New collider searches for dark photons

Anh Vu Phan NNV annual meeting, subatomic physics section (Nov 04, 2022) Based on work with Joerg Jaeckel

Radboud University

- Dark photon model
- Displaced vertex at Belle II
- Searches at photon colliders (LUXE and Gamma Factory)

Dark photon model

New collider searches for dark photons

Motivation

- Dark matter should exist.
- Fail to find dark matter?

Motivation

- Dark matter should exist.
- Fail to find dark matter \rightarrow look for portal particles.

Motivation

- Dark matter should exist.
- Fail to find dark matter \rightarrow look for portal particles.
- Some BSM models (e.g., string theory) predict additional U(1) symmetries.

Dark photon (X_{μ})

 \rightarrow Behaves like regular photon, but with coupling ϵe to SM fermions and is massive.

For more on dark photon model: Holdom (1986) Fabbrichesi, et al. (2020)

Existing limits on dark photons

Places to search for feebly coupling dark photons

- e^+e^- colliders
 - Displaced vertex search at Belle II ← most promising
- Photon colliders
 - Beam dump experiment at LUXE
 - Bump hunt search at Gamma Factory

Displaced vertex at Belle II

New collider searches for dark photons

Belle II

- e^+e^- collision at $\sqrt{s} = 10.58$ GeV.
- Why Belle II?
 - Good statistics
 - Low background
 - Algorithm suitable for finding displaced vertices

Belle II experiment

11

Matvienko (QUARKS-2018)

Sensitivity

13

New collider searches for dark photons Anh Vu Phan MODEL > DISPLACED VERTEX AT BELLE II > SEARCHES AT PHOTON COLLIDERS

Where to find displaced vertices?

Cross-sectional view of Belle II Adapted from Pestotnik (2015)

Region categorization based on

14

$\frac{\gamma \text{ conversion (main background)}}{\gamma \text{ from } e^+e^- \rightarrow \gamma\gamma \text{ can convert in matter } \gamma \rightarrow f^+f^-}$

γ conversion (main background) Main background for R > 0.9 cm.

γ conversion (main background)

For 0.2 cm < R < 0.9 cm, background is due to misreconstruction.

New collider searches for dark photons Anh Vu Phan MODEL > DISPLACED VERTEX AT BELLE II > SEARCHES AT PHOTON COLLIDERS

Compute γ **conversion cross section** $\gamma(q) + N(p) \rightarrow f^{-}(l_{-}) + f^{+}(l_{+}) + N(p')$

Suppressed

Background estimation

Phase space coverage

New collider searches for dark photons

Anh Vu Phan

Searches at photon colliders

New collider searches for dark photons

LUXE

• Proposed $e^-\gamma$ collider at DESY, Hamburg

Adapted from Abramowicz *et al.* (2019)

New collider searches for dark photons Anh Vu Phan MODEL > DISPLACED VERTEX AT BELLE II > SEARCHES AT PHOTON COLLIDERS

For more on LUXE: Abramowicz et al (2021)

For more on LUXE: Abramowicz et al (2021)

LUXE

• $e^-\gamma$ collider

Beam dump at LUXE

Beam dump at LUXE

New collider searches for dark photons Anh Vu Phan MODEL > DISPLACED VEF

ODEL > DISPLACED VERTEX AT BELLE II > SEARCHES AT PHOTON COLLIDERS

Gamma Factory proposed at CERN

Bump hunt at Gamma Factory

Bump hunt at Gamma Factory

Adapted from image by Fermilab

Bump hunt at Gamma Factory

Regions above the lines are covered by Gamma Factory at 95% C.L. Assume integrated luminosity of 10⁴⁰ cm⁻²

MODEL > DISPLACED VERTEX AT BELLE II > SEARCHES AT PHOTON COLLIDERS 3

THANK YOU FOR LISTENING

Anh Vu Phan 28 October 2022 Based on work with Joerg Jaeckel

Anh Vu Phan 28 October 2022 Based on work with Joerg Jaeckel

Signal

- Signal: photon + displaced e^+e^- pair.
- At high energy, $\frac{d\sigma_{e^+e^- \to \gamma X}}{d\cos\theta} = \frac{2\pi\alpha^2\chi^2}{s} \left(\frac{1+\cos^2\theta}{\sin^2\theta}\right).$
- Decay length (N_f : number of possible decay products) $\lambda_X = \frac{\hbar c E_X}{m_X \Gamma_X}$, with $\Gamma_X = \frac{1}{3} \alpha \chi^2 m_X N_f$.
- Number of signal events $S = LT\sigma_{e^+e^- \to \gamma X} (e^{-r_{min}/\lambda_X} - e^{-r_{max}/\lambda_X}).$
- For Belle II, we search inside beam pipe (i.e. $r_{min} = 0.1 \ cm$, $r_{max} = 0.9 \ cm$).

Background: $e^+ e^- \rightarrow \gamma \gamma$, $\gamma + matter \rightarrow e^+ e^-$

• The number of photon conversion to e^+e^- satisfying our cuts is

Background: $e^+ e^- \rightarrow \gamma \gamma$, $\gamma + matter \rightarrow e^+ e^-$

• For many layers of matter, conversion probability is

$$p_{\gamma \to e^+e^-} = \frac{dN_{\gamma \to e^+e^-}}{N_0} = \frac{d\sigma_1}{\sigma_1} (1 - e^{-n_1\sigma_1z_1}) + e^{-n_1\sigma_1z_1} \frac{d\sigma_2}{\sigma_2} (1 - e^{-n_2\sigma_2z_2}) + \cdots$$
Probability γ converts in layer 1
Probability γ converts in layer 1
Probability γ converts in layer 2
$$n_1, z_1 \quad n_3, z_3$$

$$\rho = e^+$$

$$n_2, Z_2$$

Compute γ **conversion cross section** $\gamma(q) + N(p) \rightarrow f^{-}(l_{-}) + f^{+}(l_{+}) + N(p')$

• Amplitudes

$$\mathcal{M}_{BH} = \frac{ie}{t} \varepsilon_{\mu}(q) \,\overline{N}(p') F_{1}(t) \gamma_{\nu} N(p) \, T^{\mu\nu}_{\gamma^{*}\gamma \rightarrow f\bar{f}}$$

$$t = (p - p')^{2} \qquad \text{Nucleus form} \qquad \text{For } f = \text{leptons, } T^{\mu\nu}_{\gamma^{*}\gamma \rightarrow f\bar{f}} \text{ is amplitude for } \gamma\gamma \rightarrow l^{+}l^{-}$$

Compute γ **conversion cross section** $\gamma(q) + N(p) \rightarrow f^{-}(l_{-}) + f^{+}(l_{+}) + N(p')$

• Amplitudes

$$\mathcal{M}_{BH} = \frac{ie}{t} \varepsilon_{\mu}(q) \,\overline{N}(p') F_{1}(t) \gamma_{\nu} N(p) \, T_{\gamma^{*}\gamma \to f\bar{f}}^{\mu\nu}$$

$$\mathcal{M}_{TCS} = \frac{ie^{3}}{m_{ff}^{2}} J_{\nu}(q') \varepsilon_{\mu}(q) \,\overline{N}(p') \left(\frac{1}{\alpha} T_{fTCS}^{\mu\nu}\right) N(p) \qquad \text{Gryniul}$$

$$m_{ff}^{2} = (l_{+} + l_{-})^{2} \qquad q' = l_{+} + l_{-}$$

38

New collider searches for dark photon | Anh Vu Phan

Compute γ conversion cross section $\gamma(q) + N(p) \to f^{-}(l_{-}) + f^{+}(l_{+}) + N(p')$

• Amplitudes

$$\mathcal{M}_{BH} = \frac{ie}{t} \varepsilon_{\mu}(q) \,\overline{N}(p')F_{1}(t)\gamma_{\nu}N(p) \,T_{\gamma^{*}\gamma \to f\bar{f}}^{\mu\nu}$$

$$\mathcal{M}_{TCS} = \frac{ie^{3}}{m_{ff}^{2}} J_{\nu}(q')\varepsilon_{\mu}(q) \,\overline{N}(p') \left(\frac{1}{\alpha} T_{fTCS}^{\mu\nu}\right) N(p)$$

$$T_{fTCS}^{\mu\nu} \approx \left(-g^{\mu\nu} + \frac{q'^{\mu}q^{\nu}}{q \cdot q'}\right) f(\nu) \qquad \text{Gryniuk (2020)}$$

$$\stackrel{\text{Incoming photon energy}}{\bigwedge} \qquad \text{Near-real, near forward} \qquad \text{Spin-averaged forward} \\ \lim(m_{ff}^{2})|t| \ll s) \qquad \text{Spin-averaged forward} \\ \operatorname{real Compton amplitude} \qquad \text{Timelike Compton scattering (TCS) diagram}$$

N

Compute γ **conversion cross section** $\gamma(q) + N(p) \rightarrow f^{-}(l_{-}) + f^{+}(l_{+}) + N(p')$

• Amplitudes

$$\mathcal{M}_{BH} = \frac{ie}{t} \varepsilon_{\mu}(q) \,\overline{N}(p') F_{1}(t) \gamma_{\nu} N(p) \, T_{\gamma^{*}\gamma \to f\bar{f}}^{\mu\nu}$$
$$\mathcal{M}_{TCS} = \frac{ie^{3}}{m_{ff}^{2}} J_{\nu}(q') \varepsilon_{\mu}(q) \,\overline{N}(p') \left(\frac{1}{\alpha} T_{fTCS}^{\mu\nu}\right) N(p)$$
$$T_{fTCS}^{\mu\nu} \approx \left(-g^{\mu\nu} + \frac{q'^{\mu}q^{\nu}}{q \cdot q'}\right) f(\nu)$$

Total unpolarized photoabsorption cross section of nucleus N.

40

Gryniuk, Hagelstein, and Pascalutsa (2015) 0

ptical theorem
$$\Rightarrow \operatorname{Im} f(\nu) = \frac{\nu}{4\pi} \sigma_{\gamma N}(\nu)$$

Analyticity $\Rightarrow \operatorname{Re} f(\nu) = -\frac{Z^2 \alpha}{\frac{M_N}{M_N}} + \frac{\nu^2}{2\pi^2} \mathcal{P} \int_0^\infty d\nu' \frac{\sigma_{\gamma N}(\nu')}{\nu'^2 - \nu^2}$

Nucleus N with mass M_N and atomic number Z