Ultra-High-Energy Cosmic Particles

26th Symposium on Astroparticle physics in the Netherlands Harm Schoorlemmer

Niklhef

Radboud University

The most extreme accelerators!

Earth

Extreme collisions!

Space

Atmosphere

$\sqrt{s} \approx 300 \, \text{TeV}$

Area: 3000 km²

1600 + 60 Water-Cherenkov Detectors 24 + 3 Fluorescence Telescope AERA: 153 Radio Antennas

Air shower detection:

- Particles at ground-level
- Radio Emission
- Fluorescence Emission

What is going on with the collisions?

On <u>average</u> more muons observed than in models*, but <u>fluctuations</u> in the muon number is not in tension.

A. Aab et al. (Pierre Auger Collaboration) Phys. Rev. Lett. 126, 152002 – Published 16 April 2021

* "Who ordered that?"

What are these accelerators?

Pre-trial Li & Ma $\sigma(E_{Auger} > 41 \text{ EeV}) - Galactic coordinates - <math>\Psi = 24^{\circ}$

Pierre Auger Observatory, ICRC 2021 (Berlin)

Auger + TA, ICRC 2021 (Berlin)

Why the fuzzy picture? Charged particle astronomy

Centaurus A

deflections by magnetic fields depends on energy

Earth

GLEAM: 72-231MHz

Why the fuzzy picture? Charged particle astronomy

Centaurus A

Both acceleration and propagation processes depend on particle composition

deflections by magnetic fields depends on charge

Earth

GLEAM: 72-231MHz

Radio detection of Air showers: Composition

Radio detection of Air showers: Inteferometry

Accurate reconstruction of air shower geometry: Core, Direction & Shower depth.

Lower energy threshold in dense antenna arrays

Needs accurate (< 1ns) timing synchronisation between antennas

HS & W. Carvalho et al, EPJC 2021

AugerPrime: Upgrade

Vertical

Combination of Scintillators + WCD to disentangle muonic and electromagnetic component

Horizontal

WCD "only" muons Radio "only" electromagnetic

Status of deployment SSD:

- SSD placed on >75% of stations
- >20% fully equipped
- Finalise installation this year
- In 2023 only AugerPrime

AugerPrime: Radio Detector

Digitisers developed by RadioLab @ Radboud University

Schedule RD Deployment:

Phase 1

Antenna + Solar panels + Structure: June - November

Phase 2

Digitisers + Cables + Amplifiers: <u>November - January</u>

Full Array Early 2023

Radio trigger <u>development</u>

Dave Nitz (MTU)

LOFAR 2.0

Scint Array Extension

Radio-Scint Hybrid Triggering + More Observation Time

Further down the road

10-111 10^{5}

109

Neutrino energy E_{ν} [GeV]

Cosmic ray puzzle(s) still open

- Challenging interplay between composition & energy
- Air shower physics not fully understood

Accuracy

- Upgrade of Pierre Auger Observatory
- Upgrade of LOFAR
- Possibilities to "piggy back" on other experiments in the energy regime 10¹⁵-10¹⁸ eV

Scale-up

- GRAND
- G-COS

The Giant Radio Array for Neutrino Detection

- Large <u>radio</u> array(s) focussing on "horizontal" air showers
- Hunt for Ultra-High-Energy neutrinos
- Also pretty awesome cosmic-ray detector

going neutral!*

*includes green policy

The Giant Radio Array for Neutrino Detection

4 channels, 500 MHz, 14bit, 12 Watt

GRANDProto GRAND 10k GRAND 200k

 Station mechanical design and electronics in Nijmegen

- 100 Stations ready for deployment (China)*
- 5 stations setup in Nançay Radio Observatory, France (coming months)

* delay due to COVID

The Team

Katey

Pierre Auger Observatory:

<u>Senior staff</u>: Charles Timmermans, Sijbrand de Jong, Jörg Hörandel, Heino Falcke, Cristina Galea, **Harm** Schoorlemmer, Katey Mulrey

Post-doc: Washington Carvahlo jr., Bjarni Pont, Ugo Giaccari PhD student: Abha Khakuridikar, Anthony Bwembya, Mohamed Emam, Mart Pothast, Mohit Saharan, Tomas Fodran Bsc Student: Lotta Broekhoven Visiting: Dave Nitz (MTU)

GRAND:

Senior staff: Charles Timmermans, Sijbrand de Jong, Cristina Galea, Harm Schoorlemmer Msc Student: Eric Teunis de Boone, Inge Rens, Henk Brans **Bsc Student:** Bram Ruijter

Techs: Peter Dolron, Roel Jordans, Daniel Szalas, Sjoerd Timmer, Nicoletta Cucu Laurenciu, Rik van den Bosch, Thei Wijnen

new faces

Abha

Anthony

Mohamed

Rik

Nicoletta

LOFAR: precision air shower measurements

•	•	•	•	•	•	•	•	•	•	•	
Sibyll-2.3d											

EPOS-LHC

QGSJetII-04

- Dense antenna array = unique way to • probe the radio footprint
- Cosmic-ray composition measurements • in the transition region
- Ongoing upgrades to prepare for LOFAR 2.0, next-gen experiments