K form factors and their impact on CKM elements

0 1

Carolina Bolognani NNV najaarsvergadering, Lunteren November 4, 2022

0

01

- Need good understanding and measurements of all free parameters

Motivation

• Standard model of particle physics is incomplete \rightarrow precision tests are necessary!

- •
- Need good understanding and measurements of all free parameters

Motivation

Standard model of particle physics is incomplete \rightarrow precision tests are necessary!

 $B_{\rm s} \rightarrow K$ form factors

- •
- Need good understanding and measurements of all free parameters

Motivation

Standard model of particle physics is incomplete \rightarrow precision tests are necessary!

$B_{\rm s} \rightarrow K$ form factors

The CKM matrix **Quark flavour transitions**

 Charged weak interactions allow for flavour changes in the Standard Model

The CKM matrix **Quark flavour transitions**

- Charged weak interactions allow for flavour changes in the Standard Model
- Quark transition probabilities related to Cabibbo-Kobayashi-Maskawa matrix

The CKM matrix **Quark flavour transitions**

- Charged weak interactions allow for flavour changes in the Standard Model
- Quark transition probabilities related to Cabibbo-Kobayashi-Maskawa matrix

The CKM matrix **Measuring the matrix elements**

Mostly extracted from data analysis of semi-leptonic decays More data than leptonic decays \rightarrow Only one hadron in the final state \rightarrow cleaner theory predictions about decays • e.g.: $V_{\mu b}$ from $B_s^0 \to K^- \mu^+ \nu_{\mu} \Rightarrow$ compare branching ratio to theory expression Quarks decay but hadrons are $B_{\rm s}^0$ observed QCD problems reduced to W^+ **V V**

 u_{μ}

form factors

This talk = how to approach FF!

• Inconsistency found when extracting V_{ub} and V_{cb} from exclusive or inclusive decays $b \rightarrow ulv \quad b \rightarrow cl\nu$

Final state is fully known

Hadronic part : specific form factors

Form factor calculations are not straightforward : depend on momentum of lepton pair

Carolina Bolognani

$$B_s$$
 –

Same quark level transition Should be the same!

Final state is sum of all possible states

Hadronic part : data

Final state is fully known

Hadronic part : specific form factors

Form factor calculations are not straightforward : depend on momentum of lepton pair

Carolina Bolognani

$$B_s$$
 –

Same quark level transition Should be the same!

• Inconsistency found when extracting $V_{\mu b}$ and V_{cb} from exclusive or inclusive decays $b \rightarrow u l v$ $b \rightarrow c l v$

inclusive

Final state is sum of all possible states

Hadronic part : data

exclusive

Final state is fully known

Hadronic part : specific form factors

Form factor calculations are not straightforward : depend on momentum of lepton pair

Carolina Bolognani

Same quark level transition Should be the same!

• Inconsistency found when extracting $V_{\mu b}$ and V_{cb} from exclusive or inclusive decays $b \rightarrow u l v$ $b \rightarrow c l v$

Final state is sum of all possible states

Hadronic part : data

Same quark level transition Should be the same!

• Inconsistency found when extracting V_{ub} and V_{cb} from exclusive or inclusive decays $b \rightarrow u l v \qquad b \rightarrow c l \nu$

Bernlochner, Welsch, Fael, Olschewsky, Persson, van Tonder, Vos, JHEP 10 (2022) 068

Same quark level transition Should be the same!

• Inconsistency found when extracting V_{ub} and V_{cb} from exclusive or inclusive decays $b \rightarrow u l v \qquad b \rightarrow c l \nu$

Also possible to determine ratios experimentally!

Bernlochner, Welsch, Fael, Olschewsky, Persson, van Tonder, Vos, JHEP 10 (2022) 068

 $B_s \rightarrow K$ form factors

2012 data LHCb analysis – Method

- First observation of decay and determination of branching ratio
- Normalised to $B_s^0 \to D_s^- \mu^+ \nu_{\mu}$: reduce experimental systematic uncertainty

$$\mathscr{B}\left(B_{s}^{0} \to K^{-}\mu^{+}\nu_{\mu}\right)$$
$$\mathscr{B}\left(B_{s}^{0} \to D_{s}^{-}\mu^{+}\nu_{\mu}\right)$$

- $FF_{D_{c}}$ available for full range of lepton pair momentum
- FF_K has two different theoretical determinations for different q^2 ranges!

Extracting $|V_{ub}/V_{cb}|$ from $B_s^0 \to K^- \mu^+ \nu_{\mu}$

Form factors are important theory input!

 $q^2 = (p_{\mu} + p_{\nu})^2$

LHCb Collaboration, Phys.Rev.Lett. 126 (2021) 8

 $B_s \rightarrow K$ form factors

- First observation of decay and determination of branching ratio

Low q^2

FF determined with Light-Cone Sum Rules

Extracting $|V_{ub}/V_{cb}|$ from $B_s^0 \to K^- \mu^+ \nu_\mu$ **2012 data LHCb analysis - Results**

• Normalised to $B_s^0 \to D_s^- \mu^+ \nu_{\mu}$: two different q^2 ranges for $B_s \to K$ form factors!

High q^2

FF determined with Lattice QCD

 $= (p_{\mu} + p_{\nu})^2$

LHCb Collaboration, Phys.Rev.Lett. 126 (2021) 8

 $B_s \rightarrow K$ form factors

2012 data LHCb analysis – Results

- First observation of decay and determination of branching ratio

Low q^2

FF determined with Light-Cone Sum Rules

Extracting $|V_{ub}/V_{cb}|$ from $B_s^0 \to K^- \mu^+ \nu_\mu$

• Normalised to $B_s^0 \to D_s^- \mu^+ \nu_{\mu}$: two different q^2 ranges for $B_s \to K$ form factors!

High q^2

FF determined with Lattice QCD

 $= (p_{\mu} + p_{\nu})^2$

LHCb Collaboration, Phys.Rev.Lett. 126 (2021) 8

 $B_s \rightarrow K$ form factors

Carolina Bolognani

Determining form factors **LCSR x LQCD** high q^2

Lattice QCD (LQCD)

Discretise spacetime and calculate: grid introduces natural regularisation of lengths and momenta

Computationally intensive : large grids and small spacing

Carolina Bolognani

Determining form factors **LCSR x LQCD** high q^2

Lattice QCD (LQCD)

Discretise spacetime and calculate: grid introduces natural regularisation of lengths and momenta

Computationally intensive : large grids and small spacing

Carolina Bolognani

Determining form factors LCSR x LQCD high q^2

Lattice QCD (LQCD)

Discretise spacetime and calculate: grid introduces natural regularisation of lengths and momenta

Computationally intensive : large grids and small spacing

EPJ Web Conf. 245 (2020) 09008

Improving form factor determination Extrapolating LCSR to LQCD : $B \rightarrow \pi$ example

Standard previous approach:

• Calculate form factors with LCSR for several low q^2 values

• Use standard parametrisation to extrapolate to high q^2

• Parametrisation gives large uncertainty at high q^2

Leljak, Melic, Dyk, JHEP 07 (2021) 036

Carolina Bolognani

8 / 12

Improving form factor determination **Extrapolating LCSR to LQCD** : $B \rightarrow \pi$ example

New approach:

 Calculate form factors with LCSR for several low q^2 values

• Use adapted parametrisation to extrapolate to high q^2

 Fit LCSR points and LQCD points together with new parametrisation

Leljak, Melic, Dyk, JHEP 07 (2021) 036

Carolina Bolognani

9 / 12

New determination of the form factors: how will it impact the CKM elements?

Carolina Bolognani

 $B_s \rightarrow K$ form factors

New determination of the form factors: how will it impact the CKM elements?

 $B_s \rightarrow K$ form factors

New determination of the form factors: how will it impact the CKM elements?

- CKM elements are important input parameters in the Standard Model • \star Currently there are inconsistencies between exclusive and inclusive determinations
- Improving theoretical form factor calculations may help resolve these inconsistencies •

- A <u>new approach</u> appears! Work in progress with $B_{s} \rightarrow K$ form factors \star Unify low and high q^2 determinations in one go!
- Will the new CKM element and ratio increase or reduce the puzzle?

Conclusion

 $B_s \rightarrow K$ form factors

Carolina Bolognani NNV najaarsvergadering, Lunteren November 4, 2022 Ø.

0 1

- P

01

Thank you!

Determining form factors Definition

- Cannot be calculated perturbatively due to large coupling constant at low energies
- Describe how the current flows from the *B* meson to the final meson $(D, K, \pi \dots)$

Carolina Bolognani

 $B_s \rightarrow K$ form factors

The CKM matrix Measuring the matrix elements

- Mostly extracted from data analysis of semi-leptonic decays
 More data than leptonic decays
 - Only one hadron in the final state \rightarrow cleaner theory predictions about decays

$$V_{CKM} \equiv \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Particle Data Group, 2022

Same family transitions most enhanced Hierarchical structure just measured, not modelled Big suppression of transitions between 1st and 3rd families

- The CKM matrix
- The $V_{\mu b}$ V_{cb} puzzle
- Extraction of $|V_{ub}/V_{cb}|$ from $B_s^0 \to K^- \mu^+ \nu_{\mu}$: relevance of $B_s \to K$ form factors • Different methods of calculating form factors
- New approach to form factors \Rightarrow light-cone sum rules into lattice QCD

()utline

