Weighting toolkits in Jpp

From the user-perspective

Bouke Jung (bjung@nikhef.nl) Nikhef-KM3NeT Group Meeting 2021-04-08

To reiterate

« What's possible / what's new:

1. Ordering sets of MC-files based on header-info l.e.: 'low-level' interface to be
2. Clear, unambiguous mapping: used in conjunction with
(with specifiable fluxes!) high-level software

 Potential applications:

1. Combining MC-files with compatible headers into one
2. Creating single run-by-run MC-files for all primaries

« Add/ modify total weight (w3 /'w4') for each event, based on ordered header-info
3. User-friendly reweighting of (set of) MC-productions

« Scaling weights by single user-specifiable function already possible

« Current tools can be extended to allow arithmetic operations with flux-functions

Not a new ideal

Currently everyone needs to
write their own implementation

Still needed:

» Coupling to oscillation software
* Flux function arithmetics

« Automatic testing

Neutrino event reweighting

Opened 1 year ago by g Alba Domi

Function to re-weight neutrino events in a MC file

| think it would be really useful to write a function (or probably a class?) to re-weight MC neutrino events (for example in a run by run me simulation). | think
it would be useful for 2 reasons:

1. so that everyone do not to waste too much time on doing that
2. so that everyone can use the same functionality from Jpp instead of having different codes (which of course will include more checks and possible
bugs)

This procedure is not so immediate up to now because it is needed to know:

1. the run duration (in years) of the equivalent data run

2. weeed the oscillation probabilityjto re-weight neutrinos (use of OscProb or Jpp probabilities?)

ne production flux is also needed
So, my idea is simply to have a function in which you give as input:

1. the name of the DATA file
[2_ the neutrino flux you want to consider at the end]

3. the neutrino flux generation spectrum

and it does all the job.

What do you think? Maybe it is something more "high level" but honestly | don't like too much the idea to use different languages/frameworks/codes to do
the same thing. If there is something complete in one framework | think people will use it more easily.

\assign [@vkulikovskiy

https://git.km3net.de/working_groups/simulations/-/issues/3

Muon multiplicities

all p+Fe events, weighted - *‘Ei

—) Feco

p truth
— fe reco
— fe truth

w
-~
=
0
-—
Ul
—
c
a
>
L

ML-based
muon multiplicity
reconstruction

24 30
muon multiplicity

https://indico.cern.ch/event/983214/contributions/4221724/attachments/2189309/3699944/muon_reco_update.pdf

Muon multiplicities

all p+Fe events, weighted w ‘% et

Could we do this
iteratively,

using a parametric
reweighting formula?

w
—
=
o]
-~
wn
4
c
Q
=
L}

24 30
muon multiplicity

https://indico.cern.ch/event/983214/contributions/4221724/attachments/2189309/3699944/muon_reco_update.pdf

How to use

 For external user only few functions important:

JWeightFileScannerSet (JMultipleFileScanner_t &input, JLimit &limit=JLimit())

Constructor. More..

JFluxFunction< JFunction_t > make_fluxFunction (const JFunction_t &function)

Auxiliary method for creating flux function. More..

JFluxFunction< pFlux > make_fluxFunction (pFlux function)

Auxiliary method for creating flux function. More..

size_t setFlux (const int type, const JFlux &function)

Set flux function for all MC-files corresponding to a given PDG code. More.

setFlux (const std::set< int > &t ion)

Set flux function of all MC-files ng to a given set of PDG codes. More...
setFlux (const JMultiParticleFlux

Set flux function of all MC-files corresy

Create set of ordered (MC/DAQ) file-scanners,
with corresponding weight-functions

Create a flux-function wrapper that can be
interfaced with one or multiple event-weighters

Assign given flux-function wrapper to all files,
which contain the given PDG type as primary

Assign given flux-function wrapper only to those
files, which contain all PDG types in a given set

How to use

« Example:

JMultiParticleFlux multiFlux;

for (vector<int>::const_iterator i = zeroFluxes.cbegin(); i != zeroFluxes.cend(); ++i) { Three example flux-functions:
multiFlux.insert(*1, make fluxFunction(zeroFlux));

1

for (map<int, JFlatFlux=>::const iterator i = flatFluxes.cbegin(); i != flatFluxes.cend(); ++i) { 1. ZeroFlux
multiFlux.insert(i->first, make_fluxFunction(i->second)); — 2. JFlatFlux

1

| 3. Power-law flux

for (map<int, JPowerLawFluxs>::const_iterator i = powerlawFluxes.cbegin(); i1 != powerlawFluxes.cend(); ++1) {
multiFlux.insert(i-=first, make fluxFunction(i-=second)); .

} But should also work with your

~ favourite self-defined / imported

// Set event weighter flux-function!

JWeightFileScannerSet<> scanners(inputFiles, numberOfEvents);
size t n = scanners.setFlux(multiFlux);
if (n == 08) {

WARNING("No file found containing all given primaries; Flux function not set." << endl);

}

https://common.pages.km3net.de/jpp/JMultiParticleFlux_8cc.html

