- Rotate the components w.r.t. each other and plot PDFs.
- Check: narrow angle, Cherenkov angle, wide angle between the two components
- NB: time residual on the plot is that w.r.t. muon hypothesis

Shower

Muon

• Likelihood: will begin with first hit probability

•
$$P_{\text{first hit}} = f \cdot \frac{e^{-v}}{1 - e^{-V}}$$

• f rate of photoelectrons, v cumulative number of p.e.'s up to that time, V total number of p.e.'s

• So for one example..

Combined PDFs

vertex (0,0,0), 'SOUTH', muon dir (0 0 1), shower dir (-0.492941 0 0.870063), hit pos (50, 0, 20), Emuon 10^3 GeV, Eshower 10^3 GeV, cd ~ 1, R = 50 m, angle diff. = 29 deg

hit time [ns]

4

• So for one example..

Combined PDFs

• So for one example..

'SOUTH'

Combined PDFs

vertex (0,0,0), 'SOUTH', muon dir (0 0 1), shower dir (-0.492941 0 0.870063), hit pos (50, 0, 20), Emuon 10^3 GeV, Eshower 10^3 GeV, cd ~ 1, R = 50 m, angle diff. = 29 deg

vertex (0,0,0), 'SOUTH', muon dir (0 0 1), shower dir (-0.492941 0 0.870063), hit pos (0, 0, 60), Emuon 10^3 GeV, Eshower 10^3 GeV, cd ~ 1, R = 0.1, angle diff. = 29 deg

vertex (0,0,0), 'SOUTH', muon dir (0 0 1), shower dir (-0.492941 0 0.870063), hit pos (0, 0, 60), Emuon 10^3 GeV, Eshower 10^3 GeV, cd ~ 1, R = 0.1, angle diff. = 29 deg

vertex (0,0,0), 'SOUTH', muon dir (0 0 1), shower dir (-0.492941 0 0.870063), hit pos (50, 0, 20), Emuon 10^3 GeV, Eshower 10^3 GeV, cd ~ 1, R = 50 m, angle diff. = 29 deg

- Move from a hit-based likelihood study to event-based likelihood
- Deviate true model parameters from likelihood minimum
- Choose a clean sample of events to test likelihood on..

- Store the DAQ events & MC truth info in parallel.
- Choose clean samples with cuts: e.g.
 - vertex is inside detector volume
 - number of PMTs hit, e.g. 10
 - number of muons per event, e.g. 1 minimum
 - track length cut, e.g. 50 m track strict one only for muons
- Cuts can be optimised as we go along

Choose a set of events from a triggered data file: well-understood, clean events.

- for those events
- Within this script: call function which takes (daq event, mc event)
- position, Emu, Esh, muon dir, shower dir
- and total energy of a hadronic cascade
- For all the first hits, calculate likelihood assuming track+shower model

$$-\log \mathscr{L} = \sum_{hits} log \left(n(t) \cdot \frac{e^{-N(t)}}{1 - e^{-N_{total}}} \right) + \sum_{non-hit PMTS} log \left(e^{-N_{total}} \right)$$

Prob first hit

Script to loop through input events, calculate first hit likelihood and no-hit likelihood

• fill event vertex model of vertex with track + shower with true parameters: vertex

• At the moment, using "hadronic cascade" particles for my shower - average direction

Prob_no hit

• Initially, testing on a trigger-level file (ORCA 115, 10-100 GeV) mcv5.0.gsg_muon-CC_10-100GeV.km3sim.jte.100.root - only first hits

sum	IIKeIINOOUS:	тш
sum	likelihoods:	inf
sum	likelihoods:	-nan
sum	likelihoods:	inf
sum	likelihoods:	–nan
sum	likelihoods:	inf
sum	likelihoods:	inf
sum	likelihoods:	inf
sum	likelihoods:	-nan
sum	likelihoods:	inf

• Initially, testing on a trigger-level file (ORCA 115, 10-100 GeV) mcv5.0.gsg_muon-CC_10-100GeV.km3sim.jte.100.root - only first hits

sum	IIKeIIN0005:	тш
sum	likelihoods:	inf
sum	likelihoods:	–nan
sum	likelihoods:	inf
sum	likelihoods:	-nan
sum	likelihoods:	inf
sum	likelihoods:	inf
sum	likelihoods:	inf
sum	likelihoods:	-nan
sum	likelihoods:	inf

Inclusion of time window w.r.t Cherenkov hypothesis e.g. (-50, 900) ns

&

using clean events from before

sum	likelihoods:	20309
sum	likelihoods:	23713.7
sum	likelihoods:	19507.3
sum	likelihoods:	23991.3
sum	likelihoods:	19650.2
sum	likelihoods:	21357.6
sum	likelihoods:	26073.3
sum	likelihoods:	22144.8
sum	likelihoods:	20188.5
sum	likelihoods:	20926
sum	likelihoods:	20168.8
sum	likelihoods:	22634.7
sum	likelihoods:	18806.3
sum	likelihoods:	24547.8
sum	likelihoods:	26260.6
sum	likelihoods:	24187.6
sum	likelihoods:	21874.1
sum	likelihoods:	22447.5
sum	likelihoods:	23825.2
sum	likelihoods:	18779.2
sum	likelihoods:	20598.3
sum	likelihoods:	21006.1
sum	likelihoods:	21310.8
sum	likelihoods:	21398.4
sum	likelihoods:	19915.1
sum	likelihoods:	21036.1
sum	likelihoods:	18773.3
sum	likelihoods:	20431
sum	likelihoods:	25762.4
sum	likelihoods:	23943.3
sum	likelihoods:	22023.3
sum	likelihoods:	26015.9
sum	likelihoods:	18722.2
sum	likelihoods:	22192.3
sum	likelihoods:	23910.3
sum	likelihoods:	22863.1

- position in the *x-z* plane.
- For this, I assume the muon and shower components are co-linear seems reasonable, having checked values..rotating according to muon direction.

• Operating in JPP framework. One needs to rotate the hits to be in the direction of the muon or shower - PDFs are evaluated assuming muon/shower in z-direction with PMT

• To include background: combinedPDF = PDF_muon + PDF_shower

For time-integrated PDFs: Just input time-window into function?

For time-differentiated PDFs:

- takes time residual as an argument

 Can't use PDF_muon_background + PDF_sh_background - overlapping times

- just use muon time residual (always earliest) and consider that over the time range?

- Clearly, my likelihood values are not very small considering I am using the truth information - expect a minimum.
- Missing the peak of my PDFs?
- Just numbers to show today, but plots coming soon :-)