<u>Neutrino physics</u> Lecture 3: Astrophysical neutrinos

Astrophysical neutrino sources

Supernova neutrinos collapse of Fe core of a heavy (> $8M_{\odot}$) star

Diffuse Supernova neutrinos from all core-collapse SNe throughout the Universe

Extragalactic neutrinos from cosmic accelerators (AGNs, GRBs ...?)

Solar neutrinos pp/CNO fusion chains

> **Cosmic Neutrino Background** from the Big Bang (cf. CMB)

Geoneutrinos radioactive decays of U,Th,K in Earth crust/mantle

Michael Wurm (JGU Mainz)

Energy spectrum of astrophysical v's

Michael Wurm (JGU Mainz)

Neutrino physics

LECTURE QUIZ

Question 8

Before we go off to speak about astrophysical neutrinos: What is the pre-dominant flavor of geo-neutrinos emitted in radioactive decays?

E : e

 $\mathsf{M}:\mu$

 $T:\tau$

Note down the **10th letter** of the solution word.

Observation of high-energy Cosmic Rays

[S.Böser]

- mesons/hadrons
 photons + neutrinos
- → neutrinos associated with sources of UHE protons++

Extragalatic sources of HE neutrinos

[S.Böser]

- total energy: up to 10⁴⁵ J
- Fermi acceleration: protons with energies up to 10¹⁹ eV
- Interactions with matter in/around cosmic accelarators

$$p + p \to \pi, K, \dots$$

$$\downarrow \pi \to \mu + \nu_{\mu}$$

$$\downarrow \mu \to e + \nu_e + \nu_{\mu}$$

Expected signal of HE neutrinos

- atmospheric neutrinos cover signal at low energies → energy range >100TeV
- fluxes are very low: detector size of km³
- **neutrino flavors** depend on production process \rightarrow flavor sensitivity

Neutrino telescopes

Neutrino interactions

- v_{μ} charged-current interactions \rightarrow long muon track
- all others
 - \rightarrow particle cascades

huge arrays of photo sensors in natural water/ice

U

[S.Böser]

- ANTARES \rightarrow KM3Net
- Baikal

γ

IceCube

Icecube Neutrino Telescope

[S.Böser]

IceCube

- Iocated at geographical South Pole
- Depth: 1450m ↔ 2450m
- Distance: \$17m : ↔125m
 - Energy threshold ~100 GeV

IceCube DeepCore

- Distance: ^{\$}6m : ↔25-40m
 - Energy threshold ~10GeV

Digital Optical Modules (DOMs)5160 10" PMTs on 85 strings

IceCube Event Displays

Signal and Backgrounds

Astrophysical neutrinos

- from sources of cosmic rays
- about 10 per year

Atmospheric neutrinos

- secondary production from interactions of cosmic rays in the atmopshere
- about 150 per day

Atmospheric ("cosmic") muons

- created with atmospheric neutrinos
- very high rate, but only from above

\rightarrow signature: upward-going tracks at highest energies

IceCube result on Diffuse Flux

\rightarrow first detection in 2014, now well established signal

Neutrino physics

Search for point sources

Search for point sources

Largest excess:

- post-trial significance is 2.9σ
- close to active galaxy NGC 1068

IceCube-170922A

time series

IceCube observation

- single v_{μ} with 290 TeV
- at these energies, 56.5% of v's are of cosmic origin
- reconstructed direction: gamma-ray blazar TXS 0506+056
- some earlier low-energy neutrinos from the same source

Gamma-ray observations

 Fermi & MAGIC reported flares from the same source

 \rightarrow statistical correlation: >3 σ

v's from neutron star merger GW170817?

Michael Wurm (JGU Mainz)

NS-NS merger/Kilonova

- gravitational wave signal
- Gamma Ray Burst
- follow-up observations in all wavelengths
- but: no neutrino signal observed

predicted signal & neutrino sensitivities

LECTURE QUIZ

Question 9

What is the signature of electron neutrino interactions in IceCube?

- M : track-like
- N : shower-like
- O: double-bang

Note down the **6th letter** of the solution word.

Energy spectrum of astrophysical v's

Core-collapse Supernovae

Core-collapse Supernovae

Stalled explosion model

[Janka]

Supernova neutrino emission

SN1987A

Large Magellanic Cloud Distance: 50 kpc Sanduleak -69° 202a

Detected neutrino signal

Michael Wurm (JGU Mainz)

Neutrino physics

SN neutrino signal today

- 10+ large neutrino detectors will detect 10,000s of events
- provide neutrino energy and flavor resolution
- accurate timing of signal start and pointing capability (triangulation)

\rightarrow SNEWS: Supernova Neutrino Early Warning System

SN neutrino signal tomorrow

[Scholberg]

Hyper-Kamiokande 260 kton water Japan

DUNE 40 kton argon USA

JUNO 20 kton scintillator (hydrocarbon) China

SN neutrino signal tomorrow

[Scholberg]

large-scale detectors with different flavor sensitivities provide detailed picture:

Gravitational waves from ccSNe

asymmetric movements of stellar matter in collapse produce GWs

Neutrino physics

[B.Müller]

Expected phases for GW signal

[B.Müller]

GW generation expected during initial bounce and accretion phase

SASI shows as well in neutrino signal!

[B.Müller]

sloshing motion of SN envelope influences neutrino production and propagation:

\rightarrow time correlation with GWs

Michael Wurm (JGU Mainz)

Correlations in the v+GW signals

[D.Maksimovic]

spectrograms of GW and neutrino data show similar features (in simulations):

- time-stable modulation bands caused by SASI during the accretion phase
- GW feature modulations at double frequencies compared to neutrinos
- relative amplitudes depend on orientation of SASI, equation of state of the proto neutron star etc. → resolve degenerate information about the collapse

Michael Wurm (JGU Mainz)

Neutrino physics

LECTURE QUIZ

Question 10

What is the predominant mode of neutrino production in core-collapse Supernovae?

- U : neutronization
- V : mass accretion
- W : pair production

Note down the **second letter** of the solution word.

Diffuse Supernova Neutrinos

Neutrino physics

Why is the DSNB interesting?

- → discovery of the only "permanent" SN neutrino signal
- \rightarrow signal normalization
 - redshift-dependent SN rate
 - fraction of hidden/failed Sne

\rightarrow spectral shape

- large variability in PNS temperatures expected
 → average SN neutrino spectrum
- astrophysical parameters, e.g. neutron star equation of state

Expected DSNB Signal

uncertainties shown here:

- fraction of failed SN
- mass limit of neutron stars
- spectral shape of black-hole forming SN
- normalization of Star Formation Rate

- DSNB flux predictions feature large intrinsic uncertainties
- predictions by many different groups
 - ightarrow no substantial differences on flux/spectral shape

Detectors for DSNB search

Neutrino physics
Detecting the DSNB $\bar{\nu}_e$ component

- DSNB flux: ~10² /cm²s
- equipartition between v flavors
- best possibility for detection in water and liquid scintillator (LS)

 $\bar{\nu}_e$ via **inverse beta decay** on free protons (H)

expected event rate:
 1-2 events per 10 kt·yrs

main detector requirements:

- large target mass
- ultra-low background

37

Current experimental results

Important improvement: Neutron tag

→ n-detection inherent to liquid scintillators but hard to achieve in pure water

Detectors with enhanced neutron tagging

add low concentration of gadolinium (10⁻³)

enhanced neutron tag by gamma cascade

(τ ~30µs, 4-5 gammas with $\Sigma E_{\gamma} \approx 8 MeV$)

- detection efficiency: 65-80%
- \rightarrow running since fall 2020!

JUNO

- liquid scintillator: high light yield & low detection threshold
- Iarge signal by n capture on H
- detection efficiency close to 100%
- \rightarrow will start in 2023

→ successfully removes all single-event backgrounds – **but**: there are correlated BGs ...

Michael Wurm (JGU Mainz)

First observation of DSNB within 10 years?

SK-Gd started data taking in 2020, JUNO will follow soon \rightarrow projected DSNB sensitivity?

- after 10 years, sensitivity of individual experiments at 3σ level
- combined sensitivity will reach 5σ level for a positive DSNB detection
- many caveats: DSNB (and BG) rate uncertainty, systematic effects
- but as well synergies: complementary measurements of atm. NC BG in water/scintillator will improve understanding of this background

LECTURE QUIZ

Question 11

How many Diffuse Supernova Neutrinos cross your thumb nail in one second?

A:100

B:1,000

C: 10,000

Note down the **third letter** of the solution word.

Energy spectrum of astrophysical v's

Open questions for solar v's after SNO results

SNO measurements only above 5 MeV (later 3.5 MeV) \rightarrow ⁸B neutrinos only

\rightarrow Neutrino astronomy

- spectroscopy of neutrinos et low energies to obtain pp reaction rates \rightarrow precision test of the SSM
- first detection of CNO neutrinos \rightarrow CNO cycle in Sun/stars?

\rightarrow Neutrino particle physics

measuring the energy dependence of solar v oscillation probabilities \rightarrow influence of matter effects

Overview of the solar pp-chain

Michael Wurm (JGU Mainz)

The catalyst CNO cycle

Standard Solar Model (SSM)

Description of the Sun

- Stellar structure equations \rightarrow p, T, ρ as function of R
- Thermodynamics: Equation of state of solar plasma
- Nuclear physics: Cross-sections of fusion reactions
- Elemental abundances: opacity of solar matter
- Observations: surface, age of the Sun
- → structure equations are solved by numeric iteration
- → precise prediction of fusion rates and thus neutrino production rates

convection

Gravitation

5770K

Gas pressure

15Mio.K

Michael Wurm (JGU Mainz)

CERI

Laboratory

Borexino

XENON

DarkSide

HALL

ICARUS

Gran Sasso National

Laboratory

5 4 " COM (100

THE A, B AND C OF GRAN SASSO

Rome

Adriatic

coast

Experiments at the Gran Sasso National Laboratory are housed in and around three huge halls carved deep inside the mountain, where they are shielded from cosmic rays by 1,400 metres of rock.

CRESS

CUORE

OPERA

LVD

GERDA

DAMA

Borexino Detector Height/Diameter: 18m Target: Scintillator Target mass: 270t .ight sensors: 2200 8"-PMTs

Aichael Wurm (IGLLMain

CERI

Laboratory

Borexino

XENON

DarkSide

HALL

ICARUS

Gran Sasso National

Laboratory

3 4 " CON 16.0

THE A, B AND C OF GRAN SASSO

Rome

Adriatic

coast

Experiments at the Gran Sasso National Laboratory are housed in and around three huge halls carved deep inside the mountain, where they are shielded from cosmic rays by 1,400 metres of rock.

CRESS

CUORE

OPERA

LVD

GERDA

DAMA

Borexino Detector Height/Diameter: 18m Target: Scintillator Target mass: 270t .ight sensors: 2200 8"-PMTs

Michael Wurm (JGU Main

Inside Borexino

Inside Borexino

Inside Borexino

Neutrino detection in liquid scintillator

- much greater light yield than Cherenkov effect (x50)
 → better energy resolution
- efficient purification methods for radioactive contaminants: 10⁻¹⁸ g/g uranium/thorium in LS
 → low energy threshold (pp neutrinos!)
- transparent and cheap \rightarrow large-scale detectors
- energy resolution based on number of detected photons: isotropic emission: ~10⁴/MeV detected: Borexino ~500 pe/MeV JUNO ~1300 pe/MeV
- vertex reco via photon time-of-flight
- but: no (?) directional resolution

Electron recoil signal in Borexino

Background reduction

Fit of residual energy spectrum

Borexino results on solar neutrinos

- 2007-2014: v rate measurements of (almost) all branches of pp-chain
- → confirmation of SSM and vacuum/matter oscillations
- 2020: first measurement of neutrinos from solar CNO cycle

\rightarrow can be related to C,N abundances:

Michael Wurm (JGU Mainz)

Directional detection of solar neutrinos

Michael Wurm (JGO Mainz)

Summary of Lecture 3

Neutrinos are unique messengers of astrophysical phenomena

- Different sources (energies, distances, fluxes) require different detection strategies
 - Low energies: Cherenkov, scintillator, liquid argon
 - High energies: large natural water volumes
- Most neutrino experiments are multi-purpose machines,
 i.e. can study astrophysical sources and v properties
- Multimessenger observations with optical telescopes, gamma-rays, GWs are still in an early phase

 \rightarrow (hopefully) many discoveries to come!

LECTURE QUIZ

And the solution word is ...

Thanks for your attention!

Which of the following would be brighter, in terms of the amount of energy delivered to your retina:

- 1. A supernova, seen from as far away as the Sun is from the Earth, or
- 2. The detonation of a hydrogen bomb pressed against your eyeball?

Applying the physicist rule of thumb suggests that the supernova is brighter. And indeed, it is ... by *nine orders of magnitude*.

Backup

In conflict: Cosmology

Cosmological constraints on light steriles

Planck, 1502.01589

- Cosmological observations able to place stringent bounds on the number N_{eff} and mass sum Σm_ν of light (i.e. thermalizing) sterile neutrinos
- Most important observables
 - Cosmic Microwave Background
 - Big Bang Nucleosynthesis
 - Large-scale structure
- Bounds from PLANCK (+BAO):
 - $N_{\rm eff} = 2.99 \pm 0.20$
 - $\Box \quad \Sigma m_{\nu} < 0.49 \text{ (0.17) eV (95\% C.L.)}$
- These limits <u>can be avoided</u> by introducing additional physics, e.g. sterile neutrino self-interactions Dasgupta, Kopp [arXiv:1310.6337]

\rightarrow still, accommodating sterile v's needs tuning ...

Testing the short-baseline anomalies

Expected sensitivity

Sebastian Böser

Expected sensitivity

ORCA: δ_{CP} =0, after 3 years

JUNO Underground Laboratory

JUNO Sensitivity

10 ΔT : 1% $\Delta m_{\mu\mu}^2$ prior 50% vs. 50% \vdash $\overline{\Delta T}$: no prior \triangleleft 1.1% vs. 98.9% 68% of exp. JUNO - 3.7×10⁻⁶ vs. 1 95% of exp. JUNO 5 0 $\overline{\Delta T} \approx \Delta \chi^2_{\rm MH}$ 2 6 8 0 4 10 Years

JUNO's expected sensitivity level

(assuming 3% energy resolution)

- JUNO alone based on 6 years: ~3σ
- + precise data by T2K/NOvA on $\Delta m^2_{\mu\mu}$: 4 σ

*central factors:*E resolution: 3% at 1MeV
statistics: 100,000 ev

Factors	Δχ²
Statistics only	+16
different core distances	-3
reactor background	-1.7
spectral shape	-1
S/B ratio (rate)	-0.6
S/B ratio (shape)	-0.1
information on $\Delta m^2_{\ \mu\mu}$	+8

JUNO Yellow Book

Daya Bay Near Detector spectrum

- Short-baseline θ₁₃ experiments observe a deviation from spectral prediction: "5 MeV bump"
- unknown feature in reactor neutrino spectrum?
- detector calibration issue?

Sterile neutrinos
New doubts on understanding of sources ^{2/2}

Sterile neutrinos

- Daya Bay: dependence of antineutrino reaction rates on reactorburn up shows discrepancy for ²³⁵U energy-integrated v cross-section
- energy-resolved data is inconclusive

Gallium anomaly

Radioactive v_e sources inserted in solar radiochemical detectors.

Idea: Test detection efficiency, cross sections etc. for solar v's.

 $\nu_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^-$

Exp	Source	Ratio (Exp/Th)*
Gallex	⁵¹ Cr	0.95 ± 0.11
	⁵¹ Cr	0.81 +0.10 -0.11
SAGE	⁵¹ Cr	0.95 ± 0.12
	²⁷ Ar	0.79 ± 0.08
total		0.86 ± 0.05

→ compared to prediction,
 14% rate deficit observed (2.8σ)

^{*} cross-sections as calculated by Bahcall

Reactor antineutrino spectrum

- Four relevant fission elements
 - o²³⁵U,²³⁸U,²³⁹Pu,²⁴¹Pu
 - o variable with fuel burn-up
- Effective spectrum from overlaying
 β-spectra of many fission products
- v-spectra from spectral inversion of β-decay electron spectra
 - BILL measurements at ILL commonly used reference [arXiv:1405.3501]
- ab-initio calculations of neutrino spectrum very challenging fission yields → decay chains → spectra

revision of ILL spectral conversion: 90% ab initio + 10% virtual branches

2011: new spectrum by Mueller et al.

other factors (weak magnetism, τ_{neutron})

\rightarrow v spectrum shifts to higher energies

 \rightarrow increase of expected rates by ~5% for all reactor neutrino experiments

Re-evaluation of reactor spectrum

10

Reactor antineutrino anomaly

→ average rate of short-baseline (<1km) reactor neutrino experiments shows 6% deficit compared to expectation!

 \rightarrow significance: ~3 σ

Rate deficit → Sterile v oscillations?

Lasserre

→ possible interpretation in terms of very short-baseline neutrino oscillations:

$$P = 1 - \sin^2(2\theta_{new})\sin^2\left(\frac{\Delta m_{new}^2 L}{4E}\right)$$

→ if so, new Δm^2 value on the order of $1eV^2$ → if so, new flavor state must be sterile

Mixing of (3+1) neutrinos U_{13} U_{12} U_{14} U_{11} ν_1 ν_e $\begin{array}{cccc} U_{21} & U_{22} & U_{23} \\ U_{31} & U_{32} & U_{33} \end{array}$ U_{24} ν_{μ} $\mathcal{V}_{\mathcal{I}}$ U_{34} v_3 ν_{τ} U_{42} U_{43} \overline{U}_{41} U_{44} \mathcal{V}_{S} ν_4

Short-baseline reactor experiments

e.g. STEREO @ ILL Grenoble

- detector placed close (10m) to compact reactor core (0.8m)
- segmented detector
- → $\overline{\nu}_{e}$ disappearance from relative spectral deformation
- high background levels

Many other projects

- liquid scintillators: NUCIFER (FR) Neutrino-4 (RU)
- strips/cubes: DANSS (RU)
 PROSPECT (US)
 SOLID (NL)

Michael Wurm (JGU Mainz)

Sterile neutrino search in β-decay

- decay into different mass eigenstates could be distinguished by endpoint measurement
- resolution not sufficient for active v's: $\Delta m_{31} < 50 \text{meV}$

sensitivity to sterile neutrinos

- light steriles: m(v₄) > 1eV large mixing (15%) with v_e!
 - ightarrow spectral deformation close to endpoint
- medium steriles: $m(v_4)$ of O(keV)
 - \rightarrow much larger statistics
 - \rightarrow sensitivity for admixtures $10^{-5} 10^{-6}$

eV-scale sterile neutrino sensitivity of KATRIN

- "Reactor antineutrino anomaly": $|\Delta m_{\rm s}^2| > 1.5 \text{ eV}^2$, $\sin^2(2\theta_{\rm s}) = 0.14 \pm 0.08$ (95% CL)
 - Reactor anomaly (90% CL) G. Mention et al., PRD 83 (2011) 073006 100 10 Δm_s^2 (eV²) M. Kleesiek, PhD thesis, 2014 **KATRIN** exclusion (3 net years, 90% CL) 1 0.1 0.01 0.1 $\sin^2 2\theta$ gaseous tritium source transport section spectrometer main spectrometer
- · Favoured parameter space can be probed by KATRIN:

detector