ORCA-4 data analysis: systematic uncertainties

Lodewijk Nauta Nikhef group meeting 2020-01-26

Parameters in models

- Parameters of interest: oscillation parameters
 - Physics parameters: Th23, Dm31sq, etc
- Nuisance parameters: to model uncertainties/biases
 - Flavor ratio of flux e/mu may be skewed
 - Cross section may be larger/smaller

•

Procedure

- 1. Fit model to only (SinsqTh23,Dm31sq)
 Provides the best fit values and statistical uncertainties for physics parameters
- 2. Fit model to (SinsqTh23,Dm31sq) and all nuisance parameters Provides the central values (cv) and uncertainties on the nuisance parameters. Provides the central values of (SinsqTh23,Dm31sq) used in step 3.
- 3. For every nuisance parameter:
 - 1. Fix value at c.v. +1 sigma and fit model --> Find change in physics parameters (SinsqTh23,Dm31sq)
 - 2. Fix value at c.v. -1 sigma and fit model --> Find change in physics parameters (SinsqTh23,Dm31sq)
- 4. Systematic uncertainty is squared sum of differences in physics parameters

1. Fit only (SinsqTh23, Dm31)

- Asymmetric uncertainty was added using MINOS in RooFit
- Size of uncertainty matches with LLH scan

$$\theta_{23} = 34.1^{+28.0}_{-11.7} \text{ (stat.)}$$

 $\Delta m_{31}^2 = 2.21^{+0.80}_{-0.57} \text{ (stat.)}$

1. Fit only (SinsqTh23, Dm31)

- Asymmetric uncertainty was added using MINOS in RooFit
- Size of uncertainty matches with LLH scan

$$\theta_{23} = 34.1^{+28.0}_{-11.7} \text{ (stat.)}$$

 $\Delta m_{31}^2 = 2.21^{+0.80}_{-0.57} \text{ (stat.)}$

Nu-fit 2020:

$$\theta_{23}/^{\circ}$$

$$49.0^{+1.1}_{-1.4}$$

$$\frac{\Delta m_{3\ell}^{2}}{10^{-3} \text{ eV}^{2}}$$
 $+2.514^{+0.028}_{-0.027}$

2. Fit model to physics and all nuisance parameters

Constrained by Barr: 10.1103/PhysRevD.74.094009

Constrained by SuperK: 10.1103/PhysRevD.98.052006

	Parameter	Value	Error
	Δm_{31}^2	2.37	0.65
	θ_{23}	43.3	14.1
	Flux: spectral index uncertainty	0.074	0.11
_	Flux: angle distribution bias	-0.28	0.32
	Skew $\mu/\overline{\mu}$	-0.0019	0.10
$\frac{1}{2}$	Skew e/\overline{e}	-0.000049	0.10
	Skew μ/e	0.00031	0.050
_	NC normalization	1.00	0.10
_	au normalization	1.00	0.20
	Energy scale	-0.029	0.026

Not sure where prior on NC Xsection comes from (L. Quinn thesis)

Shown in the past as blue 'powerpoint' table

Issue: Shifting of nuisance parameters is mixed

- This procedure mixes external constraints and fit output
 - Example: Skew e/mu takes its range from the prior given by a publication
 - Range on spectral index uncertainty comes from output of minimizer
- Flux nuisance parameters: publication?
- Estimate the E-scale range in some other way?

3. Fix nuisance parameter at cv +/- 1sigma and perform model fit

4. Squared sum yields systematic uncertainty

When the spectral index unc. is set to: C.V. + 1sigma, it changes Dm31sq by -0.56

Statistical uncertainty							
Parameter	Δm_{31}^2 difference		θ_{23} difference				
Variation in nuisance parameter	$+1\sigma$	-1σ	$+1\sigma$	-1σ			
Flux: spectral index uncertainty	-0.56	0.17	1.4	-0.57			
Flux: angle distribution bias	-0.015	-	8.9	-0.75			
Skew $\mu \overline{\mu}$	-	-	-	-			
Skew e/\overline{e}	-	-	-	-			
Skew μe	-	-	-	-			
NC normalization	-	-	-	-			
τ normalization	-	-	-	-			
Energy scale	-0.15	0.12	1.4	-0.88			
Total uncertainty	-0.58	0.20	9.1	-1.28			

Negligible effect (~0) due to constraints

Squared sum of all changes

Full table in backup without rounding small values

ORCA-4 result including systematic uncertainties

$$\theta_{23} = 34.1^{+28.0}_{-11.7} \text{ (stat.)} ^{+9.1}_{-1.3} \text{ (syst.)} \text{ [deg]}$$

$$\Delta m_{31}^2 = 2.21^{+0.80}_{-0.57} \text{ (stat.)} ^{+0.20}_{-0.58} \text{ (syst.)} \text{ [}10^{-3}\text{GeV}^2\text{]}$$

• The measurement is dominated by statistics (expected)

Next steps

- Prior on the flux from a publication?
- Estimate an appropriate size for the E-scale range
- Reconstruction resolutions are not yet accounted for
 - Energy and angle resolution are encoded into Response Matrix
 - Idea: add cut to create "good resolution" and "bad resolution" RM
 - Fit data with these RMs
 - Quantify effect on (SinsqTh23,Dm31sq) as systematic uncertainty
- Is E-scale correlated to energy resolution? Systematic over-/under-estimation of energy...

Flux: spectral index uncertainty

$$E^{-\gamma} \to E^{-(\gamma+\delta)}$$
.

Total flux in *entire* phase space is conserved

Flux: angular distribution

$$\phi_{\alpha}(E,\theta) \to \phi_{\alpha}(E,\theta) \times (1+t \times \cos\theta)$$

Give flux a linear bias in angular distribution

Total flux in entire phase space is conserved

Backup: Systematic uncertainties on (SinsqTh23, Dm31)

Statistical uncertainty								
Parameter	Δm_{31}^2 difference		θ_{23} difference					
Variation in nuisance parameter	$+1\sigma$	-1σ	$+1\sigma$	-1σ				
Flux: spectral index uncertainty	-0.56	0.17	1.4	-0.57				
Flux: angle distribution bias	-0.015	0.0046	8.9	-0.75				
Skew $\mu/\overline{\mu}$	0.0026	-0.0076	0.042	-0.053				
Skew e/\overline{e}	-0.0039	0.0027	-0.0044	0.0045				
Skew μ/e	0.0039	-0.0062	0.016	0.021				
NC normalization	-0.00049	-0.00098	-0.023	0.017				
au normalization	0.00032	0.0027	-0.064	0.017				
Energy scale	-0.15	0.12	1.4	-0.88				
Total uncertainty	0.58	0.20	9.1	1.28				