

Motivation

- Standard model of particle physics is incomplete \rightarrow precision tests are necessary!
- Need good understanding and measurements of all free parameters

mass electric charge spin	$\begin{array}{\|cc\|} \hline-2.16 \mathrm{MeV} \\ +2 / 3 \\ \text { +2/2 } & \mathrm{Ul} \\ & \\ & \\ \text { up } \end{array}$	$\begin{array}{ll} \begin{array}{ll} -1.27 \mathrm{GeV} \\ +2 / 3 \\ 1 / 2 \\ & \mathrm{C} \\ & \\ & \text { charm } \end{array} \end{array}$	$\begin{array}{\|cc\|} \hline-172.76 & \mathrm{GeV} \\ \begin{array}{ll} +2 / 3 & 4 \\ 1 / 2 & 4 \\ & \\ & \text { top } \end{array} \\ \hline \end{array}$		125.25 GeV 0 0 Higgs boson
	$\begin{array}{ll} \underbrace{-4.67} \mathrm{MeV} \\ -1 / 3 & \\ 1 / 2 & \\ & \\ & \text { down } \end{array}$	$\begin{array}{ll} { }^{-93} \mathrm{MeV} \\ { }^{-1 / 3} & \\ & \mathrm{~S} \\ & \text { strange } \end{array}$			
	$\begin{array}{lll} 0.511 \mathrm{MeV} \\ -1 & \\ 1 / 2 & & \\ & & \\ & \text { electron } \end{array}$	$\begin{array}{lll} 105.659 & \mathrm{MeV} \\ -1 & \\ 1 / 2 & L \end{array}$	$\begin{aligned} & 1.777 \mathrm{GeV} \\ & -1 \\ & 1 / 2 \\ & \\ & \\ & \\ & \\ & \text { tau } \end{aligned}$		$\begin{aligned} & \cdots \\ & \underset{O}{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
					ய

Motivation

- Standard model of particle physics is incomplete \rightarrow precision tests are necessary!
- Need good understanding and measurements of all free parameters

Understanding how flavours of quarks change

Motivation

- Standard model of particle physics is incomplete \rightarrow precision tests are necessary!
- Need good understanding and measurements of all free parameters

Parameters determined in different kinematical regions
Puzzles: values should be the same!

The CKM matrix

Quark flavour transitions

- Charged weak interactions allow for flavour changes in the Standard Model

The CKM matrix

Quark flavour transitions

Need to be measured! Used as inputs for predictions!

The CKM matrix

Quark flavour transitions

Need to be measured! Used as inputs for predictions!

The CKM matrix

Measuring the matrix elements

- Mostly extracted from data analysis of semi-leptonic decays
- More data than leptonic decays
- Only one hadron in the final state \rightarrow cleaner theory predictions about decays
- e.g.: $V_{u b}$ from $B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu} \Rightarrow$ compare branching ratio to theory expression

Quarks decay but hadrons are observed
\downarrow
QCD problems reduced to
form factors

The CKM matrix

The $V_{u b}-V_{c b}$ puzzle
Same quark level transition Should be the same!

- Inconsistency found when extracting $V_{u b}$ and $V_{c b}$ from exclusive or inclusive decays

$$
b \rightarrow u l v \quad b \rightarrow c l v
$$

Final state is fully known

Hadronic part : specific form factors

Final state is sum of all possible states

Form factor calculations are not straight-
Hadronic part : data forward: depend on momentum of lepton pair

The CKM matrix

$$
\text { The } V_{u b}-V_{c b} \text { puzzle }
$$

Same quark level transition Should be the same!

- Inconsistency found when extracting $V_{u b}$ and $V_{c b}$ from exclusive or inclusive decays

$$
b \rightarrow u l v \quad b \rightarrow c l \nu
$$

inclusive

Final state is fully known

Hadronic part : specific form factors

Form factor calculations are not straightforward : depend on momentum of lepton pair

Final state is sum of all possible states
Hadronic part : data

The CKM matrix

$$
\text { The } V_{u b}-V_{c b} \text { puzzle }
$$

Same quark level transition Should be the same!

- Inconsistency found when extracting $V_{u b}$ and $V_{c b}$ from exclusive or inclusive decays

$$
b \rightarrow u l v \quad b \rightarrow c l \nu
$$

exclusive

Final state is fully known
Hadronic part : specific form factors

Final state is sum of all possible states

Hadronic part : data

Form factor calculations are not straightforward : depend on momentum of lepton pair

The CKM matrix

The $V_{u b}-V_{c b}$ puzzle
Same quark level transition Should be the same!

- Inconsistency found when extracting $V_{u b}$ and $V_{c b}$ from exclusive or inclusive decays

$$
b \rightarrow u l v \quad b \rightarrow c l v
$$

The CKM matrix

$$
\text { The } V_{u b}-V_{c b} \text { puzzle }
$$

Same quark level transition Should be the same!

- Inconsistency found when extracting $V_{u b}$ and $V_{c b}$ from exclusive or inclusive decays

$$
b \rightarrow u l v \quad b \rightarrow c l v
$$

Also possible to determine ratios experimentally!

Extracting $\left|V_{u b} / V_{c b}\right|$ from $B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}$

2012 data LHCb analysis - Method

- First observation of decay and determination of branching ratio
- Normalised to $B_{s}^{0} \rightarrow D_{s}^{-} \mu^{+} \nu_{\mu}$: reduce experimental systematic uncertainty

$$
\frac{\mathscr{B}\left(B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}\right)}{\mathscr{B}\left(B_{s}^{0} \rightarrow D_{s}^{-} \mu^{+} \nu_{\mu}\right)}=\frac{\left|V_{u b}\right|^{2}}{\left|V_{c b}\right|^{2}} \frac{\mathrm{FF}_{K}}{\mathrm{FF}_{D_{s}}}
$$

Form factors are important theory input!

- $\mathrm{FF}_{D_{s}}$ available for full range of lepton pair momentum
- FF_{K} has two different theoretical determinations for different q^{2} ranges! $q^{2}=\left(p_{\mu}+p_{\nu}\right)^{2}$

Extracting $\left|V_{u b} / V_{c b}\right|$ from $B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}$

2012 data LHCb analysis - Results

- First observation of decay and determination of branching ratio
- Normalised to $B_{s}^{0} \rightarrow D_{s}^{-} \mu^{+} \nu_{\mu}$: two different q^{2} ranges for $B_{s} \rightarrow K$ form factors!

Low q^{2}
FF determined with Light-Cone Sum Rules

$$
q^{2}=\left(p_{\mu}+p_{\nu}\right)^{2}
$$

Extracting $\left|V_{u b} / V_{c b}\right|$ from $B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}$

2012 data LHCb analysis - Results

- First observation of decay and determination of branching ratio
- Normalised to $B_{s}^{0} \rightarrow D_{s}^{-} \mu^{+} \nu_{\mu}$: two different q^{2} ranges for $B_{s} \rightarrow K$ form factors!

High q^{2}
FF determined with Lattice QCD

$$
q^{2}=\left(p_{\mu}+p_{\nu}\right)^{2}
$$

Determining form factors
 LCSR x LQCD

low q^{2}
Light-Cone Sum Rules (LCSR)
Write the hadrons in terms of currents
Expand these currents near the light-cone

Factorise out the non-perturbative part
Re-interpret in terms of sum of hadron states
\Rightarrow Some approximations are needed in the calculations
high q^{2}
Lattice QCD (LQCD)
Discretise spacetime and calculate: grid introduces natural regularisation of lengths and momenta
\Rightarrow Computationally intensive : large grids and small spacing

Determining form factors
 LCSR x LQCD
 low q^{2}

Light-Cone Sum Rules (LCSR)

Write the hadrons in terms of currents
Expand these currents near the light-cone

Factorise out the non-perturbative part
Re-interpret in terms of sum of hadron states
\Rightarrow Some approximations are needed in the calculations
high q^{2}
Lattice QCD (LQCD)

Discretise spacetime and calculate: grid introduces natural regularisation of lengths and momenta
\Rightarrow Computationally intensive : large grids and small spacing

Determining form factors

LCSR x LQCD

Write the hadrons in terms of currents
Expand these currents near the light-cone

Factorise out the non-perturbative part
Re-interpret in terms of sum of hadron states
\Rightarrow Some approximations are needed in the calculations

high q^{2}
Lattice QCD (LQCD)

Discretise spacetime and calculate: grid introduces natural regularisation of lengths and momenta
\Rightarrow Computationally intensive : large grids and small spacing

Improving form factor determination

Extrapolating LCSR to LQCD : $B \rightarrow \pi$ example

Standard previous approach:

- Calculate form factors with LCSR for several low q^{2} values
- Use standard parametrisation to extrapolate to high q^{2}
- Parametrisation gives large uncertainty at high q^{2}

Improving form factor determination

Extrapolating LCSR to LQCD : $B \rightarrow \pi$ example
New approach:

- Calculate form factors with LCSR for several low q^{2} values
- Use adapted parametrisation to extrapolate to high q^{2}
- Fit LCSR points and LQCD points together with new parametrisation

New approach to $B_{s} \rightarrow K$

Ongoing project

With Danny van Dyk and Keri Vos
New determination of the form factors: how will it impact the CKM elements?

New approach to $B_{s} \rightarrow K$

Ongoing project

With Danny van Dyk and Keri Vos
New determination of the form factors: how will it impact the CKM elements?
Currently...

Exclusive
Inclusive
Low q^{2} ratio
High q^{2} ratio

New approach to $B_{s} \rightarrow K$

Prospective

With Danny van Dyk and Keri Vos
New determination of the form factors: how will it impact the CKM elements?

Improve $V_{u b}$ exclusive?
Resolve $\left|V_{u b} / V_{c b}\right|$ ratio!

Conclusion

- CKM elements are important input parameters in the Standard Model
* Currently there are inconsistencies between exclusive and inclusive determinations
- Improving theoretical form factor calculations may help resolve these inconsistencies
- A new approach appears! Work in progress with $B_{s} \rightarrow K$ form factors
\star Unify low and high q^{2} determinations in one go!
- Will the new CKM element and ratio increase or reduce the puzzle?

Determining form factors

Definition

- Cannot be calculated perturbatively due to large coupling constant at low energies
- Describe how the current flows from the B meson to the final meson $(D, K, \pi \ldots)$

The CKM matrix

Measuring the matrix elements

- Mostly extracted from data analysis of semi-leptonic decays
- More data than leptonic decays
- Only one hadron in the final state \rightarrow cleaner theory predictions about decays

$$
V_{C K M} \equiv\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

Outline

- The CKM matrix
- The $V_{u b}-V_{c b}$ puzzle
- Extraction of $\left|V_{u b} / V_{c b}\right|$ from $B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}$: relevance of $B_{s} \rightarrow K$ form factors
- Different methods of calculating form factors
- New approach to form factors \Rightarrow light-cone sum rules into lattice QCD

