Combine PDFs

- Rotate the components w.r.t. each

Combined PDFs

- Likelihood: will begin with first hit probability
- $P_{\text {firrst hit }}=f \cdot \frac{e^{-v}}{1-e^{-V}}$
- f rate of photoelectrons, v cumulative number of p.e.'s up to that time, V total number of p.e.'s

Combined PDFs

- So for one example..
'SOUTH'

Combined PDFs

- So for one example..

'SOUTH'

Combined PDFs

- So for one example..
'SOUTH'

Combined PDFs

- So for one example..
'SOUTH'

Combined PDFs

- An edge case..
'SOUTH'
$S \quad \mu$

Combined PDFs

- An edge case..
'SOUTH'
vertex ($0,0,0$), 'south', muon dir (001), shower dir $\left(-0.49294100 .8700633\right.$), hit pos $(0,0,60)$, Emuon $10^{\wedge} 3 \mathrm{GeV}$, Eshower $10^{\wedge} 3 \mathrm{GeV}, \mathrm{cd} \sim 1, \mathrm{R}=0.1$, angle difft $=29 \mathrm{deg}$

Combined PDFs

- An edge case..
'SOUTH'

- Move from a hit-based likelihood study to event-based likelihood
- Deviate true model parameters from likelihood minimum
- Choose a clean sample of events to test likelinood on..
- Choose a set of events from a triggered data file: well-understood, clean events.
- Store the DAQ events \& MC truth info in parallel.
- Choose clean samples with cuts: e.g.
- vertex is inside detector volume
- number of PMTs hit, e.g. 10
- number of muons per event, e.g. 1 minimum
- track length cut, e.g. 50 m track - strict one only for muons
- Cuts can be optimised as we go along
- Script to loop through input events, calculate first hit likelihood and no-hit likelihood for those events
- Within this script: call function which takes (daq event, mc event)
- fill event vertex model of vertex with track + shower with true parameters: vertex position, Emu, Esh, muon dir, shower dir
- At the moment, using "hadronic cascade" particles for my shower - average direction and total energy of a hadronic cascade
- For all the first hits, calculate likelihood assuming track+shower model

$$
-\log \mathscr{L}=\sum_{\text {hits }} \log \left(n(t) \cdot \frac{e^{-N(t)}}{1-e^{-N_{\text {toral }}}}\right)+\sum_{\text {non-hit PMTS }} \log \left(e^{-N_{\text {toral }}}\right)
$$

Prob_first hit
Prob_no hit

- Initially, testing on a trigger-level fille (ORCA 115, 10-100 GeV) mov5.0.gsg_muon-CC_10-100GeV.km3sim.jte.100.root - only first hits

sum
sum likelihooods: inf
sum likelihoods:
sum likelihoods: inf
sum likelihoods:
sum liken
sum likelihoods: inf
sum likelihoods: inf
sum likelihoods: inf
sum likelihoods:
sum liken
sum likelihoods: inf
sum likelihooods: inf
sum likelihoods: inf
sum likelihoods: inf
sum likelihoods: inf

- Initially, testing on a trigger-level file (ORCA 115, 10-100 GeV) mev5.0.gsg_muon-CC_10-100GeV.km3sim.jte.100.root - only first hits
suml likelinoous:
sum likelihoods: inf
sum likelihoods:
sum
sum likelihoods: inf
sum likelihoods:
sum
sum likelihoods: inf
sum likelihoods: inf
sum likelihoods: inf
sum likelihoods:
sum likelihoods: inf
sum likelihoods: 20309
sum likelihoods: 23713.7
sum likelihoods: 19507.3
sum likelihoods: 23991.3
sum likelihoods: 19650.2
sum likelihoods: 21357.6
sum likelihoods: 26073.3
sum likelihoods: 22144.8
sum likelihoods: 20188.5
sum likelihoods: 20926
sum likelihoods: 20168.8
sum likelihoods: 22634.7
sum likelihoods: 18806.3
sum likelihoods: 24547.8
sum likelihoods: 26260.6
sum likelihoods: 24187.6
sum likelihoods: 21874.1
sum likelihoods: 22447.5
sum likelihoods: 23825.2
sum likelihoods: 18779.2
sum likelihoods: 20598.3
sum likelihoods: 21006.1
sum likelihoods: 21310.8
sum likelihoods: 21398.4
sum likelihoods: 19915.1
sum likelihoods: 21036.1
sum likelihoods: 18773.3
sum likelihoods: 20431
sum likelihoods: 25762.4
sum likelihoods: 23943.3
sum likelihoods: 22023.3
sum likelihoods: 26015.9
sum likelihoods: 18722.2
sum likelihoods: 22192.3
sum likelihoods: 23910.3
sum likelihoods: 22863.1
- Operating in JPP framework. One needs to rotate the hits to be in the direction of the muon or shower - PDFs are evaluated assuming muon/shower in z-direction with PMT position in the $x-z$ plane.
- For this, I assume the muon and shower components are co-linear - seems reasonable, having checked values..rotating according to muon direction.

- To include background: combinedPDF = PDF_muon + PDF_shower

For time-integrated PDFs: Just input time-window into function?

* Get background hypothesis value for time integrated PDF.
* \param R_Hz , \return */
JNPE

For time-differentiated PDFs:

- takes time residual as an argument
- Can't use PDF_muon_background
+ PDF_sh_background - overlapping times

```
***
* \param R_Hz 
JPDF_t::result_type getH0(const double R_Hz
const double t\overline{1}) const
    return JPDF_t::result_type(R_Hz * 1e-9, t1, T_ns);
```

- just use muon time residual (always earliest) and consider that over the time range?
- Clearly, my likelihood values are not very small considering I am using the truth information - expect a minimum.
- Missing the peak of my PDFs?
- Just numbers to show today, but plots coming soon :-)

