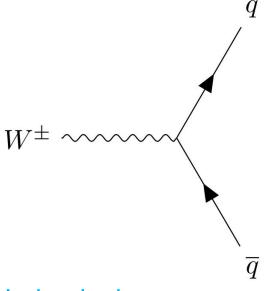
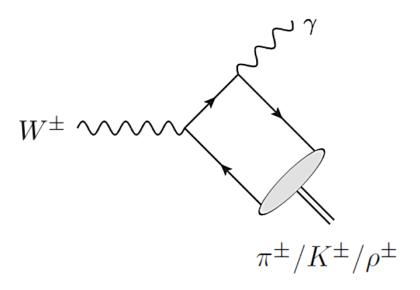


Maastricht – 09/05/2022


Evelin Bakos

What and why?

Leptonic decays:


10.86±0.09%

Hadronic decays:

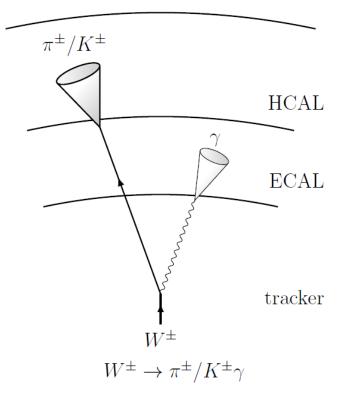
67.41±0.27%

- Exclusive hadronic decay modes can offer novel precision studies of QCD factorisation (arXiv:1501.06569).
- Radiative decays are sensitive to the coupling of the W boson with the photon.

Exclusive hadronic decays:

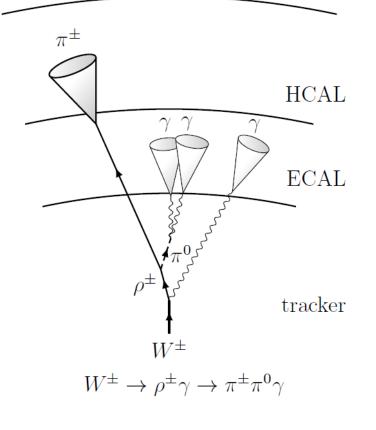
$$\pi^+ \gamma < 7 \times 10^{-6}$$

 $D_s^+ \gamma < 1.3 \times 10^{-3}$


Standard model prediction: $\sim 10^{-9}$

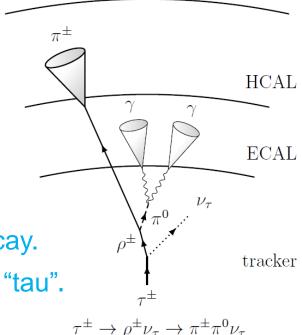
Expected amount of events using Run 2 data:

N(W)	$N(W \to \pi \gamma)$	$N(W \to K\gamma)$	$N(W \to \rho \gamma)$
$3\cdot 10^{10}$	120	10	170



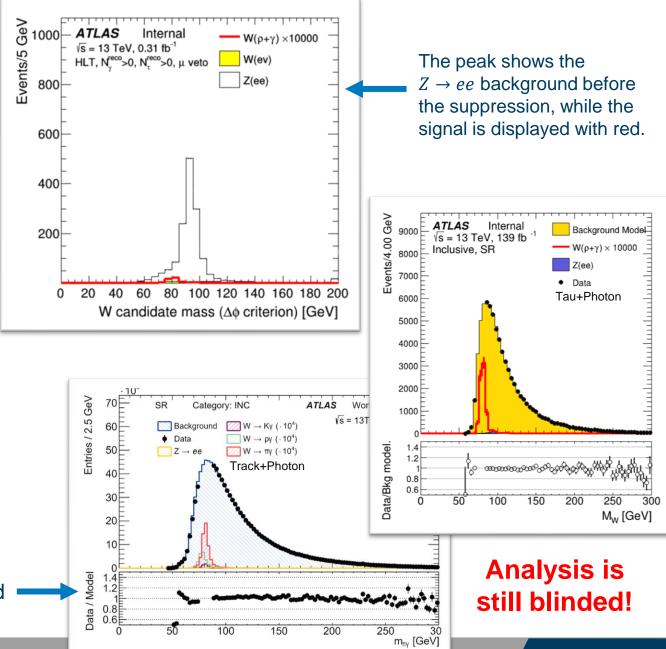
How?

1. Track+Photon


- Sensitive to $W^{\pm} \rightarrow \pi^{\pm}/K^{\pm}/\rho^{\pm} + \gamma$ decays.
- π^0 from ρ decay is not reconstructed.

2. Tau+Photon

• Sensitive to $W^{\pm} \rightarrow \rho^{\pm} (\rightarrow \pi^{\pm} + \pi^{0}) + \gamma$ decay.


• ρ -candidate reconstructed as "tau".

Why is it hard?

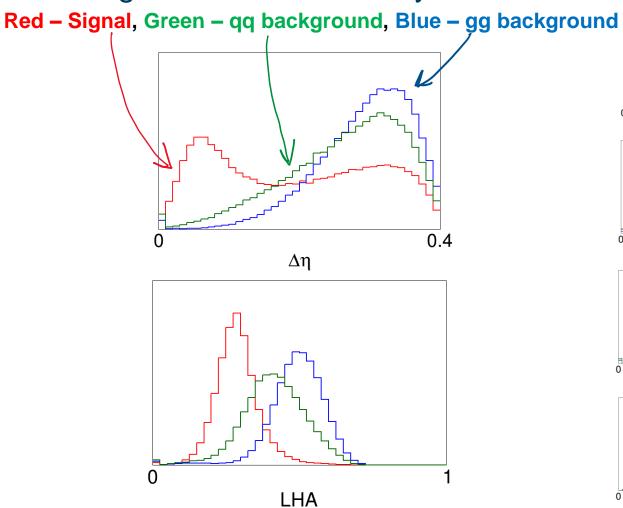
- Background processes:
 - $Z \rightarrow ee$ events:
 - One electron is reconstructed as photon, the other one as track or τ .
 - Modelled with Monte Carlo techniques.
 - Suppressed with selection criteria.
 - Multijet processes:
 - Not reliably modelled by Monte Carlo techniques.
 - Data-driven approach must be used (arXiv:2112.00650).

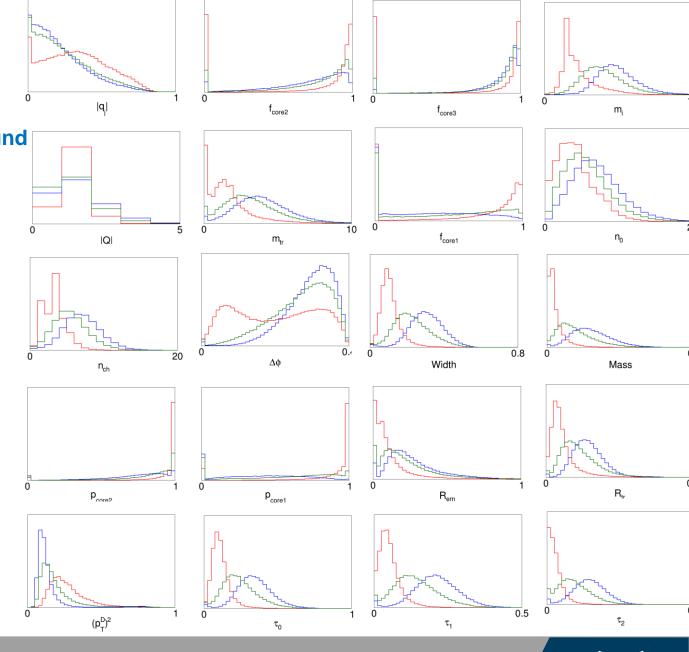
Background model in the signal region showed with blue in the track+photon and with yellow in the tau+photon final state.

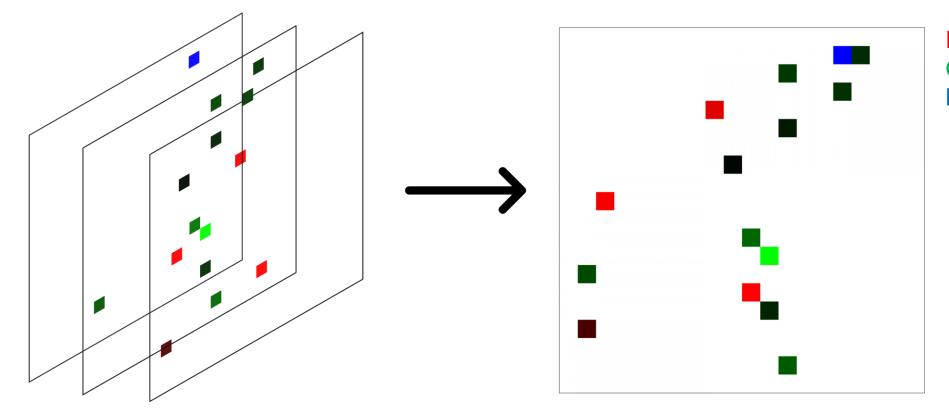
Expected results

 Unbinned Maximum Likelihood Fit in track+photon and tau+photon mass with floating background normalisations and systematic uncertainties.

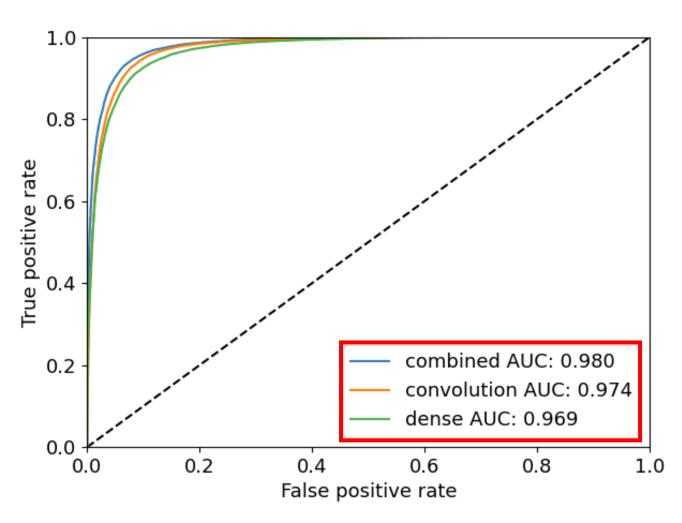
$W \to \pi \gamma$ 1.30 $W \to \rho \gamma$ 4.07	0^{-6})	Expected Upper Limit (· 10	Tau+Photon	Upper Limit (· 10 ⁻⁶)	Track+Photon	
$W \rightarrow K_{W}$ 1.17		4.07	$W \to \rho \gamma$	1.30	$W \to \pi \gamma$	
			1.17	$W \to K \gamma$		
$W \rightarrow \rho \gamma$ 9.64 Current limit: $7 \cdot 10^{-6}$			9.64	$W o ho \gamma$		


- Practically no overlap between events in the two final states.
 - The triggers used found to be ~orthogonal!
- Combined Fit in track + photon and tau + photon mass:


Combined	Expected Upper Limit (· 10 ⁻⁶)
$W \to \rho \gamma$	3.27


What more?

• Using MVA we can identify mesons!


There is more!

Red – Track p_T Green – EM deposit Blue – Hadronic deposit

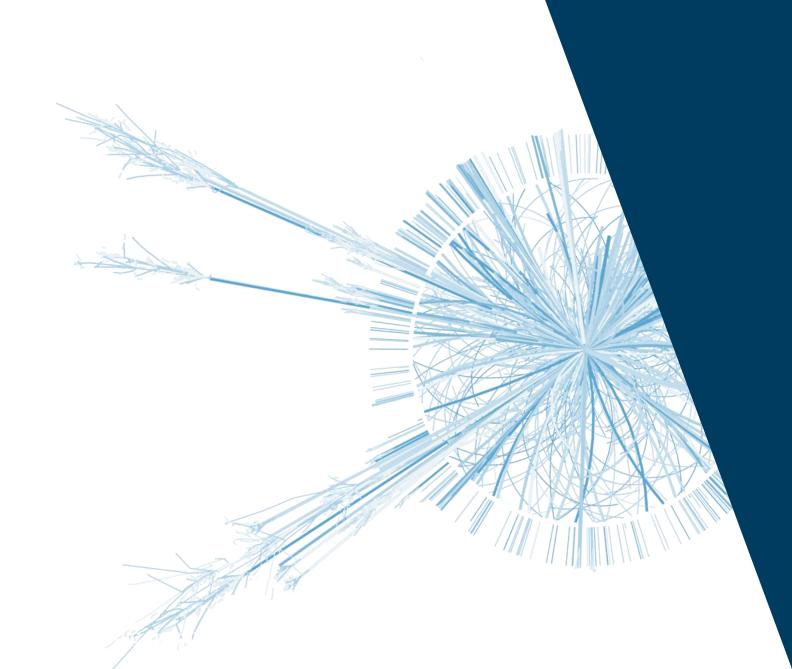
- Addition of low level variables: Energy deposit and p_T of the tracks.
- Using combined model: Deep Neural Network and Convolutional Neural Network

Does it work?

The algorithm is able to identify hadronic $D_s \gamma$ decays with an efficiency of 67% while suppressing a background of quark and gluon jets by a factor 100.

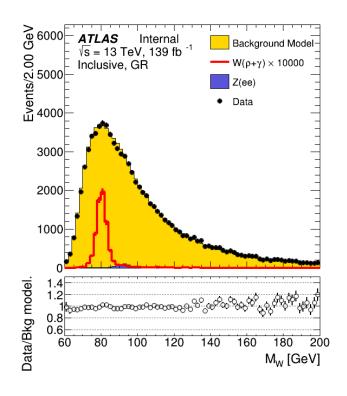
Test sample	Training sample	AuC
S vs mixed B	S vs mixed B	0.980
S vs gluon B	S vs mixed B	0.994
S vs quark B	S vs mixed B	0.964
S vs gluon B	S vs gluon B	0.994
S vs quark B	S vs quark B	0.965

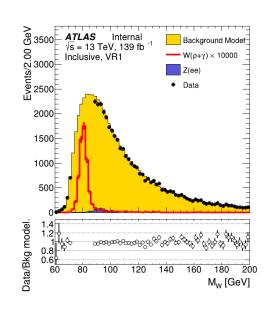
Conclusions

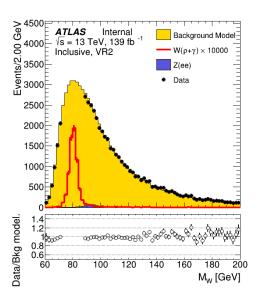

- No exclusive hadronic decay mode of the W boson has ever been observed.
 - Upper limit exist for $W \to \pi \gamma$ only and this is the first ever search of the $W \to \rho \gamma$ and $W \to K \gamma$.
- Expected upper limits on branching fractions still well above SM predictions.
- The results are limited by sample size.
 - With the statistics obtainable in the HL-LHC it will be possible to observe several of these decays.
- We can identify mesons using machine learning techniques.
 - Using both low level and high level variables.

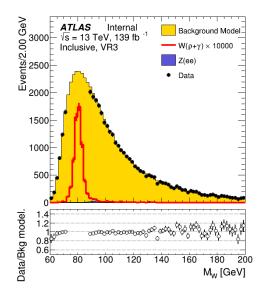
Thank you for your attention!

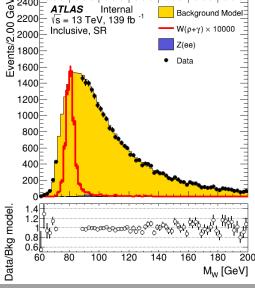
Backup

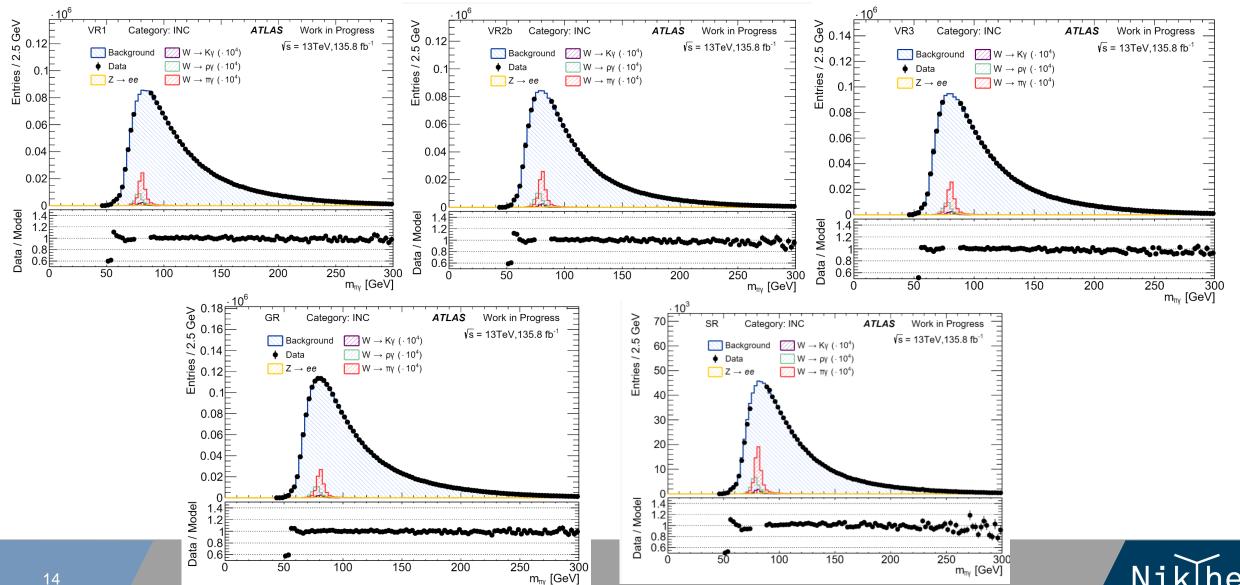



Rho+Photon model step-by-step


- Generate TauPt
- Model PhotonPt depending on TauPt
- Generate Tau dRmax depending on TauPt and PhotonPt
- TauTrackD0AbsLog is generated depending on TauPt and dRmax
- TauEta is generated depending both on TauTrackD0AbsLog and dRmax
- DeltaEta between Tau and Photon generated depending on TauEta
- DeltaPhi is generated depending on PhotonPt and TauPt
- TauPhi generated independently




Control plots – Rho+Photon



Track+Photon model step-by-step

- Sample $p_T(\pi)$ from data $p_T(\pi)$ distribution
- $p_T(\gamma)$ described in bins of $p_T(\pi)$. Given the value picked previously, $p_T(\gamma)$ is sampled
- Track isolation in bins of $p_T(\gamma)$. Given the value of $p_T(\gamma)$ sampled, track isolation is sampled in the corresponding bin
- Values for $\Delta \eta(\pi, \gamma)$ and photon calorimeter isolation sampled simultaneously from a 2D distribution
 - Photon track isolation described in bins of photon calorimeter isolation. Given selected value of photon calorimeter isolation, a value of photon track isolation is sampled for the distribution of the data
 - $\Delta\Phi(\pi,\gamma)$ described in bins of $\Delta\eta(\pi,\gamma)$. Given the selected value of $\Delta\eta(\pi,\gamma)$, a $\Delta\Phi(\pi,\gamma)$ value is chosen
- Values of $\eta(\pi)$ and $\Phi(\pi)$ are sampled from the corresponding data distributions
- From previously obtained values for $\Delta \eta(\pi, \gamma)$ and $\Delta \Phi(\pi, \gamma)$, $\eta(\gamma)$ and $\Phi(\gamma)$ are calculated

Control plots – Track+Photon

Region definitions

Track+Photon

Baseline selection

Trigger:

HLT_g35_medium_L1EM24VHI_tau25_singlepion_tracktwo_L1TAU12 HLT_g25_medium_tau25_singlepion_tracktwo_50mVis10000

Photon definition:

 $p_{\rm T} > 30$ GeV (or $p_{\rm T} > 35$ GeV depending on trigger) $|\eta| < 2.37$ + crack veto Tight ID

Track definition:

 $p_{\rm T} > 30 \,{\rm GeV}, \, |\eta| < 2.5$

Tight ID

Global requirements:

 $\eta(\text{track}) \times \eta(\gamma) \ge 0$ if track and γ in endcap

At least one photon and one track with $\Delta\Phi(\pi, \gamma) > \pi/2$

Tracks are associated to the the primary vertex

$Z \rightarrow ee$ suppression requirement

If at least 1 electron is found with $\Delta R(trk, e) < 0.01$:

Rhad > 0.03 if also eProbabilityHT > 0.1

GR selection: baseline + $Z \rightarrow ee$ suppression requirement

VR1 selection: GR + $p_T(\pi)$ > 33 GeV **VR2a selection:** GR + Photon Calo Isolation **VR2b selection:** GR + Photon Track Isolation

VR3 selection: GR + (ptcone20- p_T (track))/ p_T (track) < 0.14

SR selection: union of all VR requirements

Tau+Photon

Triggers

HLT_g35_loose_g25_loose
HLT_g35_medium_g25_medium_L12EM20VH

Photon requirements

 $p_{\rm T} > 20 \,\text{GeV}$, $|\eta| < 2.37 + \text{crack veto}$ Tight ID, Tight isolation,

τ requirements

 $h^{\pm}\pi^{0}$ decay mode $p_{\rm T} > 20~{\rm GeV}, |\eta| < 2.5 + {\rm crack~veto}$ Medium $\tau {\rm RNN~score}$ $Z \rightarrow ee~{\rm veto~cuts}$:

Tight TauEleBDTScore

etOverPtLeadTrack > 2.4 $\Delta R_{\tau}^{\rm max} > 0.036$ eProbabilityHT (associated to the tau track) < 0.9

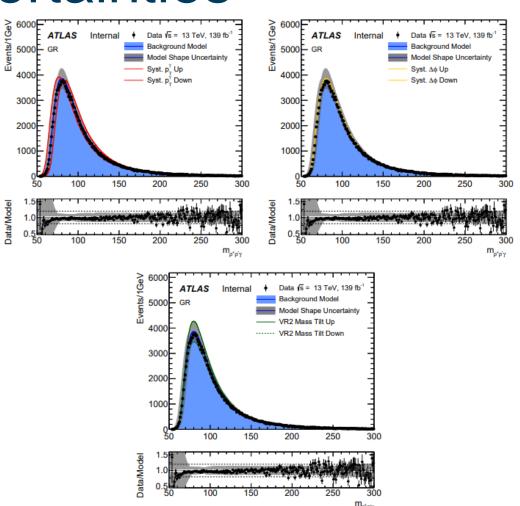
Global requirements

At least one primary vertex

At least one photon with $p_T > 36 \text{ GeV}$ (trigger threshold +1 GeV)

At least one τ with $p_T > 26 \text{ GeV}$ (trigger threshold +1 GeV)

At least a τ , γ pair with $\Delta\Phi(\tau_{had}, \gamma) > 2$


	11		_
VR1	$p_{\rm T}(\tau) > 30{\rm GeV}$		_
VR2	$\Delta R_{\tau}^{\text{max}} < 0.065$		
VR3	$\log(d_0(\tau)) < -1.2$		
SR	All the requirements listed above	:	_
	$p_{\rm T}(\tau) > 30 {\rm GeV}$, $\Delta R^{\rm max} < 0.065$	$\log(d_0(\tau)) < -1.2$	2

Background model uncertainties

- 1. $p_T(\tau)$ distributions are shifted by $+ 3 \ GeV$
- 2. $\Delta\phi(\rho,\gamma)$ distortion is implemented by scaling each bin by $1+10\cdot\delta\phi/\pi$ or $1+2(1-\delta\phi/\pi)$
- 3. $m_{\rho\gamma}$ distribution is tilted by reweighting the model using a linear function.

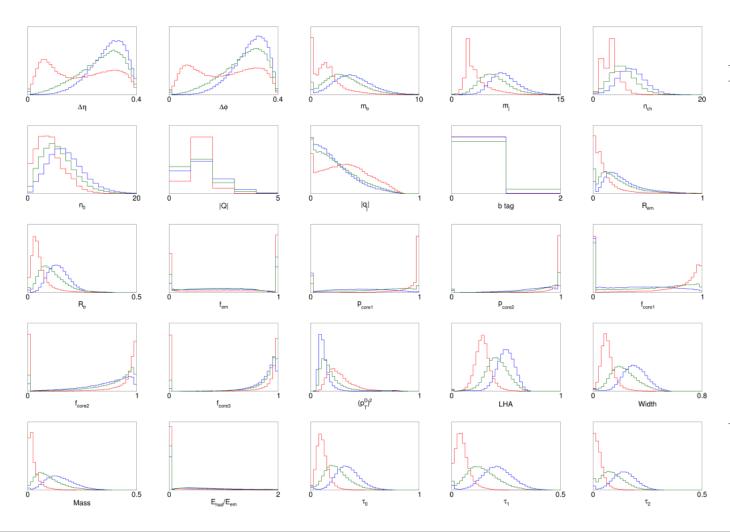
Up:
$$y = -0.0013 \times m(\text{track}, \gamma) + 1.16$$

Down: $y = 0.0013 \times m(\text{track}, \gamma) + 0.84$

Signal uncertainties

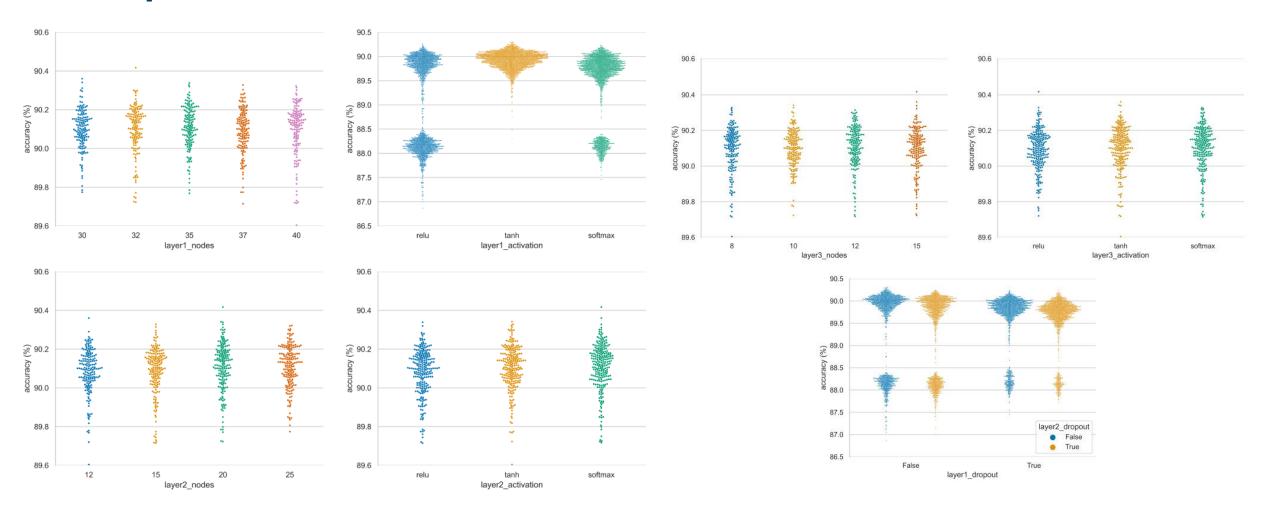
Track+Photon

. .

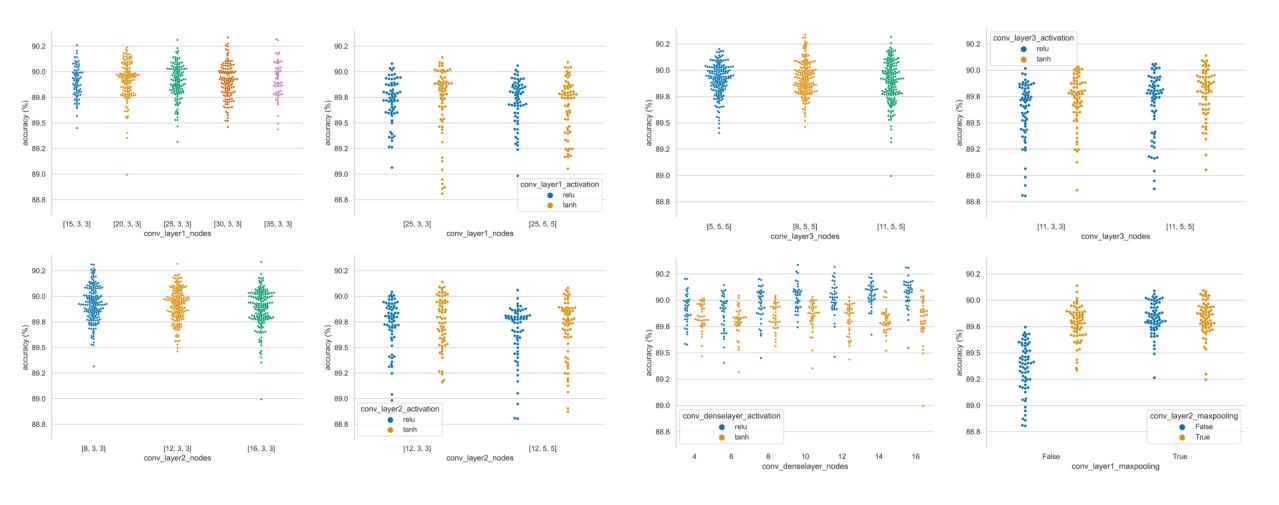

Variation	Uncertainty (%)
Photon Efficiency	2.07
Track Efficiency	1.21
Luminosity	1.7
Cross Section	3.4

Tau+Photon

Uncertainty source	Variation (%)
Cross Section	3.4
Luminosity	1.7
Pileup	5.5
Photon Identification	1.1
Photon Isolation	1.6
EG scale	3.0
EG resolution	4.9
PH scale	1.7
TRUEHADTAU_EFF_RECO_TOTAL	1.2
TRUEHADTAU_EFF_RNNID_1PRONGSTATSYSTPT3040	0.3
TRUEHADTAU_EFF_RNNID_1PRONGSTATSYSTPTGE40	0.3
TAUS_TRUEHADTAU_EFF_RNNID_SYST	0.8
TAUS_TRUEHADTAU_EFF_ELEOLR_TOTAL	1.2
TAUS_TRUEELECTRON_EFF_ELEBDT_STAT	5.7
TAUS_TRUEELECTRON_EFF_ELEBDT_SYST	1.3
Trigger	10

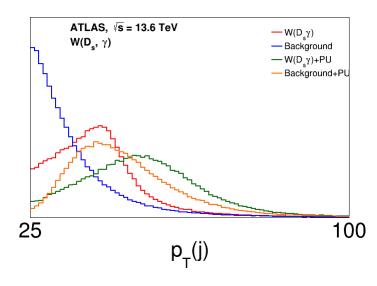

ML variables

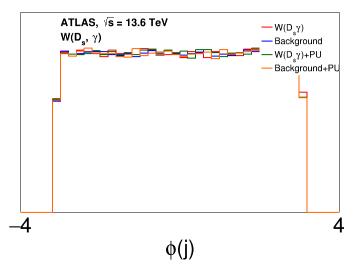
Name	Description
$\Delta\eta$	width of the jet in η
$\Delta\phi$	width of the jet in ϕ
m_{tr}	invariant mass of all charged tracks in the jet
m_{j}	invariant mass of all constituents of the jet
n_{ch}	charged particle multiplicity
n_0	neutral particle multiplicity
Q	absolute value of the total charge
$ q_j $	jet charge
b-tag	output of the b -tagging algorithm
R_{em}	Average ΔR with respect to the jet axis weighted by electromagnetic energy
R_{track}	p_T weighted average ΔR for tracks
f_{em}	fraction of EM energy over total neutral energy of the jet
p_{core1}	ratio of sum p_T in a cone of $\Delta R < 0.1$ and the jet p_T
p_{core2}	ratio of sum p_T in a cone of $\Delta R < 0.2$ and the jet p_T
f_{core1}	ratio of sum ET in a cone of $\Delta R < 0.1$ and the jet total ET
f_{core2}	ratio of sum ET in a cone of $\Delta R < 0.2$ and the jet total ET
f_{core3}	ratio of sum ET in a cone of $\Delta R < 0.3$ and the jet total ET
$(p_T^D)^2$	λ_0^2
$_{ m LHA}$	Les Houches Angularity; $\lambda_{0.5}^1$
Width	λ_{1}^{1}
Mass	λ_2^1
E_{had}/E_{em}	ratio of the hadronic versus electromagnetic energy deposited in the calorimeter
$ au_0, au_1, au_2$	N-Subjettiness

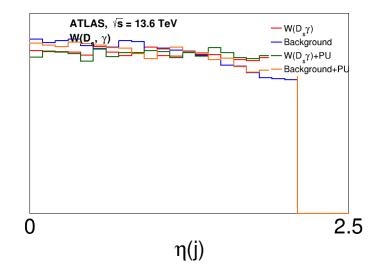


Optimisation of network - DNN

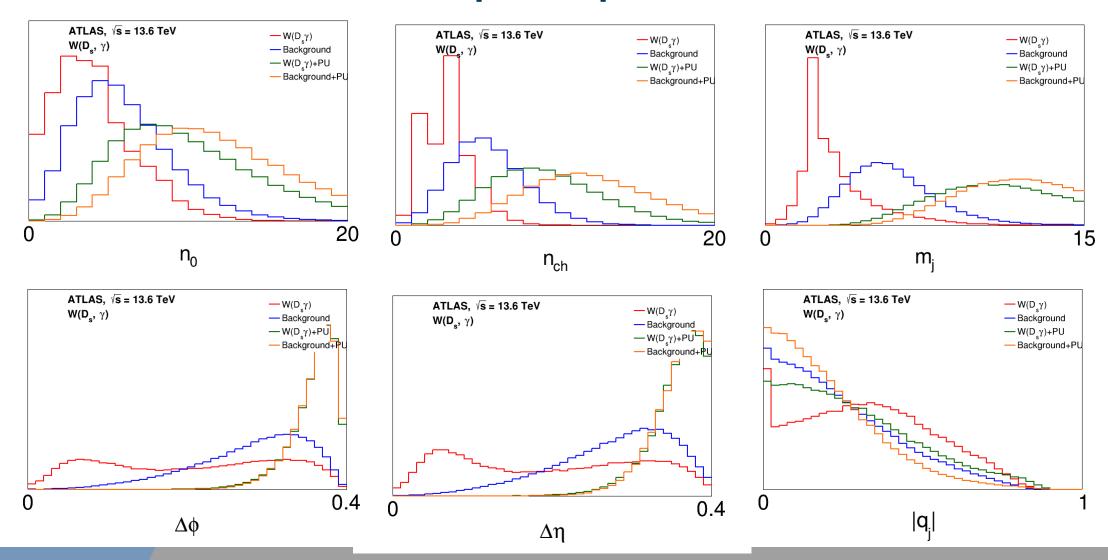
Optimisation of network - CNN

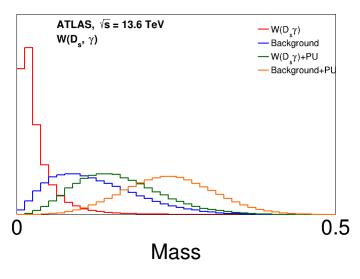


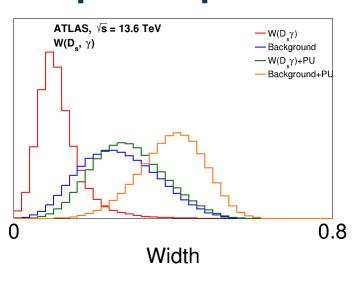

Network overview

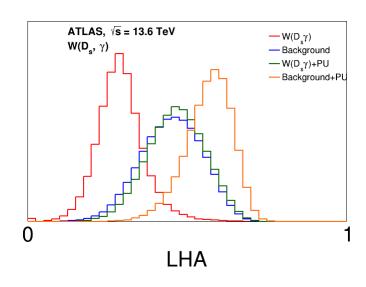

Parameter	DNN	CNN	Combined
Dense layer nodes	35 - 20 - 12 - 1	_	33 - 20 - 14
Dense layer activation	tanh - tanh - tanh - sigmoid	_	tanh - tanh - tanh
Convolutional layer nodes	_	30 - 8 - 8	30 - 8 - 8
Window size	_	$[3 \times 3], [3 \times 3], [5 \times 5]$	$[3 \times 3], [3 \times 3], [5 \times 5]$
Convolutional layer activation	_	tanh - tanh - tanh	tanh - tanh - tanh
Max pooling	_	After the 1^{st} cor	nvolutional layer
Dense layers after convolution	_	10(relu) - 1(simoid)	_
Combined layer nodes	_	_	8 - 1
Combined layer activation	_	_	relu - sigmoid
Loss function	bin	ary cross-entropy	
Optimizer		Adam	
Training epochs		40	
Batch size		1024	

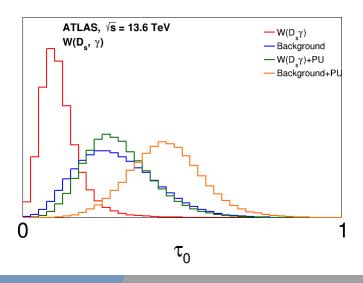
Consideration of pileup

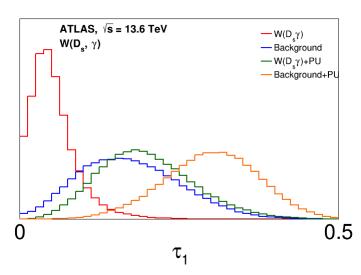

	Accuracy	Loss	Accuracy w Pileup Loss w Pileup	
Dense only	91.24%	0.2223	81.07%	0.4235
Convolutional only	92.26%	0.2050	81.10%	0.4209
Combined model	93.21%	0.1773	82.73%	0.3902




Consideration of pileup






Consideration of pileup

