Quantum Algorithms - State of the Art

(for high-energy physics and/or gravitational waves?)

Ronald de Wolf

Two important questions:

Two important questions:

1. Can we build such a computer?

Two important questions:

1. Can we build such a computer? We're not there yet...

Two important questions:

- 1. Can we build such a computer? We're not there yet...
- 2. What can it do?

Two important questions:

- 1. Can we build such a computer? We're not there yet...
- 2. What can it do? This talk: quantum algorithms

Two important questions:

- 1. Can we build such a computer? We're not there yet...
- 2. What can it do? This talk: quantum algorithms

Two important questions:

- 1. Can we build such a computer? We're not there yet...
- 2. What can it do? This talk: quantum algorithms

These work by interplay of superposition and interference:

1. Start with all qubits in easily-preparable state (e.g. all $|0\rangle$)

Two important questions:

- 1. Can we build such a computer? We're not there yet...
- 2. What can it do? This talk: quantum algorithms

- 1. Start with all qubits in easily-preparable state (e.g. all $|0\rangle$)
- Set up initial superposition and manipulate it with gates, so that computational paths leading to correct output interfere constructively, others interfere destructively

Two important questions:

- 1. Can we build such a computer? We're not there yet...
- 2. What can it do? This talk: quantum algorithms

- 1. Start with all qubits in easily-preparable state (e.g. all $|0\rangle$)
- Set up initial superposition and manipulate it with gates, so that computational paths leading to correct output interfere constructively, others interfere destructively (computation is efficient if it uses few gates)

Two important questions:

- 1. Can we build such a computer? We're not there yet...
- 2. What can it do? This talk: quantum algorithms

- 1. Start with all qubits in easily-preparable state (e.g. all $|0\rangle$)
- Set up initial superposition and manipulate it with gates, so that computational paths leading to correct output interfere constructively, others interfere destructively (computation is efficient if it uses few gates)
- 3. Measurement of final state then gives classical output

Quantum algorithms that might help HEP and/or GW

Quantum algorithms that might help HEP and/or GW

- 1. Extracting periodicity using the quantum Fourier transform
- 2. Searching through large spaces
- 3. Faster optimization
- 4. Simulating quantum systems

Quantum algorithms that might help HEP and/or GW

- 1. Extracting periodicity using the quantum Fourier transform
- 2. Searching through large spaces
- 3. Faster optimization
- 4. Simulating quantum systems

I will go over these 4 items at a fairly high level, hoping that something triggers a click with the computational needs of high-energy physics and/or gravitational-wave research

► Fourier transforms are key to analysing periodic sequences

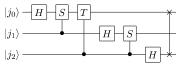
► Fourier transforms are key to analysing periodic sequences in music

► Fourier transforms are key to analysing periodic sequences in music, for image compression

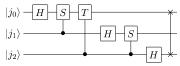
► Fourier transforms are key to analysing periodic sequences in music, for image compression, for gravitational waves?

- ► Fourier transforms are key to analysing periodic sequences in music, for image compression, for gravitational waves?
- ▶ *n*-qubit quantum Fourier Transform: $|j\rangle \mapsto \frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^{n-1}} e^{\frac{2\pi i j k}{2^n}} |k\rangle$ where *j* and *k* are *n*-bit integers

- Fourier transforms are key to analysing periodic sequences in music, for image compression, for gravitational waves?
- ▶ *n*-qubit quantum Fourier Transform: $|j\rangle \mapsto \frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^{n-1}} e^{\frac{2\pi i j k}{2^n}} |k\rangle$ where j and k are n-bit integers
- ▶ 2^n -dimensional unitary, can be implemented with $O(n^2)$ gates

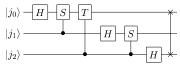


- ► Fourier transforms are key to analysing periodic sequences in music, for image compression, for gravitational waves?
- ▶ *n*-qubit quantum Fourier Transform: $|j\rangle\mapsto \frac{1}{\sqrt{2^n}}\sum_{k=0}^{2^{n-1}}e^{\frac{2\pi ijk}{2^n}}|k\rangle$ where j and k are n-bit integers
- ▶ 2^n -dimensional unitary, can be implemented with $O(n^2)$ gates



Can reduce to $O(n \log n)$ gates if we allow very small error

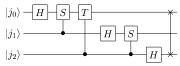
- ► Fourier transforms are key to analysing periodic sequences in music, for image compression, for gravitational waves?
- ▶ *n*-qubit quantum Fourier Transform: $|j\rangle\mapsto \frac{1}{\sqrt{2^n}}\sum_{k=0}^{2^{n-1}}e^{\frac{2\pi ijk}{2^n}}|k\rangle$ where j and k are n-bit integers
- ▶ 2^n -dimensional unitary, can be implemented with $O(n^2)$ gates



Can reduce to $O(n \log n)$ gates if we allow very small error

► Key component in many quantum algorithms.

- ► Fourier transforms are key to analysing periodic sequences in music, for image compression, for gravitational waves?
- ▶ *n*-qubit quantum Fourier Transform: $|j\rangle \mapsto \frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^{n-1}} \mathrm{e}^{\frac{2\pi i j k}{2^n}} |k\rangle$ where j and k are n-bit integers
- ▶ 2^n -dimensional unitary, can be implemented with $O(n^2)$ gates



Can reduce to $O(n \log n)$ gates if we allow very small error

Key component in many quantum algorithms. Difficulty is how to "load" your periodic sequence as amplitudes of a state

Goal: efficiently find the prime factors of given integer N

Goal: efficiently find the prime factors of given integer N

1. Reduction to period-finding (uses classical number theory)

Goal: efficiently find the prime factors of given integer N

1. Reduction to period-finding (uses classical number theory): choose random integer c < N, define $f : \mathbb{N} \to \{0, \dots, N-1\}$

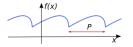
$$f(x) = c^x \bmod N$$

Goal: efficiently find the prime factors of given integer N

1. Reduction to period-finding (uses classical number theory): choose random integer c < N, define $f : \mathbb{N} \to \{0, \dots, N-1\}$

$$f(x) = c^x \bmod N$$

This is a periodic function

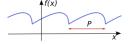


Goal: efficiently find the prime factors of given integer N

1. Reduction to period-finding (uses classical number theory): choose random integer c < N, define $f : \mathbb{N} \to \{0, \dots, N-1\}$

$$f(x) = c^x \bmod N$$

This is a periodic function

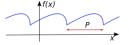


Goal: efficiently find the prime factors of given integer N

1. Reduction to period-finding (uses classical number theory): choose random integer c < N, define $f : \mathbb{N} \to \{0, \dots, N-1\}$

$$f(x) = c^x \bmod N$$

This is a periodic function



Claim: if you can find period P, then you can factor N

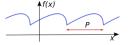
2. Quantum algorithm for finding the period:

Goal: efficiently find the prime factors of given integer N

1. Reduction to period-finding (uses classical number theory): choose random integer c < N, define $f : \mathbb{N} \to \{0, \dots, N-1\}$

$$f(x) = c^x \bmod N$$

This is a periodic function



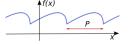
- 2. Quantum algorithm for finding the period:
 - 2.1 Generate superposition $\sum_{x} |x\rangle |0\rangle$

Goal: efficiently find the prime factors of given integer N

1. Reduction to period-finding (uses classical number theory): choose random integer c < N, define $f : \mathbb{N} \to \{0, \dots, N-1\}$

$$f(x) = c^x \bmod N$$

This is a periodic function



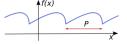
- 2. Quantum algorithm for finding the period:
 - 2.1 Generate superposition $\sum_{x} |x\rangle |0\rangle$
 - 2.2 Compute f in superposition: $\sum_{x} |x\rangle |f(x)\rangle$

Goal: efficiently find the prime factors of given integer N

1. Reduction to period-finding (uses classical number theory): choose random integer c < N, define $f : \mathbb{N} \to \{0, \dots, N-1\}$

$$f(x) = c^x \bmod N$$

This is a periodic function



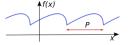
- 2. Quantum algorithm for finding the period:
 - 2.1 Generate superposition $\sum_{x} |x\rangle |0\rangle$
 - 2.2 Compute f in superposition: $\sum_{x} |x\rangle |f(x)\rangle$
 - 2.3 Measure 2nd register.

Goal: efficiently find the prime factors of given integer N

1. Reduction to period-finding (uses classical number theory): choose random integer c < N, define $f : \mathbb{N} \to \{0, \dots, N-1\}$

$$f(x) = c^x \bmod N$$

This is a periodic function



- 2. Quantum algorithm for finding the period:
 - 2.1 Generate superposition $\sum_{x} |x\rangle |0\rangle$
 - 2.2 Compute f in superposition: $\sum_{x} |x\rangle |f(x)\rangle$
 - 2.3 Measure 2nd register. If you see f(s), then 1st register is now in superposition $|s\rangle + |s + P\rangle + |s + 2P\rangle + |s + 3P\rangle + \cdots$

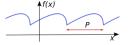
Famous example: Shor's factoring algorithm (1994)

Goal: efficiently find the prime factors of given integer N

1. Reduction to period-finding (uses classical number theory): choose random integer c < N, define $f : \mathbb{N} \to \{0, \dots, N-1\}$

$$f(x) = c^x \bmod N$$

This is a periodic function



Claim: if you can find period P, then you can factor N

- 2. Quantum algorithm for finding the period:
 - 2.1 Generate superposition $\sum_{x} |x\rangle |0\rangle$
 - 2.2 Compute f in superposition: $\sum_{x} |x\rangle |f(x)\rangle$
 - 2.3 Measure 2nd register. If you see f(s), then 1st register is now in superposition $|s\rangle + |s + P\rangle + |s + 2P\rangle + |s + 3P\rangle + \cdots$
 - 2.4 Do quantum Fourier transform and measure: the result gives information about the period *P*

▶ If you have an unordered search space with N possible locations, then on average you'll have to inspect N/2 of them before you found what you were looking for

- ► If you have an unordered search space with N possible locations, then on average you'll have to inspect N/2 of them before you found what you were looking for
- Grover's quantum algorithm solves this search problem in $O(\sqrt{N})$ steps

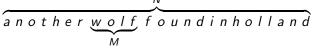
- ► If you have an unordered search space with N possible locations, then on average you'll have to inspect N/2 of them before you found what you were looking for
- Grover's quantum algorithm solves this search problem in $O(\sqrt{N})$ steps
- Grover finds
 needle in a haystack
 much faster than
 classical search

- ► If you have an unordered search space with N possible locations, then on average you'll have to inspect N/2 of them before you found what you were looking for
- Grover's quantum algorithm solves this search problem in $O(\sqrt{N})$ steps
- Grover finds
 needle in a haystack
 much faster than
 classical search

Many applications: basically anything where search appears as a subproblem, and also many estimation problems (e.g., Monte Carlo)

Some version of the following might be of interest for analyzing the (massive) data coming out of HEP experiments: Given a string x₁,...,xN of N letters or numbers, see if a particular length-M pattern appears somewhere

► Some version of the following might be of interest for analyzing the (massive) data coming out of HEP experiments: Given a string x₁,...,x_N of N letters or numbers, see if a particular length-M pattern appears somewhere



Some version of the following might be of interest for analyzing the (massive) data coming out of HEP experiments: Given a string x_1, \ldots, x_N of N letters or numbers, see if a particular length-M pattern appears somewhere

► Trivial algorithm takes time O(NM)

Some version of the following might be of interest for analyzing the (massive) data coming out of HEP experiments:

Given a string x_1, \ldots, x_N of N letters or numbers, see if a particular length-M pattern appears somewhere

N

a n o t h e r w o l f, f o u n d i n h o l l a n d

- ightharpoonup Trivial algorithm takes time O(NM)
- ► Knuth-Morris-Pratt classical algorithm: time O(N + M)

Some version of the following might be of interest for analyzing the (massive) data coming out of HEP experiments:

Given a string x_1, \ldots, x_N of N letters or numbers, see if a particular length-M pattern appears somewhere

N

a n o t h e r w o l f f o u n d i n h o l l a n d

- ► Trivial algorithm takes time O(NM)
- ► Knuth-Morris-Pratt classical algorithm: time O(N + M)
- Ramesh & Vinay'03: quantum algorithm with time $O(\sqrt{N} + \sqrt{M})$

Some version of the following might be of interest for analyzing the (massive) data coming out of HEP experiments:

Given a string x_1, \ldots, x_N of N letters or numbers, see if a particular length-M pattern appears somewhere

N

a n o t h e r w o l f f o u n d i n h o l l a n d

- ► Trivial algorithm takes time O(NM)
- ► Knuth-Morris-Pratt classical algorithm: time O(N + M)
- Ramesh & Vinay'03: quantum algorithm with time $O(\sqrt{N} + \sqrt{M})$ using Grover as a subroutine

Some version of the following might be of interest for analyzing the (massive) data coming out of HEP experiments:

Given a string x_1, \ldots, x_N of N letters or numbers, see if a particular length-M pattern appears somewhere

N

a n o t h e r w o l f f o u n d i n h o l l a n d

- ightharpoonup Trivial algorithm takes time O(NM)
- ► Knuth-Morris-Pratt classical algorithm: time O(N + M)
- Ramesh & Vinay'03: quantum algorithm with time $O(\sqrt{N} + \sqrt{M})$ using Grover as a subroutine
- ► Montanaro'14: exponential speed-up on average in higher dimensions (Grover + algorithm for finding "hidden shifts")

1. Grover-based speedups are \leq quadratic. Is this any good?

1. Grover-based speedups are \leq quadratic. Is this any good? Compare quantum cost $C\sqrt{N}$ vs classical cost cN:

1. Grover-based speedups are \leq quadratic. Is this any good? Compare quantum cost $C\sqrt{N}$ vs classical cost cN: quantum beats classical for instance-size $N > (C/c)^2$.

1. Grover-based speedups are \leq quadratic. Is this any good? Compare quantum cost $C\sqrt{N}$ vs classical cost cN: quantum beats classical for instance-size $N>(C/c)^2$. If $C/c\sim 10^{10}$, then need huge $N>10^{20}$ before get speed-up

- 1. Grover-based speedups are \leq quadratic. Is this any good? Compare quantum cost $C\sqrt{N}$ vs classical cost cN: quantum beats classical for instance-size $N>(C/c)^2$. If $C/c\sim 10^{10}$, then need huge $N>10^{20}$ before get speed-up
- 2. If we are given classical data (eg, sequence of numbers, or input graph) we should be able to access this in superposition.

- 1. Grover-based speedups are \leq quadratic. Is this any good? Compare quantum cost $C\sqrt{N}$ vs classical cost cN: quantum beats classical for instance-size $N>(C/c)^2$. If $C/c\sim 10^{10}$, then need huge $N>10^{20}$ before get speed-up
- If we are given classical data (eg, sequence of numbers, or input graph) we should be able to access this in superposition.
 Classical N-bit RAM is a piece of hardware of size ~ N that can be accessed in ~ log N steps

N leaves

- 1. Grover-based speedups are \leq quadratic. Is this any good? Compare quantum cost $C\sqrt{N}$ vs classical cost cN: quantum beats classical for instance-size $N>(C/c)^2$. If $C/c\sim 10^{10}$, then need huge $N>10^{20}$ before get speed-up
- If we are given classical data (eg, sequence of numbers, or input graph) we should be able to access this in superposition.
 Classical N-bit RAM is a piece of hardware of size ~ N that can be accessed in ~ log N steps
 Quantum RAM should be the same (|i,0⟩ → |i,x_i⟩)

 N leaves accessible in superposition.

- 1. Grover-based speedups are \leq quadratic. Is this any good? Compare quantum cost $C\sqrt{N}$ vs classical cost cN: quantum beats classical for instance-size $N>(C/c)^2$. If $C/c\sim 10^{10}$, then need huge $N>10^{20}$ before get speed-up
- If we are given classical data (eg, sequence of numbers, or input graph) we should be able to access this in superposition.
 Classical N-bit RAM is a piece of hardware of size ~ N that can be accessed in ~ log N steps
 Quantum RAM should be the same (|i, 0⟩ → |i, x_i⟩)
 N leaves accessible in superposition. Hard to implement with noise.

- 1. Grover-based speedups are \leq quadratic. Is this any good? Compare quantum cost $C\sqrt{N}$ vs classical cost cN: quantum beats classical for instance-size $N>(C/c)^2$. If $C/c\sim 10^{10}$, then need huge $N>10^{20}$ before get speed-up
- If we are given classical data (eg, sequence of numbers, or input graph) we should be able to access this in superposition.
 Classical N-bit RAM is a piece of hardware of size ~ N that can be accessed in ~ log N steps
 Quantum RAM should be the same (|i,0⟩ → |i,x_i⟩)
 N leaves accessible in superposition. Hard to implement with noise.

Data of HEP/GW experiments is probably too big to fit in a RAM anyway, so we'll need some sort of "streaming" model.

- 1. Grover-based speedups are \leq quadratic. Is this any good? Compare quantum cost $C\sqrt{N}$ vs classical cost cN: quantum beats classical for instance-size $N>(C/c)^2$. If $C/c\sim 10^{10}$, then need huge $N>10^{20}$ before get speed-up
- 2. If we are given classical data (eg, sequence of numbers, or input graph) we should be able to access this in superposition. Classical N-bit RAM is a piece of hardware of size ~ N that can be accessed in ~ log N steps Quantum RAM should be the same (|i,0⟩ → |i,x_i⟩) N leaves accessible in superposition. Hard to implement with noise.

Data of HEP/GW experiments is probably too big to fit in a RAM anyway, so we'll need some sort of "streaming" model.

Grover-based speedups are probably not for the near term

Optimization is one of the main applications of computers in the real world: allocate resources to jobs, optimize designs, minimize energy use, machine learning (fit model to data) etc.

Optimization is one of the main applications of computers in the real world: allocate resources to jobs, optimize designs, minimize energy use, machine learning (fit model to data) etc.

$$\min_{x \in K} f(x)$$

Optimization is one of the main applications of computers in the real world: allocate resources to jobs, optimize designs, minimize energy use, machine learning (fit model to data) etc.

$$\min_{x \in K} f(x),$$

think of $x \in \mathbb{R}^n$ with some constraints

Optimization is one of the main applications of computers in the real world: allocate resources to jobs, optimize designs, minimize energy use, machine learning (fit model to data) etc.

$$\min_{x \in K} f(x),$$

think of $x \in \mathbb{R}^n$ with some constraints

Continuous optimization: variables are reals

Optimization is one of the main applications of computers in the real world: allocate resources to jobs, optimize designs, minimize energy use, machine learning (fit model to data) etc.

$$\min_{x \in K} f(x),$$

think of $x \in \mathbb{R}^n$ with some constraints

Continuous optimization: variables are reals

Discrete optimization: variables are bits, integers

Optimization is one of the main applications of computers in the real world: allocate resources to jobs, optimize designs, minimize energy use, machine learning (fit model to data) etc.

$$\min_{x \in K} f(x),$$

think of $x \in \mathbb{R}^n$ with some constraints

► Continuous optimization: variables are reals

Discrete optimization: variables are bits, integers

Or a mix of these

Optimization is one of the main applications of computers in the real world: allocate resources to jobs, optimize designs, minimize energy use, machine learning (fit model to data) etc.

$$\min_{x \in K} f(x),$$

think of $x \in \mathbb{R}^n$ with some constraints

► Continuous optimization: variables are reals

Discrete optimization: variables are bits, integers

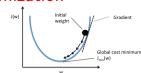
Or a mix of these

Quantum computers can help (sometimes)

Quantum speed-ups for continuous optimization

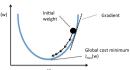
Quantum speed-ups for continuous optimization

► Gradient descent: iterative method to find local minimum of $f: \mathbb{R}^n \to \mathbb{R}$



Quantum speed-ups for continuous optimization

- ► Gradient descent: iterative method to find local minimum of $f: \mathbb{R}^n \to \mathbb{R}$
 - 1. Start with t = 0, and some initial point $x^{(0)}$



► Gradient descent: iterative method to find local minimum of $f: \mathbb{R}^n \to \mathbb{R}$

- Initial weight Gradient

 Global cost minimum

 w
- 1. Start with t = 0, and some initial point $x^{(0)}$
- 2. Compute the gradient $\nabla f = (\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n})$ at point $x^{(t)}$

► Gradient descent: iterative method to find local minimum of $f: \mathbb{R}^n \to \mathbb{R}$

- (w) Initial Gradient weight Global cost minimum
- 1. Start with t = 0, and some initial point $x^{(0)}$
- 2. Compute the gradient $\nabla f = (\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n})$ at point $x^{(t)}$
- 3. Move down for some stepsize $\eta: x^{(t+1)} \leftarrow x^{(t)} \eta \cdot \nabla f(x^{(t)})$

► Gradient descent: iterative method to find local minimum of $f: \mathbb{R}^n \to \mathbb{R}$

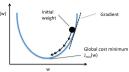
- (w) Initial Gradient weight Global cost minimum
- 1. Start with t = 0, and some initial point $x^{(0)}$
- 2. Compute the gradient $\nabla f = (\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n})$ at point $x^{(t)}$
- 3. Move down for some stepsize η : $x^{(t+1)} \leftarrow x^{(t)} \eta \cdot \nabla f(x^{(t)})$
- 4. Set $t \leftarrow t + 1$, goto 2

► Gradient descent: iterative method to find local minimum of $f: \mathbb{R}^n \to \mathbb{R}$

- (w) Initial Weight Gradient Weight Global cost minimum
- 1. Start with t = 0, and some initial point $x^{(0)}$
- 2. Compute the gradient $\nabla f = (\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n})$ at point $x^{(t)}$
- 3. Move down for some stepsize η : $x^{(t+1)} \leftarrow x^{(t)} \eta \cdot \nabla f(x^{(t)})$
- 4. Set $t \leftarrow t + 1$, goto 2

QCs can sometimes compute the gradient more efficiently

► Gradient descent: iterative method to find local minimum of $f: \mathbb{R}^n \to \mathbb{R}$



- 1. Start with t = 0, and some initial point $x^{(0)}$
- 2. Compute the gradient $\nabla f = (\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n})$ at point $x^{(t)}$
- 3. Move down for some stepsize $\eta: x^{(t+1)} \leftarrow x^{(t)} \eta \cdot \nabla f(x^{(t)})$
- 4. Set $t \leftarrow t + 1$, goto 2

QCs can sometimes compute the gradient more efficiently

Polynomial speed-up for linear programs $\max c^T x$ with n real variables, m linear constraints: s.t. $Ax \le b$

► Gradient descent: iterative method to find local minimum of $f: \mathbb{R}^n \to \mathbb{R}$

- (w) Initial Weight Gradient Weight Global cost minimum
- 1. Start with t = 0, and some initial point $x^{(0)}$
- 2. Compute the gradient $\nabla f = (\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n})$ at point $x^{(t)}$
- 3. Move down for some stepsize $\eta: x^{(t+1)} \leftarrow x^{(t)} \eta \cdot \nabla f(x^{(t)})$
- 4. Set $t \leftarrow t + 1$, goto 2

QCs can sometimes compute the gradient more efficiently

- Polynomial speed-up for linear programs $\max c^T x$ with n real variables, m linear constraints: s.t. $Ax \le b$
- Variational methods: use classical methods to optimize over some parametrized circuits

► Gradient descent: iterative method to find local minimum of $f: \mathbb{R}^n \to \mathbb{R}$

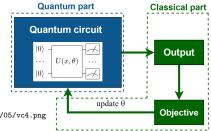
- Initial Gradient weight Global cost minimum
- 1. Start with t = 0, and some initial point $x^{(0)}$
- 2. Compute the gradient $\nabla f = (\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n})$ at point $x^{(t)}$
- 3. Move down for some stepsize η : $x^{(t+1)} \leftarrow x^{(t)} \eta \cdot \nabla f(x^{(t)})$
- 4. Set $t \leftarrow t + 1$, goto 2

QCs can sometimes compute the gradient more efficiently

▶ Polynomial speed-up for linear programs with *n* real variables, *m* linear constraints:

 $\begin{array}{ll}
\text{max} & c^T x \\
\text{s.t.} & Ax \le b
\end{array}$

Variational methods: use classical methods to optimize over some parametrized circuits



▶ Find the minimum of $f: \{1, ..., N\} \rightarrow \mathbb{R}$

▶ Find the minimum of $f:\{1,\ldots,N\}\to\mathbb{R}$ in $O(\sqrt{N})$ f-evaluations and other operations (Dürr-Høyer'96)

- Find the minimum of $f:\{1,\ldots,N\}\to\mathbb{R}$ in $O(\sqrt{N})$ f-evaluations and other operations (Dürr-Høyer'96)
- Speed-up for finding shortest path in a graph

- Find the minimum of $f:\{1,\ldots,N\}\to\mathbb{R}$ in $O(\sqrt{N})$ f-evaluations and other operations (Dürr-Høyer'96)
- Speed-up for finding shortest path in a graph for graph sparsification, many other graph problems

- ▶ Find the minimum of $f:\{1,\ldots,N\}\to\mathbb{R}$ in $O(\sqrt{N})$ f-evaluations and other operations (Dürr-Høyer'96)
- Speed-up for finding shortest path in a graph for graph sparsification, many other graph problems

Many discrete optimization problems are NP-hard: Constraint-satisfaction, Traveling Salesman Problem, finding largest clique in a graph, integer linear programs, minimal energy of protein folding, of spin glasses . . .

- Find the minimum of $f:\{1,\ldots,N\}\to\mathbb{R}$ in $O(\sqrt{N})$ f-evaluations and other operations (Dürr-Høyer'96)
- Speed-up for finding shortest path in a graph for graph sparsification, many other graph problems

► Many discrete optimization problems are NP-hard: Constraint-satisfaction, Traveling Salesman Problem, finding largest clique in a graph, integer linear programs, minimal energy of protein folding, of spin glasses . . .

We expect no more than quadratic quantum speed-up for NP-hard problems, so their complexity remains exponential

$$|\psi(t)\rangle = \underbrace{e^{-iHt}}_{U} |\psi(0)\rangle$$

▶ Quantum computers can simulate the dynamics of a quantum system given by Hamiltonian H and initial state $|\psi(0)\rangle$:

$$|\psi(t)\rangle = \underbrace{e^{-iHt}}_{U} |\psi(0)\rangle$$

▶ Under reasonable assumptions on H (eg local), there is a quantum circuit for U with O(t) gates and small error, so quantum computer can efficiently evolve state $|\psi(0)\rangle$ to $|\psi(t)\rangle$

$$|\psi(t)\rangle = e^{-iHt} |\psi(0)\rangle$$

- ▶ Under reasonable assumptions on H (eg local), there is a quantum circuit for U with O(t) gates and small error, so quantum computer can efficiently evolve state $|\psi(0)\rangle$ to $|\psi(t)\rangle$
- Simulating dynamics replaces lab experiments by a computer; may help material science, quantum chemistry, drug design...

$$|\psi(t)\rangle = \underbrace{e^{-iHt}}_{U} |\psi(0)\rangle$$

- ▶ Under reasonable assumptions on H (eg local), there is a quantum circuit for U with O(t) gates and small error, so quantum computer can efficiently evolve state $|\psi(0)\rangle$ to $|\psi(t)\rangle$
- Simulating dynamics replaces lab experiments by a computer; may help material science, quantum chemistry, drug design...
- ➤ This is plain-vanilla quantum mechanics, but you can also efficiently simulate dynamics of some quantum field theories (eg Jordan, Lee, Preskill'11-'14; see survey Preskill'18)

$$|\psi(t)\rangle = \underbrace{e^{-iHt}}_{U} |\psi(0)\rangle$$

- ▶ Under reasonable assumptions on H (eg local), there is a quantum circuit for U with O(t) gates and small error, so quantum computer can efficiently evolve state $|\psi(0)\rangle$ to $|\psi(t)\rangle$
- Simulating dynamics replaces lab experiments by a computer; may help material science, quantum chemistry, drug design...
- ➤ This is plain-vanilla quantum mechanics, but you can also efficiently simulate dynamics of some quantum field theories (eg Jordan, Lee, Preskill'11-'14; see survey Preskill'18)
- ▶ NB: Finding ground state energy of H is much harder problem

A classical computer can simulate a quantum computer with exponential slowdown.

A classical computer can simulate a quantum computer with exponential slowdown.

This implies that the set of *computable* problems doesn't change: "Church-Turing thesis" remains intact

- A classical computer can simulate a quantum computer with exponential slowdown.
 - This implies that the set of *computable* problems doesn't change: "Church-Turing thesis" remains intact
- ► For many problems we can show that quantum computers give no significant speed-up

- ► A classical computer can simulate a quantum computer with exponential slowdown.
 - This implies that the set of *computable* problems doesn't change: "Church-Turing thesis" remains intact
- For many problems we can show that quantum computers give no significant speed-up
 - or at most a quadratic speed-up (Grover is provably optimal)

- ► A classical computer can simulate a quantum computer with exponential slowdown.
 - This implies that the set of *computable* problems doesn't change: "Church-Turing thesis" remains intact
- For many problems we can show that quantum computers give no significant speed-up
 or at most a quadratic speed-up (Grover is provably optimal)
- Conjecture: quantum computers can't efficiently solve NP-hard problems

 Quantum algorithms work by combining superposition and interference effects

- Quantum algorithms work by combining superposition and interference effects
- This is weaker (and more subtle) than classical parallelism, but much faster than classical computers for some computational problems

- Quantum algorithms work by combining superposition and interference effects
- This is weaker (and more subtle) than classical parallelism, but much faster than classical computers for some computational problems
- ▶ I tried to survey the state of the art in quantum algorithms that might be useful for problems in high-energy physics and/or gravitational waves

- Quantum algorithms work by combining superposition and interference effects
- This is weaker (and more subtle) than classical parallelism, but much faster than classical computers for some computational problems
- ► I tried to survey the state of the art in quantum algorithms that might be useful for problems in high-energy physics and/or gravitational waves:
 - 1. Extracting periodicity using the quantum Fourier transform
 - 2. Searching through large spaces
 - 3. Faster optimization
 - 4. Simulating quantum systems