

University of Groningen National Institute for Subatomic Physics

Conseil Européen pour la Recherche Nucléaire

Jan de Boer NNV Annual Meeting 4 November 2022

Our playground: the Standard Model

- Fermions (matter):
 - Why 3 generations of Quarks?
 - Why 3 generations of Leptons?
- Bosons (interactions):
 - Strong, Weak, Electromagnetic forces have identical coupling constants to the generations of fermions
 - Higgs field introduces distinction among the generations of fermions

Lepton Flavour Universality (LFU)

• Standard Model couplings of leptons to vector bosons are flavour-independent

- Precision measurements to:
 - Carefully examine LFU prediction by the Standard Model
 - Search for New Physics effects
- Experimentally measured as Ratio: counting μ /e decays

Anomalies in LFU tests at LHCb

$b \rightarrow c \ell v$ decays:

$b \rightarrow s \ell \ell$ decays:

b→sll transitions

(l=lepton)

- Part of the anomalies
- Electroweak
- Flavour Changing Neutral Current
- In SM forbidden at tree level, only possible via higher order diagrams and thus highly suppressed

A <u>rare decay</u> that is sensitive to new physics effects.

Motivation for using Λ_b^0 decays

- Baryonic decay to be measured:
 - complementary to mesons
 - different form factors
 - different spin structure
- Measured as a double ratio:

$$R_{\Lambda} = \frac{\mathscr{B}(\Lambda_b^0 \to \Lambda \mu^+ \mu^-)}{\mathscr{B}(\Lambda_b^0 \to \Lambda e^+ e^-)} \cdot \frac{\mathscr{B}(\Lambda_b^0 \to \Lambda J/\psi(\to e^+ e^-))}{\mathscr{B}(\Lambda_b^0 \to \Lambda J/\psi(\to \mu^+ \mu^-))}$$

The LHCb detector ²⁰¹⁸

Event 291000117 Run 116803 Mon, 28 May 2012 07:23:28

Event reconstruction

→ decay length \approx 1 m (γ =15-25)

- Λ is long lived, decays into $p^+\pi^-$
 - Reconstruction split into Downstream/Long tracks
 - Downstream comes with lower mass resolution but does increase statistics by a factor 3
- Lepton pair created:
 ➢ Dilepton invariant mass (q²) measured
 ➢ Incl. two resonances: J/ψ and ψ(2S)

Samples

- $\Lambda_b^0 \rightarrow \Lambda \mu^+ \mu^-$ and $\Lambda_b^0 \rightarrow \Lambda e^+ e^-$ decays
- Cross-checks via resonances: $\Lambda_b^0 \rightarrow \Lambda J/\psi(\rightarrow \mu^+ \mu^-) \text{ and } \Lambda_b^0 \rightarrow \Lambda \psi(2s)(\rightarrow \mu^+ \mu^-)$ $\Lambda_b^0 \rightarrow \Lambda J/\psi(\rightarrow e^+ e^-) \text{ and } \Lambda_b^0 \rightarrow \Lambda \psi(2s)(\rightarrow e^+ e^-)$

• Split over periods: LHC Run1, Run2

What about $\Lambda_b^0 \rightarrow \Lambda \mu^+ \mu^-$ decays?

- Lepton pair created:
 ➤ Dilepton invariant mass (q²) measured
 ➤ Incl. two resonances: J/ψ and ψ(2S)
- Muon mode has been measured before $\mathcal{B}(J/\psi)$ also being re-measured
- Most signal expected at high q^2

What about $\Lambda_b^0 \rightarrow \Lambda e^+ e^- decays$?

- First measurement of $\Lambda^0_b \rightarrow \Lambda e^+e^-$
- Electrons are challenging:
 - Bremsstrahlung
 - Lower mass resolution
 - Lower reconstruction efficiency

Lepton Flavour Universality in Λ_b decays

$$R_{\Lambda} = \frac{\mathscr{B}(\Lambda_{b}^{0} \to \Lambda \mu^{+} \mu^{-})}{\mathscr{B}(\Lambda_{b}^{0} \to \Lambda e^{+} e^{-})} \cdot \frac{\mathscr{B}(\Lambda_{b}^{0} \to \Lambda J/\psi(\to e^{+} e^{-}))}{\mathscr{B}(\Lambda_{b}^{0} \to \Lambda J/\psi(\to \mu^{+} \mu^{-}))}$$

• $J/\psi \rightarrow \ell^+ \ell^-$ well understood and measured ($r_{J/\psi} = 1$)

Double ratio to reduce systematic uncertainties:
 -µ and e modes have <u>different detector signatures</u>
 -double ratio <u>cancels</u> most of these <u>systematic uncertainties</u>

in SM!

Cross-checks: J/ ψ and ψ (2S)

• Two cross-checks before measuring R_{Λ} :

1. single ratios $r_{J/\psi}$, $r_{\psi(2s)}$:

$$r_{J/\psi} = \frac{\mathscr{B}(\Lambda_b^0 \to \Lambda J/\psi (\to \mu^+ \mu^-))}{\mathscr{B}(\Lambda_b^0 \to \Lambda J/\psi (\to e^+ e^-))} = 1$$

$$r_{\psi(2s)} = \frac{\mathscr{B}(\Lambda_b^0 \to \Lambda \psi(2S)(\to \mu^+ \mu^-))}{\mathscr{B}(\Lambda_b^0 \to \Lambda \psi(2S)(\to e^+ e^-))} = 1$$

2. double ratio $R_{\psi(2s)}$:

$$R_{\psi(2s)} = \frac{\mathscr{B}(\Lambda_b^0 \to \Lambda \psi(2S)(\to \mu^+ \mu -))}{\mathscr{B}(\Lambda_b^0 \to \Lambda \psi(2S)(\to e^+ e^-))} \cdot \frac{\mathscr{B}(\Lambda_b^0 \to \Lambda J/\psi(\to e^+ e^-))}{\mathscr{B}(\Lambda_b^0 \to \Lambda J/\psi(\to \mu^+ \mu^-))} = 1$$

Mass fits: $\Lambda_b^0 \rightarrow \Lambda J/\psi(\rightarrow \ell^+ \ell^-)$

Mass fits: $\Lambda_b^0 \rightarrow \Lambda \psi(2S)(\rightarrow \ell^+ \ell^-)$

Ratio plots

- Single ratios
- Double ratio is a powerful method: \rightarrow systematic biases cancel
- Promising step for the analysis!
- Work to be done on trigger efficiency

New test of Lepton Flavour Universality with rare Ab decays at LHCb

Final remarks

- Why uniformity among generations of fermions?
- $\Lambda_b^0 \to \Lambda \ell \ell$: new channel to measure LFU
- Intermediate results shown: single + double ratio

Bright future ahead for the experiment:

- Brand <u>new</u> LHCb detector installed!
- First Λ events in Run 3 data!!

Thank you for listening! Questions?