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ÅGravitational waves detected so far :compact binary coalescences (CBC)

- Black Hole-Black Hole

- Neutron star-Neutron star

- Black Hole-Neutron star

ÅExpected class of events : Bursts

- Anything that is transient and not a CBC

- two families of bursts : short- (< 2 sec) and long duration (> 2 sec)

1)What are Bursts ?
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ÅWhat are the phenomenagenerating long-duration bursts ?

1)What are Bursts ?
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Non-axisymmetric 
deformations in
magnetars

Gamma-ray Bursts

Accretion disk 
instabilities around 
black holes 

Fallback accretion 
in newborn 
neutron stars



2) How do we detect them ?

ÅCBC detection : general relativity => model of collision = waveform

=> then try to match those models to the data (matched filtering)

ÅMany other phenomena can generate GWs ! 

=> But physics ispoorly known...

=>Models not accurate enough to apply match filtering.

Solution : use multiple detectors to findcorrelation in the data
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2) How do we detect them ?

ÅExcess of power method

=> Search in Time-Frequency space => minimal assumption : well represented in thatTF space

=> Bursts should be clusters of high-correlation pixels

=> Many sources of noise (seismic, laser noise, suspensions, etc.)
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3) Convolutional neural networks

ÅClass of artificial neural networks employing convolution

=> easy to use and understand

=> allows to downscale theinformation

ÅImage processing applications often require :

=> classification tasks (medical images, galaxy catalogs, ...)

=> bounding box determination (self-driven cars, face recognition, ...)
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3) Convolutional neural networks

ÅEfficient at recognizing patterns and shapes :

ÅNote : a neural network is nothing without a well-designed loss function !

ҐҔ ƭƻǎǎ ŦǳƴŎǘƛƻƴ Ґ ǿƘŀǘ ȅƻǳ ǿŀƴǘ ǘƻ ƳƛƴƛƳƛȊŜ ǘƻ ŀŎƘƛŜǾŜ ȅƻǳǊ Ǝƻŀƭ όŎƭŀǎǎƛŦƛŎŀǘƛƻƴΣ ǇǊŜŘƛŎǘƛƻƴΣ Χύ

ҐҔ ƭƻǎǎ ŦǳƴŎǘƛƻƴ ƎƛǾŜǎ ŦŜŜŘōŀŎƪǎ ǘƻ ǳǇŘŀǘŜ ǘƘŜ ǿŜƛƎƘǘǎ όƛƴ ƪŜǊƴŜƭǎΣ Χύ

=> bad weight updates = badly conditioned training = bad results
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4) New approach : mimic long-duration burst signals

ÅProblem : can't rely on the long-duration models

- too many uncertainties in the physical phenomena

- models cannot be used as patterns to match for

ÅThey all show a "chirp up" or "chirp down" behavior

==> easily mimicked thanks to the Python Scipylibrary !

==> Allow to generate chirps as time series
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Taken from O3 long-duration paper :
https://dcc.ligo.org/public/0174/P2100078/0
11/o3_long_duration.pdf

https://dcc.ligo.org/public/0174/P2100078/011/o3_long_duration.pdf


4) New approach : mimic long-duration burst signals

ÅInspired by Xing et al.,2019. (https://doi.org/10.1186/s12859-019-3037-5), coded with PyTorch

ÅDownscaling and upscaling network

ÅMethod :

- train the network so that : output (O) ḗtarget(T)

==> our target will be injection in empty TF map

==> Empty map for noise-only images (plot)

ÅLoss that is being minimized :
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https://doi.org/10.1186/s12859-019-3037-5


5) Early Results

ÅLocalization : Time-Frequency maps with injection
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