Gravitational waves
Lecture 1: Introduction
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Einstein’s theory of gravity

» 1915: Albert Einstein proposes
the general theory of relativity

» Gravity as curvature of spacetime

» Einstein field equations:
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= (), the Einstein tensor, which

encodes spacetime geometry
= T, the energy-momentum tensor,

S MR e e which gives the flow of matter and
2 SN S e energy

e e e “Matter tells spacetime how to curve,

S Lt b L spacetime tells matter how to move”




Einstein’s theory of gravity

» More compact objects cause larger spacetime curvature
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White dwarf Neutron star Black hole
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Gravitational waves




Gravitational waves
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Laser interferometers

Looking For Gravitational Waves




LIGO Livingston, LA LIGO Hanford, WA

GEO600, Hannover, Germany — Kagra, Kamioka, Hida, Japan




Detectable astrophysical sources

Merging neutron stars, black holes Fast-spinning neutron stars

Quasi-circular Plunge Ringdown
inspiral and merger
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Black hole
Post-Newtonian Numerical perturbation
techniques relativity methods
Supernovae Primordial gravitational waves




The coalescence of compact objects

Quasi-circular Plunge Ringdown
inspiral and merger
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Gravitational wave detections are now routine!

Masses In the Stellar Graveyard
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LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

» 90 detections so far
=  Majority are from binary black holes, but also binary neutron stars and

mixed neutron star-black hole mergers




Future gravitational wave detectors

» 2034: Laser Interferometer Space
Antenna (LISA)

= 3 probes in orbit around the Sun,
~1 million kilometers between them

= Mergers of supermassive black holes

» ~2035: Einstein Telescope
(and in USA: Cosmic Explorer)

= ((10°) detections per year
= Covers the entire visible Universe

=  Might be built in the border region of
Belgium, the Netherlands, Germany!




Questions answered in these lectures

» What are the dynamics of spacetime?
» What are gravitational waves?

» What do gravitational waves from binary neutron stars and
black holes look like?

» How are gravitational waves detected?

» What kind of science do gravitational waves enable?



Relativity revisited



Galilean transformations

» Consider two inertial reference frames moving with respect to each other at

constant velocity v : >
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> If time flows at the same rate in the two frames: ' = ¢

» If origins coincidedat ¢ =t =0 ¥ = x—vt
/ — y
» Velocities of particles: J
U =1U—0vé, o = 5
» Accelerations of particles: v
—/ —

a=a




Special relativity

» Einstein (1905) formulates the special theory of relativity

=  Something strange about Maxwell’s laws of electromagnetism:
Don’t remain unchanged under Galilean transformations!

= Measurement by Michelson and Morley (1887):
Speed of light seemed the same in different inertial frames

» Postulates of special relativity:

= The equations describing the basic laws of physics are the
same in all inertial frames of reference

= The speed of light in vacuum has the same value in all inertial
frames of reference



Special relativity

» Consider two inertial reference frames moving with respect to each other at

constant velocity v : >
4
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> Let a pulse of light be emitted at ¢ =¢ =0, spreading out at the speed of light

» Point on the wavefront at a later time ¢ > 0 in the unprimed frame:
@2 2 4+ y2 4+ 2

» Point on the wavefront at corresponding time ¢’ in the primed frame:

@t/2 _ 513/2 + y/2 + Z/2



Special relativity

» Point on the wavefront at a later time ¢ > 0 in the unprimed frame:
CtP=a"+y 42

» Point on the wavefront at corresponding time # in the primed frame:
C2t/2 _ QZ'/2 i y/2 i 2/2

» These expressions are not consistent with Galilean transformations!

» However, they are consistent with Lorentz transformations:

= v (x—vt)

y =y 1

where =
/ ! V1—1v2/c?

< = Z

t =y (t— vx/&) “Lorentz factor” Exercise




The metric
» For light:
A = Ax® + Ay? + AZ?
AAt? = Ax? 4+ Ay? + A2
so that
0= —2At* + Az? + Ay? + Az? = —PA? + A2 + Ay + A2
» Easy to show that for any At, Az, Ay, Az
—PAL + A2 + Ay + A% = —AA? + Ar? + Ay'? + AZ? Exercise
(though in general not zero)
» Notion of spacetime distance:
(As)? = = At + Ax® + Ay® + AZ?
or in infinitesimal form:
ds® = —c2dt* + dx* + dy* + d2*

Since this expression defines distances in spacetime, is called the metric



The metric

» Metric to compute spacetime distances:

ds® = —cAdt* + dx* + dy?® + dz*

> Notation that will be convenient later:

(2°, 2, 2%, 2°) = (ct, x,y, 2)

so that the metric becomes
ds* = —(dz®)? + (dot)? + (dz?)? + (dz*)?

» Can be written in terms of a metric tensor 7)., :
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Metric tensor

> Metric

> Einstein summation convention:

Whenever an index appears twice in the same term, once
“up” and once “down”, it should be considered summed over.

... hence

ds® = 1, dz* dz”

where the object 7, is called the metric tensor



The inverse of the metric tensor

» Metric tensor 7,

where
o Noo=—1, mu=1 nn=1,
* =0 when p#v

> Inverse of the metric tensor:

n'-n=1
Using index notation:

nﬂp Moy = 5MV

where
) 6:“’1/ — ]_ When M =1
« 0¥, =0 when pu#v

N33 = 1
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Tensors in general

» Nuv, n*,dzt, §*, are examples of tensors
A tensor is a collection of numbers called components, labeled by indices,

where an index is placed either “up” or “down”
= Tensors can have more than two indices, e.g. TH"°

» “Up” or “down” placement of indices matters!

New tensors will be defined by lowering or raising indices with the metric
tensor or its inverse

= Example: from a tensor A* we can define a new tensor A,, through

A, =14 A°
and from a tensor B, we can define a new tensor B* through
B* = n"* B,

= Similarly for more general tensor T*"7:

Nyor Tovp — Tu vp

" Note: a tensor like C*" is usually not the inverse of C,,,
This is only the case for the metric tensor!



Tensors in general

» A* and A, = n,, A* don’t have the same components! For example,

Ay = 1o A% = 1o A® = —A°  (although A; = m, A = A, and similarly A, , As3)

» The names of dummy indices don’t matter! For example,

ds® = Ny dz"dx” = 1p dz®dx’ n"* By = n"° Bg

» Tensors can be added component by component:

Cluup — D“Vp i EMVP

= Need to have the same free indices appearing “up” and “down” in every term!

» Free indices can be renamed, if done consistently in every term:

C.””=D.""+ E."" isthe same set of equations as above

» Greek indices u,v,p,...=0,1,2,3

When we want to refer only to spatial components: Latin indices ¢,j,%,... = 1,2,3



From special to general relativity

» Physical spacetime distance in special relativity:

ds® = Nuwdx"dz”

» Physical spacetime distance in general relativity:

ds® = Guvdxtdz”

=  Metric tensor is symmetric:
9uv = Gup
= |nverse metric denoted ¢"", so that
gﬂpgpy — 5MV
= |ndices lowered and raised with metric and its inverse; for example

Au — g,uozAa B" = g'uaBa T,u = g,LLaTOWp



From special to general relativity

» We have seen that the proper distance in special relativity is preserved under
Lorentz transformations

0 = 52— (v/e)a")

2V = y(=(/e)z® + 2! 1
Y=oy + ) where 1= —1_
2% = 22 - %
C
x/?, ::U3

» General relativity allows for (almost)® any coordinate transformations:

20 = 220,21, 22, 2°)
2 = (20,2t 22, 2P)
22 = 2?(2° 2", 22, 2?)
o3 = 2820, 2", 22, 2®)

or more compactly z'* = z’#(z), where x is shorthand for (2°,z', 2% x°)

» This is the same as saying that proper distance is preserved under general
coordinate transformations:

ds® = g, dat da” = g5 da’ dz'”

* We do require z'#(z) to be invertible, so that we can express SU“(ZU') , and also that it be differentiable.



General coordinate transformations

» In general relativity, proper distance is preserved under any coordinate
transformations:

ds® = g, da da¥ = g,z da’® dz'?

» This tells us how the components of g, change under coordinate
transformations!

=  From the chain rule:

Ot 0 Ot 1 Oz 12 Oz 13 Oz lo

drt = (9:6’0de + B dz' + amlzdx + 8:1:’3d =57

v dx” 0 dx” /1 dx” 12 dz” 3 __ dx” 13
dx dx’odx + da:’ldx + deda: + dg:’3dx dx’ﬁdx

= Therefore
axﬂ 5’x d /ozd /B . /ad 16
ax/a 855/6 g,uy v v v
ox* Ox”

= From this we read off: Jop =

ox'e Ox'P I




The light cone

» In special relativity, the metric is

ds? = —c?dt? + do? + dy?® + d2*

= For particles moving slower than speed of light:
dx? + dy? + d2* < Adt?
so that
ds® < 0
= For photons:
ds® =0
= For hypothetical particles moving faster than
speed of light:
ds®> >0

Timelike: dsZ: 0

Lightlike: ds2=0

. . like: ds2 >
» This leads to concept of light cone e

= Distinction between timelike, lightlike,
spacelike is independent of coordinate system

= Concept carries over to general relativity, with

ds® = g, dz" dx”




Physical spacetime distances

> The metric is

ds® = G dzt dx”

which has dimensions (length)?

» +/|ds?| is the physical distance between points 4&»
separated by coordinate vector dx* dz*

= For spacelike separations, this has the familiar meaning of distance

=  \What does “distance” mean in a timelike direction?
Write

V |ds?| = cdr

The quantity d7 is the proper time elapsed

according to an observer who moves by dz*



Timelike curves

» Consider particle moving on a timelike path z#()\) parameterized by A

» Proper time d7 elapsed over a short parameter interval d\ : A
dx* dxV
cdr = \/|ds?| = \/—gudzrdr” = \/—g,w% d:i\ d\ e{y

» Proper time A7sp elapsed between points A and B: A

o [P O ez o R
cATAB:/ |ds?| :/ \/—gﬂ,,d:c/id:cV:/ \/—gw,(x) )\
A A Aa

A\ d)

» One can parameterize the curve using proper time: A =71

dz# dz” dz+ dzv dz# dx” 5

o .
dr*

= VH= di is the tangent vector to the curve called four-velocity
T

dz# dz” 5

] _ 1 . | — - - - _
Norm of the four-velocity vector: V,V¥* = g,, - c



Timelike geodesics

» Proper time elapsed in traveling from A to B:

A daxt dx’/
CATAB = Iy @

» A geodesic is a path which minimizes Arag

This is the path of a particle in free fall

» Can be found by extremalizing the “action”

B
sz/ L(z", &) dX

A

with “Lagrangian” L(z* i) = \/—gW(:(;)j:“ji”

where dots denote derivatives w.r.t. )\

» This leads to the geodesic equation in terms of proper time 7 :

Az n Fﬁyﬁ dx”
dr? MY dr dr

=0

where

1 o
ng = 596 (augoa/ + az/ga,u -

aag/W)

with the notation 9, =

0

Dk



Timelike geodesics

» Geodesic equation, which describes the motion of free-falling particles:

d?aP dxt dz”
[ p————
dr? o dr dr

1 0
B _ Ba ; -
Where PMV — 59 (a,ugoa/ + ayga,u - aoég/ﬂ/) ) Wlth a - ax,u

> For flat metric, g, = 7., all derivatives zero, d,g,, = 0, hence Fﬁ,, =0

d2 P

dT?

=0

Thus, in flat spacetime the timelike geodesics are straight lines!

» General metric depends on spacetime: gw(:c)
= Dramatic example: spacetime of a black hole
= “Tilting” of light cones prevents any timelike curve from being straight line



Timelike curves near a black hole

Horizon
ke
//
» At horizon: future lightcone
y tangent to horizon
» The horizon lies along a lightlike
/ direction
= Will be the case in any
\ / Black hole coordinate system!
. ,’ = No escape once inside
\
|
Ny
@



The right hand side of the Einstein equations

» Einstein field equations:

8
G’u,/ — 7TNV

= Left hand side: curvature of spacetime, given by the metric g,,
= Right hand side: energy-momentum tensor

» Meaning of the energy-momentum tensor? Z”ef_gty (momentum density) x
ensity

/Too 70z 0y Toz\
TxO TxT Iy Tz
TYO|\| vz TYyy Tyz

stress tensor

T =

> Notation: 7%, 7% 7Tu

where Latin indices denote spatial components: 4,5,k =1,2,3



The energy-momentum tensor

» Assume a matter distribution with density p

= T =pc? isthe energy density
= T%/c=pv’isthe momentum density in the ith direction

= T jsthe ith component of force per unit area across surface with normal
in the direction j

7 » Consider volume element dxdydz
= T%% js the x-component of force per unit area
volume on the yz face
element = pressure on yz face:
dy - dydz  dydz  dtdydz
= Momentum dp* = dmv* = pdxdydz v*
dz >y " Hence . _ pdxd/gg%
- didyd
& d:L’
X _ 0T . 2
‘\\ poy vt =p )
= More generally
yz face

T = pov'’



Energy-momentum conservation

In flat spacetime:

0,T" =0

Forv=0: 9,7 4+ 9,T° = 0

Define
= =T energy density
» ©=T"/c  momentum density
: 0 0
Since 9 = 320 — oot and 9" = 8_a:7T =V -m ,one has
Oe
— =-V-7wc
ot n
Note that that 7 ¢? is energy flux! For example, in the x direction: S
dm }MQ d(m c?)

T 2 x 2 —
TP T dydz dt© T didydz
Integrate both sides over volume bounded by a closed surface:

%d‘/— /V-ﬂ'CQdV — dE:—/ﬁ-ﬂ'c2dA
y Ot Y, dt S

Conservation of energy



Summary

> In general relativity, physical spacetime distances are given by a metric tensor g,,.:

ds* = g, dz* dx”

= The metric and its inverse are used to lower and raise indices on other tensors

" |n going to a different coordinate system, the metric tensor transforms as

,  Oxt Jz"
Jop = 5 ra ggrs I

> The light cone: surface defined by ds* = 0
= Paths of massive particles must stay within this cone

» Particles in free fall move on geodesics

d? 2P dx? dx”
+T0 —— =0
dT? MY dr dr

Timelike: ds2< 0

Lightlike: ds2=0
Spacelike: ds2> 0

1 «
where Pﬁy — 595 (augoa/ + al/ga,u - aozguy)

» The energy-momentum tensor 1"
= Energy density, momentum density, the stresses inside a mass distribution



