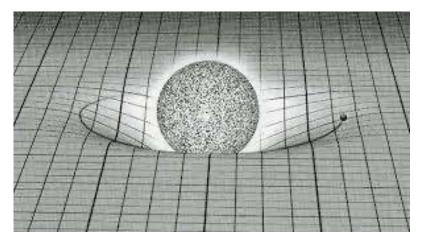


Gravitational waves Lecture 1: Introduction

Chris Van Den Broeck

c.f.f.vandenbroeck@uu.nl

Einstein's theory of gravity



- ➤ 1915: Albert Einstein proposes the general theory of relativity
- Gravity as curvature of spacetime
- Einstein field equations:

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

- $G_{\mu\nu}$ the Einstein tensor, which encodes spacetime geometry
- $T_{\mu\nu}$ the energy-momentum tensor, which gives the flow of matter and energy

"Matter tells spacetime how to curve, spacetime tells matter how to move"

Einstein's theory of gravity

> More compact objects cause larger spacetime curvature

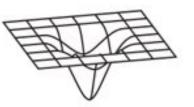
$$R \sim 7 \times 10^3 \, \mathrm{km}$$

$$R \sim 10 \, \mathrm{km}$$

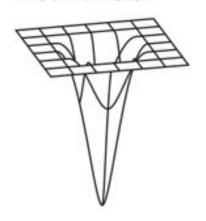
$$R = \frac{2GM}{c^2}$$

Sun

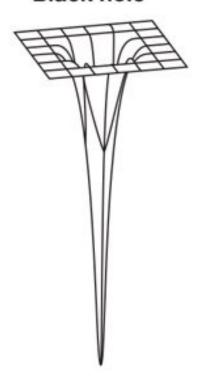
White dwarf



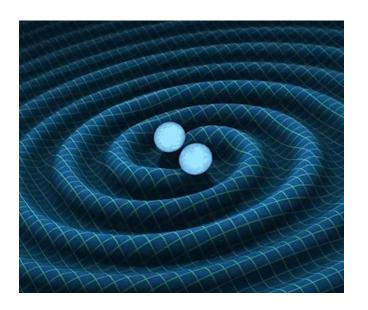
Neutron star

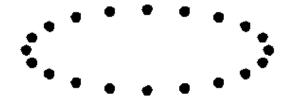


Black hole

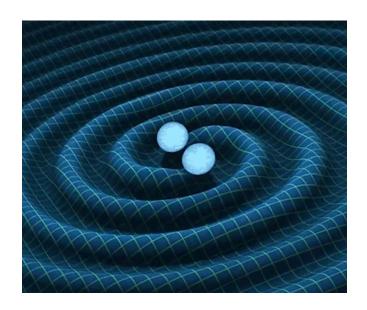


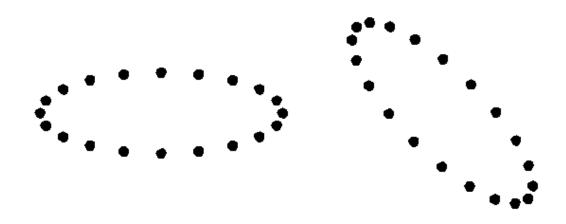
Gravitational waves



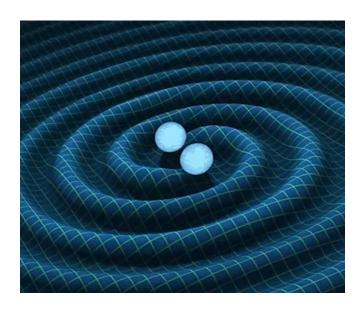


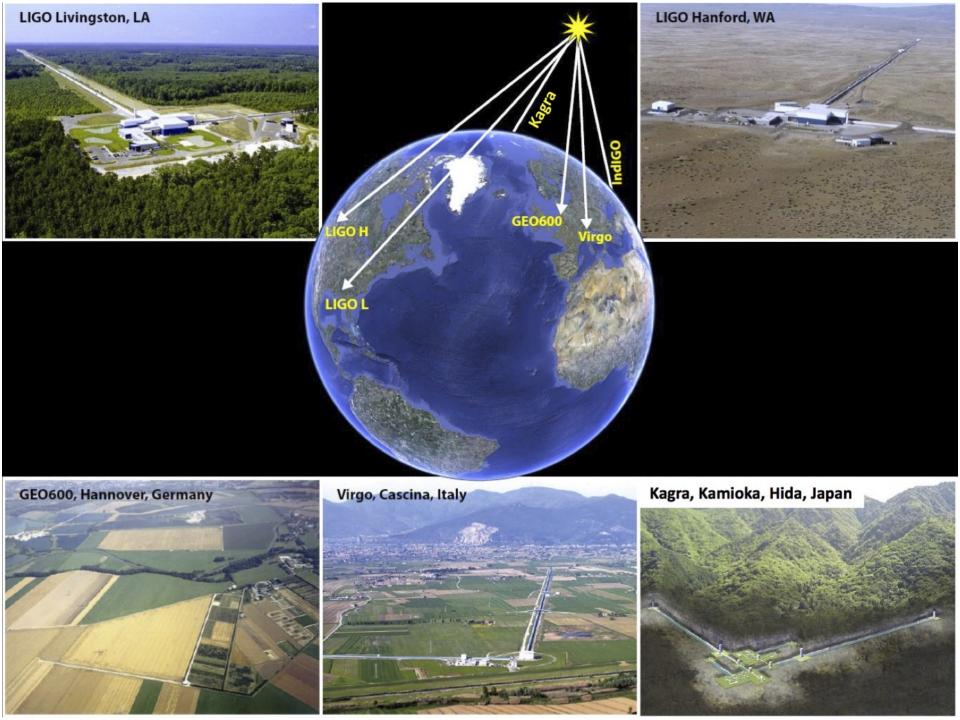
Gravitational waves





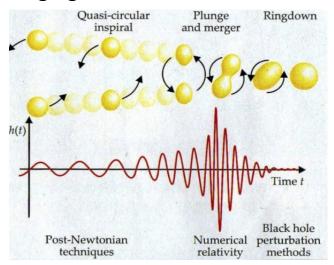
Laser interferometers



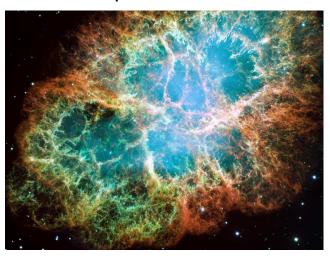


Detectable astrophysical sources

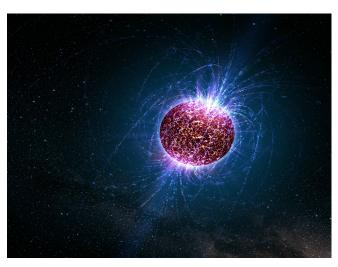
Merging neutron stars, black holes



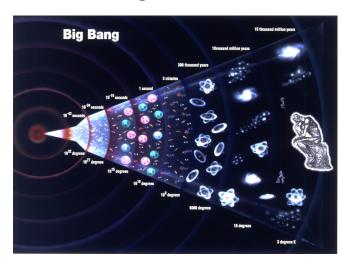
Supernovae



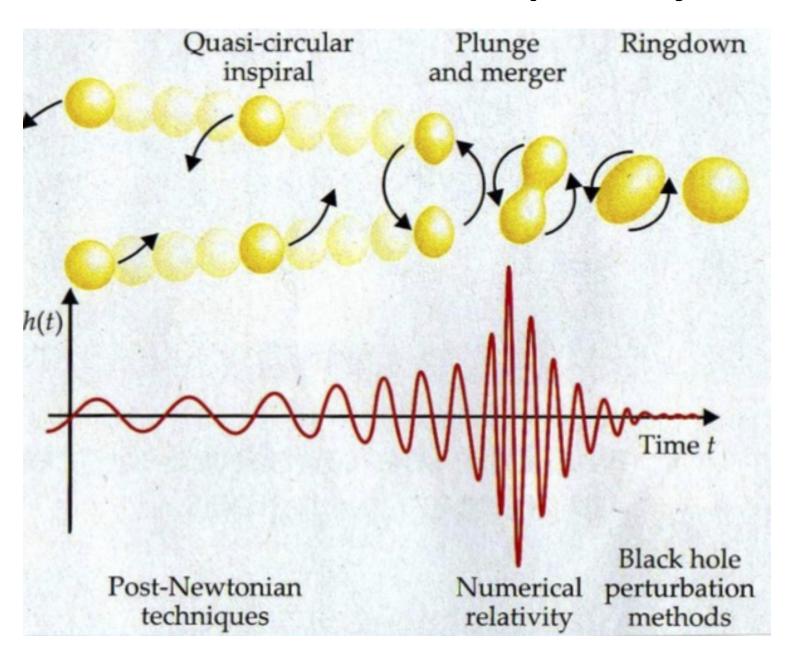
Fast-spinning neutron stars



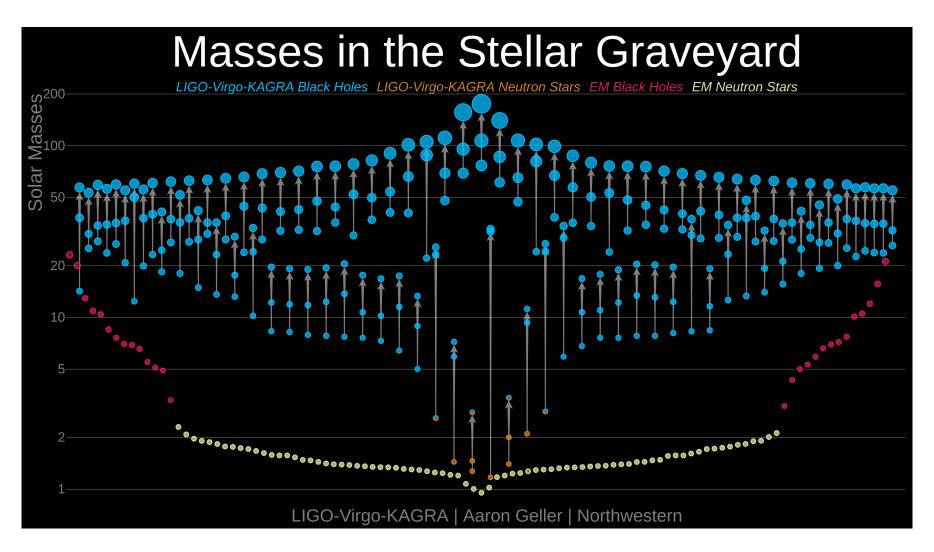
Primordial gravitational waves



The coalescence of compact objects

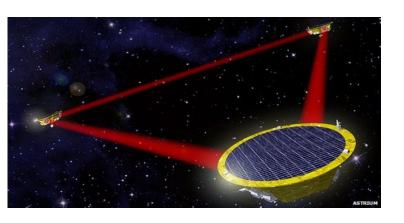


Gravitational wave detections are now routine!

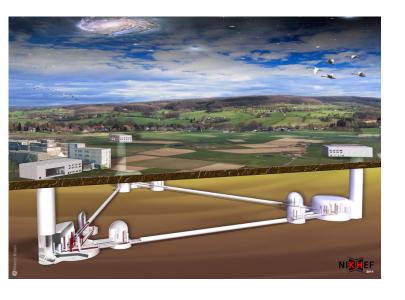


- 90 detections so far
 - Majority are from binary black holes, but also binary neutron stars and mixed neutron star-black hole mergers

Future gravitational wave detectors



- ➤ 2034: Laser Interferometer Space Antenna (LISA)
 - 3 probes in orbit around the Sun,
 ~1 million kilometers between them
 - Mergers of supermassive black holes



- ~ ~ 2035: Einstein Telescope (and in USA: Cosmic Explorer)
 - O(10⁵) detections per year
 - Covers the entire visible Universe
 - Might be built in the border region of Belgium, the Netherlands, Germany!

Questions answered in these lectures

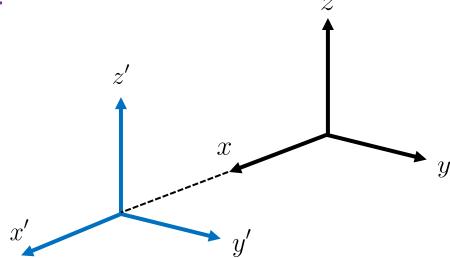
- What are the dynamics of spacetime?
- What are gravitational waves?
- What do gravitational waves from binary neutron stars and black holes look like?

- How are gravitational waves detected?
- What kind of science do gravitational waves enable?

Relativity revisited

Galilean transformations

 \blacktriangleright Consider two inertial reference frames moving with respect to each other at constant velocity v:



- ightharpoonup If time flows at the same rate in the two frames: t'=t
- \blacktriangleright If origins coincided at t'=t=0:
- Velocities of particles:

$$\vec{u}' = \vec{u} - v\,\hat{e}_x$$

Accelerations of particles:

$$\vec{a}' = \vec{a}$$

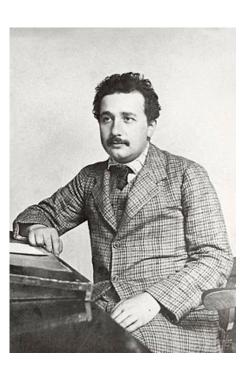
$$x' = x - vt$$

$$y' = y$$

$$z' = z$$

$$t' = t$$

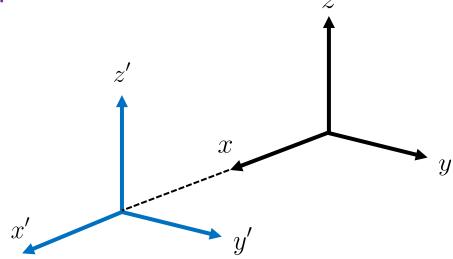
Special relativity



- Einstein (1905) formulates the special theory of relativity
 - Something strange about Maxwell's laws of electromagnetism: Don't remain unchanged under Galilean transformations!
 - Measurement by Michelson and Morley (1887):
 Speed of light seemed the same in different inertial frames
- Postulates of special relativity:
 - The equations describing the basic laws of physics are the same in all inertial frames of reference
 - The speed of light in vacuum has the same value in all inertial frames of reference

Special relativity

 \succ Consider two inertial reference frames moving with respect to each other at constant velocity v:



- ightharpoonup Let a pulse of light be emitted at $\ t'=t=0$, spreading out at the speed of light
- \triangleright Point on the wavefront at a later time t > 0 in the unprimed frame:

$$(2)^2 = x^2 + y^2 + z^2$$

 \triangleright Point on the wavefront at corresponding time t' in the primed frame:

$$c^2t'^2 = x'^2 + y'^2 + z'^2$$

Special relativity

 \triangleright Point on the wavefront at a later time t>0 in the unprimed frame:

$$c^2t^2 = x^2 + y^2 + z^2$$

 \triangleright Point on the wavefront at corresponding time t' in the primed frame:

$$c^2t'^2 = x'^2 + y'^2 + z'^2$$

These expressions are not consistent with Galilean transformations!

$$c^{2}t'^{2} = x'^{2} + y'^{2} + z'^{2}$$

$$\Rightarrow$$

$$x' = x - tt$$

$$y' = y$$

$$z' = z$$

$$t' = t$$

➤ However, they are consistent with **Lorentz transformations**:

$$x' = \gamma \left(x - vt
ight)$$
 $y' = y$ where $z' = z$ $t' = \gamma \left(t - vx/c^2
ight)$

$$\gamma = \frac{1}{\sqrt{1 - v^2/c^2}}$$

"Lorentz factor"

The metric

For light:

$$c^2 \Delta t^2 = \Delta x^2 + \Delta y^2 + \Delta z^2$$
$$c^2 \Delta t'^2 = \Delta x'^2 + \Delta y'^2 + \Delta z'^2$$

so that

$$0 = -c^{2}\Delta t^{2} + \Delta x^{2} + \Delta y^{2} + \Delta z^{2} = -c^{2}\Delta t'^{2} + \Delta x'^{2} + \Delta y'^{2} + \Delta z'^{2}$$

ightharpoonup Easy to show that for **any** Δt , Δx , Δy , Δz

$$-c^{2}\Delta t^{2} + \Delta x^{2} + \Delta y^{2} + \Delta z^{2} = -c^{2}\Delta t'^{2} + \Delta x'^{2} + \Delta y'^{2} + \Delta z'^{2}$$

Exercise

(though in general not zero)

> Notion of spacetime distance:

$$(\Delta s)^2 = -c^2 \Delta t^2 + \Delta x^2 + \Delta y^2 + \Delta z^2$$

or in infinitesimal form:

$$ds^2 = -c^2 dt^2 + dx^2 + dy^2 + dz^2$$

Since this expression defines distances in spacetime, is called the metric

The metric

Metric to compute spacetime distances:

$$ds^2 = -c^2 dt^2 + dx^2 + dy^2 + dz^2$$

Notation that will be convenient later:

$$(x^0, x^1, x^2, x^3) = (ct, x, y, z)$$

so that the metric becomes

$$ds^{2} = -(dx^{0})^{2} + (dx^{1})^{2} + (dx^{2})^{2} + (dx^{3})^{2}$$

 \succ Can be written in terms of a **metric tensor** $\eta_{\mu\nu}$:

$$ds^{2} = \sum_{\mu=0}^{3} \sum_{\nu=0}^{3} \eta_{\mu\nu} dx^{\mu} dx^{\nu}$$

$$\boldsymbol{\eta} = \begin{bmatrix} \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \mathbf{3} & 0 & 0 & 0 & 1 \end{bmatrix}$$

Metric tensor

Metric

$$ds^{2} = \sum_{\mu=0}^{3} \sum_{\nu=0}^{3} \eta_{\mu\nu} \, dx^{\mu} \, dx^{\nu}$$

> Einstein summation convention:

Whenever an index appears twice in the same term, once "up" and once "down", it should be considered summed over.

... hence

$$ds^2 = \eta_{\mu\nu} \, dx^{\mu} \, dx^{\nu}$$

where the object $\eta_{\mu\nu}$ is called the **metric tensor**

The inverse of the metric tensor

ightharpoonup Metric tensor $\eta_{\mu\nu}$

where

- $\eta_{00} = -1$, $\eta_{11} = 1$, $\eta_{22} = 1$, $\eta_{33} = 1$
- $\eta_{\mu\nu} = 0$ when $\mu \neq \nu$

$$oldsymbol{\eta} = egin{bmatrix} \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \mathbf{3} & 0 & 0 & 0 & 1 \end{pmatrix}$$

Inverse of the metric tensor:

$$oldsymbol{\eta}^{-1}\cdotoldsymbol{\eta}=\mathbf{1}$$

Using index notation:

$$\eta^{\mu\rho} \eta_{\rho\nu} = \delta^{\mu}_{\ \nu}$$

where

- $\delta^{\mu}_{\ \nu}=1$ when $\mu=\nu$
- $\delta^{\mu}_{\ \nu} = 0$ when $\mu \neq \nu$

$$\boldsymbol{\eta}^{-1} = \begin{bmatrix} \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \mathbf{3} & 0 & 0 & 0 & 1 \end{bmatrix}$$

Tensors in general

- ρ ρ ρ ρ ρ ρ ρ ρ ρ are examples of **tensors**A tensor is a collection of numbers called **components**, labeled by **indices**, where an index is placed either "up" or "down"
 - Tensors can have more than two indices, e.g. $T^{\mu\nu\rho}$
- "Up" or "down" placement of indices matters!
 New tensors will be defined by lowering or raising indices with the metric tensor or its inverse
 - Example: from a tensor A^μ we can define a new tensor A_μ through $A_\mu = \eta_{\mu\alpha}\,A^\alpha$ and from a tensor B_μ we can define a new tensor B^μ through $B^\mu = \eta^{\mu\alpha}\,B_\alpha$
 - Similarly for more general tensor $T^{\mu\nu\rho}$: $\eta_{\mu\alpha}\,T^{\alpha\nu\rho}=T_{\mu}^{\ \nu\rho}$
 - Note: a tensor like $C^{\mu\nu}$ is usually **not** the inverse of $C_{\mu\nu}$ This is only the case for the metric tensor!

Tensors in general

 $\blacktriangleright \quad A^{\mu} \ \ {
m and} \ A_{\mu} = \eta_{\mu\alpha} \, A^{\alpha} \ \ {
m don't} \ {
m have the same components!} \ {
m For example,}$

$$A_0=\eta_{0\alpha}\,A^{lpha}=\eta_{00}\,A^0=-A^0$$
 (although $A_1=\eta_{1lpha}\,A^{lpha}=A^1$, and similarly A_2 , A_3)

> The names of dummy indices don't matter! For example,

$$ds^{2} = \eta_{\mu\nu} dx^{\mu} dx^{\nu} = \eta_{\alpha\beta} dx^{\alpha} dx^{\beta} \qquad \eta^{\mu\alpha} B_{\alpha} = \eta^{\mu\beta} B_{\beta}$$

> Tensors can be added component by component:

$$C_{\mu}^{\ \nu\rho} = D_{\mu}^{\ \nu\rho} + E_{\mu}^{\ \nu\rho}$$

- Need to have the same free indices appearing "up" and "down" in every term!
- > Free indices can be renamed, if done consistently in every term:

$$C_{\kappa}^{\ \nu\rho}=D_{\kappa}^{\ \nu\rho}+E_{\kappa}^{\ \nu\rho}$$
 is the same set of equations as above

For Greek indices $\mu,\nu,\rho,...=0,1,2,3$ When we want to refer only to spatial components: Latin indices i,j,k,...=1,2,3

From special to general relativity

Physical spacetime distance in special relativity:

$$ds^2 = \eta_{\mu\nu} dx^{\mu} dx^{\nu}$$

Physical spacetime distance in general relativity:

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu$$

Metric tensor is symmetric:

$$g_{\mu\nu} = g_{\nu\mu}$$

• Inverse metric denoted $g^{\mu\nu}$, so that

$$g^{\mu\rho}g_{\rho\nu} = \delta^{\mu}_{\ \nu}$$

Indices lowered and raised with metric and its inverse; for example

$$A_{\mu} = g_{\mu\alpha}A^{\alpha} \qquad B^{\mu} = g^{\mu\alpha}B_{\alpha} \qquad T_{\mu}^{\ \nu\rho} = g_{\mu\alpha}T^{\alpha\nu\rho}$$

From special to general relativity

We have seen that the proper distance in special relativity is preserved under Lorentz transformations

$$x'^0 = \gamma(x^0 - (v/c)x^1)$$

$$x'^1 = \gamma(-(v/c)x^0 + x^1)$$

$$x'^2 = x^2$$

$$x'^3 = x^3$$
 where
$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

General relativity allows for (almost)* any coordinate transformations:

$$x'^{0} = x'^{0}(x^{0}, x^{1}, x^{2}, x^{3})$$

$$x'^{1} = x'^{1}(x^{0}, x^{1}, x^{2}, x^{3})$$

$$x'^{2} = x'^{2}(x^{0}, x^{1}, x^{2}, x^{3})$$

$$x'^{3} = x'^{3}(x^{0}, x^{1}, x^{2}, x^{3})$$

or more compactly $\,x'^\mu=x'^\mu(x)$, where $\,x\,$ is shorthand for $\,(x^0,x^1,x^2,x^3)$

This is the same as saying that proper distance is preserved under general coordinate transformations:

$$ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu} = g'_{\alpha\beta} dx'^{\alpha} dx'^{\beta}$$

^{*} We do require $x'^{\mu}(x)$ to be invertible, so that we can express $x^{\mu}(x')$, and also that it be differentiable.

General coordinate transformations

In general relativity, proper distance is preserved under any coordinate transformations:

$$ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu} = g'_{\alpha\beta} dx'^{\alpha} dx'^{\beta}$$

- This tells us how the components of $g_{\mu\nu}$ change under coordinate transformations!
 - From the chain rule:

$$dx^{\mu} = \frac{\partial x^{\mu}}{\partial x'^{0}} dx'^{0} + \frac{\partial x^{\mu}}{\partial x'^{1}} dx'^{1} + \frac{\partial x^{\mu}}{\partial x'^{2}} dx'^{2} + \frac{\partial x^{\mu}}{\partial x'^{3}} dx'^{3} = \frac{\partial x^{\mu}}{\partial x'^{\alpha}} dx'^{\alpha}$$
$$dx^{\nu} = \frac{dx^{\nu}}{dx'^{0}} dx'^{0} + \frac{dx^{\nu}}{dx'^{1}} dx'^{1} + \frac{dx^{\nu}}{dx'^{2}} dx'^{2} + \frac{dx^{\nu}}{dx'^{3}} dx'^{3} = \frac{dx^{\nu}}{dx'^{\beta}} dx'^{\beta}$$

Therefore

$$\left(\frac{\partial x^{\mu}}{\partial x'^{\alpha}}\frac{\partial x^{\nu}}{\partial x'^{\beta}}g_{\mu\nu}\right)dx'^{\alpha}dx'^{\beta} = g_{\alpha\beta}'dx'^{\alpha}dx'^{\beta}$$

From this we read off:

$$g'_{\alpha\beta} = \frac{\partial x^{\mu}}{\partial x'^{\alpha}} \frac{\partial x^{\nu}}{\partial x'^{\beta}} g_{\mu\nu}$$

The light cone

In special relativity, the metric is

$$ds^2 = -c^2 dt^2 + dx^2 + dy^2 + dz^2$$

For particles moving slower than speed of light:

$$dx^2 + dy^2 + dz^2 < c^2 dt^2$$
 so that

$$ds^2 < 0$$

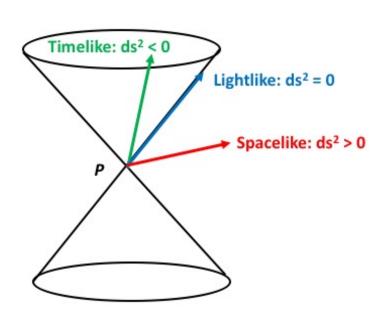
For photons:

$$ds^2 = 0$$

For hypothetical particles moving faster than speed of light:

$$ds^2 > 0$$

- This leads to concept of light cone
 - Distinction between timelike, lightlike, spacelike is independent of coordinate system
 - Concept carries over to general relativity, with $ds^2 = g_{\mu\nu} \, dx^\mu \, dx^\nu$



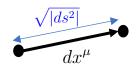
Physical spacetime distances

> The metric is

$$ds^2 = g_{\mu\nu} \, dx^\mu \, dx^\nu$$

which has dimensions (length)²

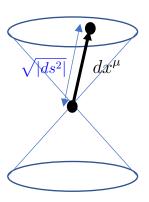
 $ightharpoonup \sqrt{|ds^2|}$ is the **physical distance** between points separated by coordinate vector dx^μ



- For spacelike separations, this has the familiar meaning of distance
- What does "distance" mean in a timelike direction?Write

$$\sqrt{|ds^2|} = c \, d\tau$$

The quantity d au is the proper time elapsed according to an observer who moves by dx^{μ}



Timelike curves

- $ilde{}$ Consider particle moving on a timelike path $x^{\mu}(\lambda)$ parameterized by λ
- ightharpoonup Proper time d au elapsed over a short parameter interval $d\lambda$:

$$c d\tau = \sqrt{|ds^2|} = \sqrt{-g_{\mu\nu}dx^{\mu}dx^{\nu}} = \sqrt{-g_{\mu\nu}\frac{dx^{\mu}}{d\lambda}\frac{dx^{\nu}}{d\lambda}} d\lambda$$

 \blacktriangleright Proper time $\Delta \tau_{AB}$ elapsed between points A and B:

$$c\Delta\tau_{AB} = \int_{A}^{B} \sqrt{|ds^{2}|} = \int_{A}^{B} \sqrt{-g_{\mu\nu}dx^{\mu}dx^{\nu}} = \int_{\lambda_{A}}^{\lambda_{B}} \sqrt{-g_{\mu\nu}(x)\frac{dx^{\mu}}{d\lambda}\frac{dx^{\nu}}{d\lambda}} d\lambda$$



ightarrow One can parameterize the curve using proper time: $\lambda= au$

$$c d\tau = \sqrt{-g_{\mu\nu} \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau}} d\tau \implies c = \sqrt{-g_{\mu\nu} \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau}} \implies g_{\mu\nu} \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau} = -c^{2}$$

- $V^{\mu} = \frac{dx^{\mu}}{d\tau}$ is the **tangent vector** to the curve called **four-velocity**
- Norm of the four-velocity vector: $V_{\mu}V^{\mu}=g_{\mu\nu}\frac{dx^{\mu}}{d\tau}\frac{dx^{\nu}}{d\tau}=-c^{2}$

Timelike geodesics

Proper time elapsed in traveling from A to B:

$$c\Delta \tau_{AB} = \int_{\lambda_A}^{\lambda_B} \sqrt{-g_{\mu\nu} \frac{dx^{\mu}}{d\lambda} \frac{dx^{\nu}}{d\lambda}} \, d\lambda$$

- A **geodesic** is a path which minimizes Δau_{AB} This is the path of a particle in free fall
- Can be found by extremalizing the "action"

$$S = \int_{A}^{B} L(x^{\mu}, \dot{x}^{\mu}) \, d\lambda$$

with "Lagrangian"
$$L(x^{\mu}, \dot{x}^{\mu}) = \sqrt{-g_{\mu\nu}(x)\dot{x}^{\mu}\dot{x}^{\nu}}$$

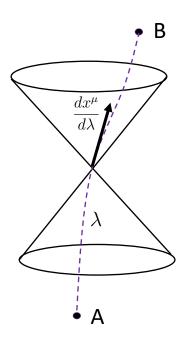
where dots denote derivatives w.r.t. λ

$$\frac{d^2x^{\beta}}{d\tau^2} + \Gamma^{\beta}_{\mu\nu} \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau} = 0$$

where

$$\Gamma^{\beta}_{\mu\nu} = \frac{1}{2} g^{\beta\alpha} (\partial_{\mu} g_{\alpha\nu} + \partial_{\nu} g_{\alpha\mu} - \partial_{\alpha} g_{\mu\nu})$$
 with the notation $\partial_{\mu} \equiv \frac{\partial}{\partial x^{\mu}}$

$$\partial_{\mu} \equiv \frac{\partial}{\partial x^{\mu}}$$



Timelike geodesics

Geodesic equation, which describes the motion of free-falling particles:

$$\frac{d^2x^{\beta}}{d\tau^2} + \Gamma^{\beta}_{\mu\nu} \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau} = 0$$

where
$$\Gamma^{\beta}_{\mu\nu}=rac{1}{2}g^{etalpha}(\partial_{\mu}g_{lpha
u}+\partial_{
u}g_{lpha\mu}-\partial_{lpha}g_{\mu
u})$$
 , with $\partial_{\mu}\equivrac{\partial}{\partial x^{\mu}}$

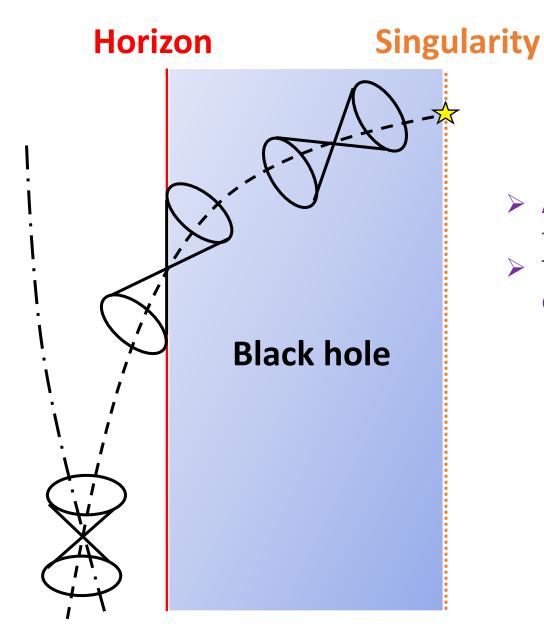
ightarrow For flat metric, $g_{\mu
u}=\eta_{\mu
u}$, all derivatives zero, $\partial_{\mu}g_{
ho\sigma}=0$, hence $\Gamma^{eta}_{\mu
u}=0$

$$\frac{d^2x^\beta}{d\tau^2} = 0$$

Thus, in flat spacetime the timelike geodesics are straight lines!

- ightharpoonup General metric depends on spacetime: $g_{\mu\nu}(x)$
 - Dramatic example: spacetime of a black hole
 - "Tilting" of light cones prevents any timelike curve from being straight line

Timelike curves near a black hole



- At horizon: future lightcone tangent to horizon
- ➤ The horizon lies along a lightlike direction
 - Will be the case in any coordinate system!
 - No escape once inside

The right hand side of the Einstein equations

Einstein field equations:

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

- lacktriangle Left hand side: curvature of spacetime, given by the metric $\,g_{\mu
 u}$
- Right hand side: energy-momentum tensor
- Meaning of the energy-momentum tensor?

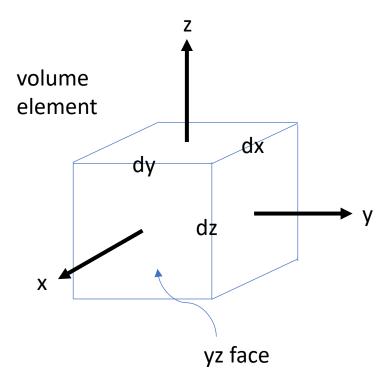
ensor?
$$T^{\mu
u} = egin{pmatrix} energy & energy &$$

Notation: T^{00} , T^{0i} , T^{ij}

where Latin indices denote spatial components: i, j, k = 1, 2, 3

The energy-momentum tensor

- \triangleright Assume a matter distribution with density ρ
 - $T^{00} = \rho c^2$ is the energy density
 - $T^{0i}/c = \rho v^i$ is the momentum density in the *i*th direction
 - $lacksquare T^{ij}$ is the ith component of force per unit area across surface with normal in the direction j



ightharpoonup Consider volume element dx dy dz

• T^{xx} is the x-component of force per unit area on the yz face

= pressure on yz face:

$$P^{x} = \frac{F^{x}}{dydz} = \frac{dp^{x}/dt}{dydz} = \frac{dp^{x}}{dtdydz}$$

 $\bullet \quad \text{Momentum } dp^x = dm \, v^x = \rho \, dx dy dz \, v^x$

Hence
$$T^{xx} = \frac{\rho \, dx dy dz}{dt dy dz} v^x$$

$$= \rho \, \frac{dx}{dt} \, v^x = \rho \, (v^x)^2$$

More generally

$$T^{ij} = \rho v^i v^j$$

Energy-momentum conservation

In flat spacetime:

$$\partial_{\mu}T^{\mu\nu} = 0$$

For $\nu = 0$: $\partial_0 T^{00} + \partial_i T^{i0} = 0$

Define

- $\bullet \quad \epsilon \equiv T^{00} \qquad \text{energy density}$
- $\qquad \qquad \pi^i \equiv T^{i0}/c \qquad \text{momentum density}$

Since
$$\partial_0 = \frac{\partial}{\partial x^0} = \frac{\partial}{c\partial t}$$
 and $\partial_i \pi^i = \frac{\partial}{\partial x^i} \pi^i = \boldsymbol{\nabla} \cdot \boldsymbol{\pi}$, one has

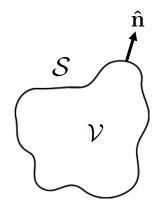
$$\frac{\partial \epsilon}{\partial t} = -\boldsymbol{\nabla} \cdot \boldsymbol{\pi} \, c^2$$

Note that that πc^2 is energy flux! For example, in the x direction:

$$\pi^{x}c^{2} = \rho v^{x} c^{2} = \frac{dm}{dxdydz} \frac{dx}{dt} c^{2} = \frac{d(m c^{2})}{dtdydz}$$

> Integrate both sides over volume bounded by a closed surface:

$$\int_{\mathcal{V}} \frac{\partial \epsilon}{\partial t} \, dV = -\int_{\mathcal{V}} \nabla \cdot \boldsymbol{\pi} \, c^2 \, dV \quad \Longrightarrow \quad \frac{dE}{dt} = -\int_{\mathcal{S}} \hat{\mathbf{n}} \cdot \boldsymbol{\pi} \, c^2 \, dA$$



Summary

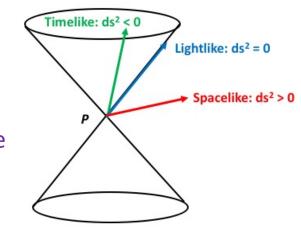
 \succ In general relativity, physical spacetime distances are given by a **metric tensor** $g_{\mu\nu}$:

$$ds^2 = g_{\mu\nu} \, dx^{\mu} \, dx^{\nu}$$

- The metric and its inverse are used to lower and raise indices on other tensors
- In going to a different coordinate system, the metric tensor transforms as

$$g'_{\alpha\beta} = \frac{\partial x^{\mu}}{\partial x'^{\alpha}} \frac{\partial x^{\nu}}{\partial x'^{\beta}} g_{\mu\nu}$$

- ightharpoonup The **light cone**: surface defined by $ds^2=0$
 - Paths of massive particles must stay within this cone



Particles in free fall move on geodesics

$$\frac{d^2x^\beta}{d\tau^2} + \Gamma^\beta_{\mu\nu} \frac{dx^\mu}{d\tau} \frac{dx^\nu}{d\tau} = 0 \qquad \text{where} \quad \Gamma^\beta_{\mu\nu} = \frac{1}{2} g^{\beta\alpha} (\partial_\mu g_{\alpha\nu} + \partial_\nu g_{\alpha\mu} - \partial_\alpha g_{\mu\nu})$$

- ightharpoonup The energy-momentum tensor $T^{\mu
 u}$
 - Energy density, momentum density, the stresses inside a mass distribution