Higgs self-couplings: Di-Higgs $\rightarrow bbll$

Alessio Pizzini, Pamela Ferrari, Bob van Eijk

November 4, 2021

Lunteren

Higgs self-couplings: Di-Higgs $\rightarrow bb\ell$.

SM & Higgs

Higgs stands out for a few notable properties:

- Only fundamental scalar particle
- Only boson not mediating fundamental interactions
- No electric, color charge
- It gives mass to other fundamental particles

æ

イロト イヨト イヨト

Higgs couplings

• Higgs mass measured with high precision: $m_H = 124.97 \pm 0.24$ GeV

- $\bullet\,\rightarrow\,$ Higgs couplings measurements next hot topic in Higgs physics
 - Higgs couplings predicted by SM (EWSB)
 - ► Higgs trilinear and quadrilinear couplings: $\mathcal{L}_{Higgs} \ni -\frac{1}{2}M_H^2H^2 \lambda_3 vH^3 \frac{1}{4}\lambda_4 H^4$

$$\begin{array}{ll} \star & \lambda_3 = \frac{M_H^2}{2v^2} \\ \star & v = \sqrt{\frac{|\mu^2|}{\lambda}} = (\sqrt{2}G_F)^{-\frac{1}{2}} \approx 246 \text{ GeV}^{-1} \end{array}$$

- Measuring λ_3 :
 - Need to find Di-Higgs events
 - * Never been done before
 - Test of EWSM, a long tern goal of LHC
 - ★ Possible hints at BSM physics

 1 vev can be determined independently from Higgs physics, e.g. from muon lifetime $< \bigcirc$

${\rm gg}{\rm F}$ production modes

- Trilinear-diagram and box-diagram interfere destructively
- ullet ightarrow small di-Higgs cross-section: σ_{ggF} =31.05 fb

• Sensitive to $\kappa_{\tau}, \kappa_{\lambda} \rightarrow \text{Higgs trilinear self-coupling}$

• Causing negative interference

イロト イヨト イヨト イヨト

Sensitive to κ_τ

э.

Production modes

Let's consider 2nd largest production mode

gluon-gluon Fusion (ggF)

- Fraction of total cross-section: $(88.4 \pm 4)\%$
- This process happens mainly through a loop of heavy quarks
- Contribution from lighter virtual quarks are suppressed as $\frac{m_q^2}{m_t^2}$

Vector Boson Fusion (VBF)

- Fraction of total cross-section: $(6.9\pm0.1)\%$
- Two W or Z bosons, radiated by quarks, fuse to create an Higgs boson

イロト イヨト イヨト イヨト

3

VBF production modes

Different di-Higgs production modes are sensitive to different Higgs couplings

э.

イロト イヨト イヨト イヨト

Decay channels

BRs of the SM Higgs boson

- $b\bar{b}$ most common decay channel for Higgs
- WW, ZZ and $\tau\tau$ sum up to 30%

BRs of a WW system

- Fully leptonic decay for WW system is rare
- By requiring that both W bosons decay leptonically, branching ratio decreases to around 1%

Higgs self-couplings: Di-Higgs $\rightarrow bb\ell\ell$

7/15

The HH $\rightarrow bb\ell\ell + E_T^{miss}$ channel

• Luckily, multiple HH decay channels contribute to $bb\ell\ell$ + MET final state (I = e, μ)

• Decay topologies of $HH \rightarrow bb\ell\ell$ decays:

- BR = 1.62%
- W -pair has spin correlation
- small $m\ell\ell$ and $\Delta\phi\ell\ell$

- BR = 0.91%
- light leptons are collinear to τ -lepton $\Rightarrow m_{\tau\tau}^{coll}$
- BR = 0.095%
- *mll* close to Z peak or small for offshell Z
- only same flavour leptons

э

Low cross-section but relatively clean signal

Background

• main background: $t\bar{t}$

Figure: $t\bar{t}$ and diHiggs processes sharing the same $WWb\bar{b}$ final state

• single-top Wt

Figure: $t\bar{t}$ and diHiggs processes sharing the same $WWb\bar{b}$ final state

э

イロト イロト イヨト

Analysis strategy

ggF

- preselection
 - single and dilepton triggers
 - exactly two light leptons of opposite charge (p_T > 9 GeV)
 - one or two b-tagged jets (p_T > 20 GeV , DL1r, 77%)
- split further into signal and control regions
- data in the CRs is used to constrain the MC cross-section, overall normalization of the MC is 'semi-data-driven'

• shape taken from MC in the SR

- SR1: target bbWW, bbττ, and low m_{ℓℓ} part of bbZZ
- SR2: target high m_{ℓℓ} part of bbZZ
- ZII CR: also used in bbττ analysis
- NN trained on MC samples

VBF

- first time implementation
- event selection applied on top of ggF selection
 - at least 2 extra non b-tagged jets with p_T > 30 GeV
 - ▶ max(∆η_{jj}) > 4 where j = non b-tagged jet
 - max(m_{jj}) >600 GeV
- BDT trained on MC samples

< E> < E>

BDT all variables

ъ

Distributions

ggF

NN distributions

VBF

BDT distributions

イロト イヨト イヨト イヨト

æ

Preliminary results

First look at signal strenght $\mu=\sigma_{\rm HH}/\sigma_{\rm HH_{SM}}$, set 95% CLs limit on

- channel -2σ -1σ median 1σ 2σ bbbb 287.3 385.8 535.4 745.1 998.9 60.4 142.0 233.5 373.0 $bb\gamma\gamma$ 89.4 bbll 50.169.8 101.9 150.8216.8
- VBF: $\mu_{VBF}(HH)$ very competitive compared with other channels

- $\bullet~ggF$ + VBF: improvement compared to ggF only
 - if only ggF sample is used: $\mu_{ggF}(HH)$
 - if ggF and VBF sample is used: $\mu_{ggF+VBF}(HH)$

samples	signal regions	-2 σ	-1 σ	median	1σ	2 σ
ggF	SR1 ggF	4.0	5.38	7.46	10.54	14.48
ggF + VBF	SR1 ggF	3.98	5.34	7.41	10.47	14.38
ggF + VBF	SR1 ggF + SR1VBF	3.92	5.26	7.31	10.31	14.16

• Current combined limit on other di-Higgs channels $\sim 3 \to$ we can get even closer to 1 when including $bb\ell\ell$ channel

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

Conclusions

Take-home message:

- VBF $bb\ell\ell$ channel is competitive for Di-Higgs searches
- VBF can improve Di-Higgs results once included in ggF analysis, combinations
- Precision measurements in the pre-Hi-Lumi era are already possible!

イロト イヨト イヨト イヨト

Outline

	-	-	-	-
			-	

Ξ.

・ロト ・四ト ・ヨト ・ヨト

୬**୯**୧ _{14/15}

BDT

BDT trained on SM VBF vs ggF + background

	Limit				
BDT training sample	SM	cvv0	kl0	kl10	
SM	101.917	125 %	105 %	152 %	
cvv0	129%	1.74602	110 %	123 %	
kl0	110 %	112 %	51.9474	122 %	
kl10	155 %	101 %	113 %	3.30675	

≣ ∽**へ** _{15/15}