Pointsource analysis

- Several years of datataking
- Several declinations
- Varying mean number of **signal** events in dataset
- **Background** distributions (atm $\nu \& \mu$) from official monte carlo

Displayed example: Sig+bkg model T = 1.0 yr $sin(\delta) = -0.5$ $N_{sig} = 10$ $N_{bkg} = ~29.960$

Pointsource analysis

I've shown plots on this page before (NB: slightly different analysis than I present today: here spetral index was a free param in contrast to today's presented analysis, so expect better reults) This is just for illustrational purposes

Test statistic distribution

Pointsource analysis

Parameters in fit:

- **Fixed** spectral index for flux: E⁻²
- Fixed position in sky
- Nsig events in dset: Free
- Nbkg events in dset: Free

Sensitivity Defined as the median upper limit at 95%/90% CL

North | celestial

Celestial

Vernal

Declination

Sensitivity Defined as the median upper limit at 95%/90% CL

North | celestial

Celestial

Vernal

Declination

North

Groupmeeting rasam@nikhef.nl

North

Extra

Atmospheric neutrinos

Primary cosmic ray colliging with the Earth's atmosphere

Conventional

- ν 's produced from the decay of relatively long-lived charged particles: pions and kaons

- Dominates the neutrino data measured in the GeV to TeV

<u>Prompt</u>

- ν 's produced from the (immediate) decay of heavier mesons, usually containing charm quarks

- Their production is strongly suppressed, but they are expected to exhibit a harder energy spectrum (= higher flux @higher E)

Relation decay / interaction & resulting products that Cannot cross the Earth

conventional

short lived => decay fast => into among other particles: neutrinos => they can cross the earth.

prompt

What's underlying these results

NB: rootfiles of MC production itself can be found at:

/pbs/home/r/rmuller/private/workdisk/pointsources/likelihood_search/runs/20210115_BIGrun_point_fixed_flux/o_tmp/merged

(Investigate flux)

>>> for i in [-0.9, -0.7, -0.5, -0.3, -0.1, 0.1, 0.3, 0.5, 0.7, 0.9]: point_E2 = ROOT.PointSourceComponent("point", detres, 2, 1, asin(i)) PF_E2 = point_E2.getflux() N0 = detres.Aeff.GetRateDecl(i, PF_E2) print("for decl:", i, "sin(dec) = ", sin(i), " fluxrate = ", detres.Aeff.GetRateDecl(i, PF_E2)) for decl: -0.9 sin(dec) = -0.7833269096274834 fluxrate = 1099.8644065152307 for decl: -0.7 sin(dec) = -0.644217687237691 fluxrate = 888.6982021350441 for decl: -0.5 sin(dec) = -0.479425538604203 fluxrate = 755.1866784614216 for decl: -0.3 sin(dec) = -0.29552020666133955 fluxrate = 685.0116266141235 for decl: -0.1 sin(dec) = -0.09983341664682815 fluxrate = 647.5611606376762 for decl: 0.1 sin(dec) = 0.09983341664682815 fluxrate = 618.5713999471976 for decl: 0.3 sin(dec) = 0.29552020666133955 fluxrate = 603.4983374369579 for decl: 0.5 sin(dec) = 0.479425538604203 fluxrate = 573.7645251312225 for decl: 0.7 sin(dec) = 0.644217687237691 fluxrate = 547.0003303943539 for decl: 0.9 sin(dec) = 0.7833269096274834 fluxrate = 493.5854943787892 >>>