a}=C_{a, j} \otimes Z_{j i} \otimes \tilde{f}_{i} \rightarrow C_{a, j} Z_{j i} \tilde{f}_{i}$

Computing in N space, quantities "live" on even or odd moments:

- even N
- F_{2}, F_{L} for e.m., $(\nu+\bar{\nu})$ DIS, F_{3} for $(\nu-\bar{\nu})$ DIS, F_{ϕ} for scalar-exchange
- $P_{n s}^{+}, P_{i j}$
- odd N
- F_{2}, F_{L} for $(\nu-\bar{\nu})$ DIS, F_{3} for $(\nu+\bar{\nu})$ DIS
- $P_{n s}^{-}, P_{V}$

Perturbative Series

Expand as a series in $a_{s}=\alpha_{s} /(4 \pi)$:

$$
\begin{aligned}
& P=\underbrace{\underbrace{a_{s}^{1} P^{(0)}+a_{s}^{2} P^{(1)}+a_{s}^{3} P^{(2)}+a_{s}^{4} P^{(3)}+\cdots}_{N L O}}_{N^{2} L O} \begin{array}{l}
C=\underbrace{a_{s}^{0} C^{(0)}+a_{s}^{1} C^{(1)}}_{N^{2} L O}+a_{s}^{2} C^{(2)}+a_{s}^{3} C^{(3)}+\cdots
\end{array}
\end{aligned}
$$

[Davies, Ruijl, Ueda, Vermaseren, Vogt '16] [Moch, Ruijl, Vermaseren, Vogt '17]

- large- n_{f}
- large- n_{c}
- numerical approx. based on Mellin moments
\mathbf{N}^{4} LO: $P^{(4)}$, a few moments only [Herzog, Moch, Ruijl, Ueda, Vermaseren, Vogt ' 19]
Expansion in $\varepsilon: C^{(n)}=c^{(n, 0)}+\varepsilon c^{(n, 1)}+\varepsilon^{2} c^{(n, 2)}$

Computation

Compute N dependence directly (done at 3 loops, but not 4).
Or compute Mellin moments of $\tilde{F}_{a, j}$, for even or odd N

- expansion about two-point (propagator) integrals, ($q^{2} \gg q \cdot p$)
- compute with MINCER (to 3 loops), FORCER (to 4 loops)
[Larin,Tkachov,Vermaseren '91][Ruijl,Ueda,Vermaseren '17]

- try to find N dependence from some moments, and extra information x-space expressions recovered via Inverse Mellin Transform.

End-point behaviour

Coefficient and splitting functions are logarithmically enhanced:
\rightarrow high-energy $(x \rightarrow 0): \ln (x) \quad$ threshold $(x \rightarrow 1): \ln (1-x)$
These logarithms spoil the convergence of perturbation theory.
Resum to all orders in a_{s} ?

- $x \rightarrow 1$
[Almasy, Lo Presti, Vogt '16]
- $x \rightarrow 0$ (discuss here)
[Davies, Kom, Moch, Vogt ‘22]

Small- x behaviour

Power series in $x, \ln (x): \quad\left(N\right.$ space: $\left.x^{m} \ln ^{k}(x) \leftrightarrow(-1)^{k} k!/(N+m)^{k+1}\right)$

$$
\begin{aligned}
& P_{n s}^{(n),+} \sim+x^{0}\left(\ln ^{2 n}(x)+\ln ^{2 n-1}(x)+\cdots+\text { const }\right)+\mathcal{O}\left(x^{1}\right), \\
& C_{a, n s}^{(n),+} \sim+x^{0}\left(\ln ^{2 n-1-\delta_{a, L}}(x)+\ln ^{2 n-2-\delta_{a, L}}(x)+\cdots+\text { const }\right)+\mathcal{O}\left(x^{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
P_{i j}^{(n)} \sim & +x^{-1}\left(\ln ^{n-1}(x)+\ln ^{n-2}(x)+\cdots+\text { const }\right) \\
& +x^{0}\left(\ln ^{2 n}(x)+\ln ^{2 n-1}(x)+\cdots+\text { const }\right)+\mathcal{O}\left(x^{1}\right) \\
C_{a, i}^{(n)} \sim & +x^{-1}\left(\ln ^{n-2}(x)+\ln ^{n-3}(x)+\cdots+\text { const }\right) \\
& +x^{0}\left(\ln ^{2 n-1-\delta_{a, L}}(x)+\ln ^{2 n-2-\delta_{a, L}}(x)+\cdots+\text { const }\right)+\mathcal{O}\left(x^{1}\right)
\end{aligned}
$$

x^{-1} single logs: resummed by BFKL formalism

- not covered by the discussion here: double logs only

"Unfactorized" Structure Functions

Recall the parton-level structure function, before factorization,

$$
\tilde{F}=C Z . \quad \text { (suppressing indices and working in } N \text { space) }
$$

Inverting the definition $P=\frac{d Z}{d \ln \mu_{\mathrm{f}}^{2}} Z^{-1}=\beta_{a_{s}} \frac{d Z}{d a_{s}} Z^{-1}$,

$$
\begin{aligned}
Z=1 & -a_{s} \frac{1}{\varepsilon} P^{(0)}+a_{s}^{2}\left\{\frac{1}{2 \varepsilon^{2}}\left(P^{(0)}+\beta_{0}\right) P^{(0)}-\frac{1}{2 \varepsilon} P^{(1)}\right\}-a_{s}^{3}\left\{\frac{1}{6 \varepsilon^{3}}\left(P^{(0)}+\beta_{0}\right)\left(P^{(0)}+2 \beta_{0}\right) P^{(0)}\right. \\
& \left.-\frac{1}{6 \varepsilon^{2}}\left[\left(P^{(0)}+2 \beta_{0}\right) P^{(1)}+2\left(P^{(1)}+\beta_{1}\right) P^{(0)}\right]-\frac{1}{3 \varepsilon} P^{(2)}\right\}+\mathcal{O}\left(a_{s}^{4}\right)
\end{aligned}
$$

At $a_{s}^{n}: \quad \varepsilon^{-n}: P^{(0)}, \beta_{0}$,

$$
\begin{aligned}
\varepsilon^{-n+1} & : P^{(0)}, \beta_{0}, P^{(1)}, \beta_{1} \\
& \vdots \\
\varepsilon^{-1} & : P^{(n-1)}
\end{aligned}
$$

> \mathbf{N}^{m} LO knowledge ($P^{(m)}, \beta_{m}$) gives leading $(m+1) \varepsilon$ poles of Z, and so also \tilde{F}, to all a_{s} orders.

Resummation Ansatz

At $a_{s}^{n}: \quad \tilde{F}^{(n)}=\frac{1}{\varepsilon^{2 n-1}} x^{p} \sum_{l=1}^{n} x^{l \varepsilon}\left(A_{p}^{(n, l)}+\varepsilon B_{p}^{(n, l)}+\varepsilon^{2} C_{p}^{(n, l)}+\cdots\right)$
$2 \rightarrow n+1$ real-emission phase space:

- poles up to $\varepsilon^{-2 n+1}$
- logarithmic factor $x^{n \varepsilon}=1+n \varepsilon \ln (x)+n^{2} / 2 \varepsilon^{2} \ln ^{2}(x)+\mathcal{O}\left(\varepsilon^{3}\right)$

Mixed real-virtual contributions:

- poles up to $\varepsilon^{-2 n+1}$
- logarithmic factors $x^{\varepsilon}, x^{2 \varepsilon}, \ldots, x^{(n-1) \varepsilon}$

After ε expansion, A, B, C give LL, NLL, $\mathrm{N}^{2} \mathrm{LL}$ contributions to $\tilde{F}^{(n)}$.
Shift x^{p} gives sub-leading terms in x expansion.
$\left[\ln N\right.$ space: $\left.\tilde{F}^{(n)}=\frac{1}{\varepsilon^{2 n-1}} \sum_{l=1}^{n} \frac{1}{N+l \varepsilon+p}\left(\boldsymbol{A}_{p}^{(n, l)}+\varepsilon B_{p}^{(n, l)}+\varepsilon^{2} C_{p}^{(n, l)}+\cdots\right)\right]$

Resummation Ansatz

Now we have two representations for \tilde{F}, which we can equate.

- double poles $\varepsilon^{-2 n+1}, \ldots, \varepsilon^{-n-1}$ have to cance!! KLN theorem.
- once $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are determined, further expansion in ε yields predictions

Example, consider $\tilde{F}_{2, \text { ns }}$ at LO, LL accuracy:

$$
\begin{aligned}
\tilde{F}_{2, n s}= & C_{2, n s} Z_{n s}=1+a_{s} \frac{1}{\varepsilon} \frac{A^{(1,1)}}{N+\varepsilon}+a_{s}^{2} \frac{1}{\varepsilon^{3}}\left\{\frac{A^{(2,1)}}{N+\varepsilon}+\frac{A^{(2,2)}}{N+2 \varepsilon}\right\}+a_{s}^{3} \frac{1}{\varepsilon^{5}} \sum_{l=1}^{3} \frac{A^{(3,1)}}{N+l \varepsilon}+\cdots \\
= & 1+a_{s}\left\{-\frac{1}{\varepsilon} P^{(0)}+\varepsilon^{0} c^{(1,0)}+\cdots\right\} \\
& +a_{s}^{2}\left\{\quad \frac{1}{2 \varepsilon^{2}}\left(P^{(0)} \beta_{0}+P^{(0)^{2}}\right)-\frac{1}{2 \varepsilon}\left(2 c^{(1,0)} P^{(0)}+P^{(1)}\right)+\cdots\right\}
\end{aligned}
$$

$$
=1+a_{s}\left\{\frac{N^{-1}}{\varepsilon} A^{(1,1)}-\varepsilon^{0} N^{-2} A^{(1,1)}+\cdots\right\}
$$

$$
+a_{s}^{2}\left\{\frac{N^{-1}}{\varepsilon^{3}}\left[A^{(2,1)}+A^{(2,2)}\right]+\frac{N^{-2}}{\varepsilon^{2}}\left[-2 A^{(2,1)}-A^{(2,2)}\right]+\frac{N^{-3}}{\varepsilon}\left[4 A^{(2,1)}+A^{(2,2)}\right]+\cdots\right\}
$$

$a_{s}^{3}: 3$ unknown $A^{(3, I)}$, but ε^{-5} and ε^{-4} coefficients must vanish. ε^{-3} known from $C Z$.

When does this work?

Recall that in N space, we can compute either even or odd N values.

- for even- N based quantities, ansatz holds for shifts x^{p} with p even.
- for odd- N based quantities, it holds for shifts x^{p} with p odd.

For the "wrong powers", can't consistently determine A,B,C constants.

For singlet structure functions, system is coupled. E.g,

$$
\left(\begin{array}{ll}
\tilde{F}_{2, q} & \tilde{F}_{2, g} \\
\tilde{F}_{\phi, q} & \tilde{F}_{\phi, g}
\end{array}\right)=\left(\begin{array}{cc}
C_{2, q} & C_{2, g} \\
C_{\phi, q} & C_{\phi, g}
\end{array}\right)\left(\begin{array}{ll}
Z_{q q} & Z_{q g} \\
Z_{g q} & Z_{g g}
\end{array}\right)
$$

where

$$
\left(\begin{array}{cc}
P_{q q} & P_{q g} \\
P_{g q} & P_{g g}
\end{array}\right)=\beta_{a_{s}} \frac{d}{d a_{s}}\left[\left(\begin{array}{cc}
Z_{q q} & Z_{q g} \\
Z_{g q} & Z_{g g}
\end{array}\right)\right]\left(\begin{array}{cc}
Z_{q q} & Z_{q g} \\
Z_{g q} & Z_{g g}
\end{array}\right)^{-1} .
$$

- Method works in the same way.

Procedure

\mathbf{N}^{m} LO coefficient, splitting functions (small- x)

\mathbf{N}^{m} LL coefficient, splitting functions, to "all" a_{s}

- we don't seek a closed expression/generating function for \tilde{F}
- work at the level of the coefficient, splitting functions
- "all" a_{s} : computer-limited order ($C Z$ becomes large)
- non-singlet: a_{s}^{60}, singlet: a_{s}^{20}

Non-singlet splitting function, N space

Using the above procedure, produce LL expansion:

$$
P_{n s}^{+}=-\frac{2 a_{s} C_{F}}{N}-\frac{4 a_{s}^{2} C_{F}^{2}}{N^{3}}-\frac{16 a_{s}^{3} C_{F}^{3}}{N^{5}}-\frac{80 a_{s}^{4} C_{F}^{4}}{N^{7}}-\frac{448 a_{s}^{4} C_{F}^{5}}{N^{9}}+\cdots
$$

- OEIS (https://oeis.org)
[A025225]
- FindGeneratingFunction (Mathematica)

$$
=-\frac{N}{2}\left(\sqrt{1-4 \frac{2 a_{s} C_{F}}{N^{2}}}-1\right)=-\frac{N}{2}(S-1)
$$

where $S=\sqrt{1-4 \xi}, \xi=2 a_{s} C_{F} / N^{2}$.

Non-singlet splitting function, N space

Including also NLL and N^{2} LL terms,

$$
P_{n s}^{+}=-\frac{2 a_{s} C_{F}}{N}-2 a_{s}^{2} C_{F}\left(\frac{2 C_{F}}{N^{3}}+\frac{6 C_{F}-11 C_{A}+2 n_{f}}{3 N^{2}}-\frac{\left[18+36 \zeta_{2}\right] C_{F}-151 C_{A}+22 n_{f}}{9 N}\right)+\cdots
$$

guess a basis of all-order functions: $\left\{1, S, S^{-1}, S^{-3}\right\}$.
Then:

$$
\begin{aligned}
& P_{n s}^{+}=- \frac{N}{2}(S-1)+ \\
&+\frac{1}{96 C_{F}} a_{S} N\left\{\left(2 C_{F}-\beta_{0}\right)\left(S^{-1}-1\right)\right. \\
&\left.-100 \beta_{0} C_{F}+3 \beta_{0}^{2}\right)(S-1)+2\left(\left[12-576 \zeta_{2}\right] C_{F}^{2}-\left[80-1152 \zeta_{2}\right] C_{A} C_{F}-360 C_{A}^{2}\right. \\
&\left.+\left[40+576 \zeta_{2}\right] C_{A} C_{F}-180 \zeta_{2} C_{A}^{2}+56 \beta_{0} C_{F}-3 \beta_{0}^{2}\right)\left(S^{-1}-1\right) \\
&\left.+3\left(2 C_{F}-\beta_{0}\right)^{2}\left(S^{-3}-1\right)\right\} .
\end{aligned}
$$

Non-singlet splitting function, x space

We can write $P_{n s}^{+}$in x space in terms of "modified Bessel functions":

$$
\begin{aligned}
& \tilde{I}_{n}(z)=\left(\frac{2}{z}\right)^{n} I_{n}(z)=\sum_{k=0}^{\infty} \frac{1}{k!(n+k)!}\left(\frac{z}{2}\right)^{2 k}, \quad \text { here: } z=\sqrt{8 C_{F} a_{s}} \ln \frac{1}{x}, \\
& \frac{P_{n s}^{+}}{2 a_{s} C_{F}}=\left\{1+\left(2 C_{F}-\beta_{0}\right) a_{s} \ln \frac{1}{x}+\frac{1}{2}\left(2 C_{F}-\beta_{0}\right)^{2} a_{s}^{2} \ln ^{2} \frac{1}{x}\right\} \tilde{I}_{1}(z) \\
&+\left\{\frac{1}{3}\left(11 \beta_{0}+10 C_{A}-6 C_{F}\right)-4 C_{F} \zeta_{2}\right\} a_{s} \widetilde{I}_{0}(z) \\
&+\left\{8 C_{F}^{2}-2 \zeta_{2}\left(15 C_{A}^{2}-48 C_{F} C_{A}+44 C_{F}^{2}\right)\right\} a_{s}^{2} \ln ^{2} \frac{1}{x} \widetilde{I}_{2}(z) .
\end{aligned}
$$

There are some interesting structures here-come back to it later.

- expression is not unique: recurrence relations between $\widetilde{I}_{n}(z)$.

Non-singlet coefficient functions, N space

Similarly, produce LL, NLL, N²LL expansions of the coefficient functions.
Can be written in terms of $F=S^{-1 / 2}=\left(1-4 \frac{2 a_{S} C_{F}}{N^{2}}\right)^{-1 / 4}: \quad$ (+ odd powers)

$$
\begin{aligned}
& C_{2, n s}^{+}=F+\frac{1}{192 C_{F}} N\{ -3\left(32 C_{F}+11 \beta_{0}\right)\left(F^{-1}-1\right)+4\left(18 C_{F}+11 \beta_{0}\right)(F-1)+6 \beta_{0}\left(F^{3}-1\right) \\
&\left.+12\left(2 C_{F}-\beta_{0}\right)\left(F^{5}-1\right)-5 \beta_{0}\left(F^{7}-1\right)\right\} \\
&+\frac{1}{9216 C_{F}} a_{s}\left\{-128\left(\left[333-1368 \zeta_{2}\right] C_{F}^{2}-\left[60-1728 \zeta_{2}\right] C_{A} C_{F}-540 \zeta_{2} C_{A}^{2}\right.\right. \\
&\left.\left.-87 \beta_{0} C_{F}-10 \beta_{0}^{2}\right) \frac{1}{\xi}\left(F^{-3}-F^{-1}+2 \xi\right)+\cdots\right\}
\end{aligned}
$$

$C_{L, n s}^{+}$and $C_{3, n s}^{+}$have similar forms.
In x space, F can be written in terms of ${ }_{1} F_{2}(\cdots)$.

- not investigated in any detail...

Large $-n_{c}$ Limit: all x powers

Recall that $P_{n s}^{(n), \pm} \sim+x^{0}\left(\ln ^{2 n}(x)+\cdots\right)+x^{1}\left(\ln ^{2 n}(x)+\cdots\right)+\mathcal{O}\left(x^{2}\right)$,

- for $P_{n s}^{(n),+}$, resum only $x^{\text {even }}$, for $P_{n s}^{(n),-}$, resum only $x^{\text {odd }}$.

In the large $-n_{C}$ limit $\left(C_{A} \rightarrow n_{C}, C_{F} \rightarrow n_{c} / 2\right): P_{n s}^{(n),+}=P_{n s}^{(n),-}$.

- we know all x powers in this limit
- order-by-order in a_{s}, can reconstruct coefficients of $\ln (x)$
- fit to basis of $\left\{\right.$ Harmonic Polylogarithms, $\left.(1-x)^{-1}, x^{\{0,1,2,3\}}\right\}$

$$
\begin{aligned}
& P_{n s, L}^{(3)}=+ \ln ^{6}(x) \\
&+ {\left[n_{c}^{3} C_{F}\left\{\frac{5}{24}\left(1-\frac{16}{15}(1-x)^{-1}+x\right)\right\}\right] } \\
& {\left[n_{c}^{3} C_{F}\left\{-\frac{4}{3}\left(2(1-x)^{-1}-1-x\right) H_{1}+\frac{22}{9}\left(1-\frac{13}{11}(1-x)^{-1}+\frac{17}{11} x\right)\right\}\right.} \\
&\left.+n_{c}^{2} C_{F} n_{f}\left\{-\frac{7}{9}\left(1-\frac{8}{7}(1-x)^{-1}+x\right)\right\}\right]+\ln ^{4}(x)[\cdots]+\ln ^{3}(x)[\cdots]+\cdots
\end{aligned}
$$

$\mathrm{N}^{2} \mathrm{LL}$ result helped determine analytic $\mathrm{N}^{3} \mathrm{LO}$ large- $n_{c} P_{n s, L}^{(3)} \rightarrow \mathrm{N}^{3} \mathrm{LL}$.
Works for $C_{2, n s, L}, C_{L, n s, L}$ and $C_{3, n s, L}$ also.

Singlet Quantities: Splitting Functions

Singlet splitting functions: $P_{q q}, P_{q g}, P_{g q}, P_{g g}$. Separate diagonal P :

$$
\begin{aligned}
& P_{q q}=P_{n s}^{+}+P_{q q}^{p s}, \\
& P_{g g}=P_{g g}^{+}+P_{g g}^{p s} .
\end{aligned}
$$

Then $\operatorname{LL} P_{g g}^{+}=-\frac{N}{2}\left(S^{\prime}-1\right)$, where $S^{\prime}=\sqrt{1-4 \xi^{\prime}}, \xi^{\prime}=-\frac{4 C_{A} a_{s}}{N^{2}}$.
The rest, at LL accuracy, a_{s}^{n+1} :

$$
(\rho=n-k-2 i-1)
$$

$$
P_{q q}^{p s(n)}=\frac{2 \mathcal{C}_{n} 2^{n}}{N^{2 n+1}} \sum_{i=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor} \sum_{k=0}^{n-1-2 i}(-2)^{i+1+k}\left(n_{f} C_{F}\right)^{i+1} C_{A}^{k} C_{F}^{\rho}\binom{k+i}{k}\binom{\rho+i+1}{\rho}
$$

and $P_{q g}^{(n)}, P_{g q}^{(n)}, P_{g g}^{p s(n)}$ can be written in a similar form.
$2 C_{n}$ are the expansion coefficients of $S=\sqrt{1-4 \xi} \quad$ (?!)
NLL, N^{2} LL? We can only compute order-by-order.

Singlet Quantities: Coefficient Functions

Similarly for the coefficient functions $C_{2, q}, C_{2, g}, C_{L, q}, C_{L, g}, C_{\phi, q}, C_{\phi, g}$,

$$
C_{a, q}=C_{a, n s}^{+}+C_{a, p s}, \quad a=\{2, L, \phi\}
$$

where $C_{2, n s}^{+}$etc. were computed above.
The pure-singlet parts, at LL accuracy, a_{s}^{n} :

$$
C_{2, p s}^{(n)}=\frac{\mathcal{D}_{n} 2^{n}}{N^{2 n}} \sum_{i=0}^{\left\lfloor\frac{n-2}{2}\right\rfloor} \sum_{k=0}^{n-2-2 i}(-2)^{i+1+k}\left(n_{f} C_{F}\right)^{i+1} C_{A}^{k} C_{F}^{\rho^{\prime}}\binom{k+i}{k}\binom{\rho^{\prime}+i+1}{\rho^{\prime}}
$$

and $C_{2, g}^{(n)}, C_{L, p s}^{(n)}, C_{L, g}^{(n)}$ can be written in a similar form.
$\mathcal{D}_{n}=\frac{1}{n!} \prod_{k=0}^{n-1}(1+4 k)$ are the exp. coeffs. of $F=S^{-1 / 2}$.
NLL, N^{2} LL? We can only compute order-by-order.

Generalized Double-Logarithmic Equation

An alternative small- x description of $P_{n s}^{+}$:

$$
\begin{gathered}
P_{n s}^{+}\left(P_{n s}^{+}-N+\beta / a_{s}\right)=R=\mathcal{O}(1), \\
\rightarrow P_{n s}^{+}=-\frac{\beta}{2 a_{s}}-\frac{N}{2}\left(\sqrt{1+\frac{4 R}{N^{2}}-\frac{2 \beta}{N a_{s}}+\frac{\beta^{2}}{N^{2} a_{s}^{2}}}-1\right)
\end{gathered}
$$

- solving order-by-order yields $\mathrm{N}^{2 m+1} \mathrm{LL}$, given $\mathrm{N}^{m} \mathrm{LO}$ input.
- caveat: fails at $\mathrm{N}^{2} \mathrm{LO}$, for terms $\sim \zeta_{2}\left(C_{A}-2 C_{F}\right)$ (??)
- vanishes for large- n_{c}, so try the known $\mathrm{N}^{3} \mathrm{LO} P_{n s, L}^{(3)} \Longrightarrow \mathrm{N}^{7} \mathrm{LL} P_{n s, L}^{(4)}$

The $N^{7} L L$ resummation in x space, lets us further investigate the apparent exponential structure:

$$
\frac{P_{n s}^{+}}{2 a_{s} C_{F}}=\exp \left[-\left(\beta_{0}-n_{c}\right) a_{s} \ln (1 / x)\right]\left(\widetilde{I}_{1}(z)+\frac{1}{3}\left(11 \beta_{0}+13 n_{c}-18 \zeta_{2} n_{c}\right) a_{s} \widetilde{I}_{0}(z)\right)+\cdots
$$

Generalized Double-Logarithmic Equation

Conclusion and Outlook

The structure of the unfactorized structure functions provides a way to obtain deep expansions of coefficient, splitting functions at small x,

- for non-singlet quantities we can find all-order forms.

Fixed-order predictions of the logs have already been used to help determine (parts of the) $\mathrm{N}^{3} \mathrm{LO}$ non-singlet splitting function,

- they will also help determine (or check) the remaining colour factors.

For the future...

- how to write the LL singlet quantities in a "nice" way?
- can this be generalized to NLL, $N^{2} L L$?
- what is this apparent exponentiation in the non-singlet splitting function's x space expression?
- can we access the "wrong" x powers outside the large- n_{c} limit?
- here, the leading (x^{0}) behaviour of odd- N quantities is missing.
- what is wrong with the double-logarithmic equation?

