# Double Double

Toil and trouble...



Nikhef-KM3NeT paper meeting | bjung@nikhef.nl

### Background

- Tau-neutrinos are expected to be produced only at tiny fractions in cosmological neutrino sources
- But neutrino-oscillations give rise to a neutrino-flux close to equipartition on Earth
- Since tau-neutrino production above ~ 100 TeV from rare decays of charmed hadrons make up only ~5%, the observation of high-energy nu-taus can be a smoking gun of cosmic neutrinos

### **Data selection and reconstruction**

- Data collected between 2010 and 2017 (total livetime 2635 days)
  - New callibration ("pass2") link
  - Improved ice sheet optical properties model
  - Updated calculation of atmospheric nu self-veto
  - 60 events with Etot > 60 TeV
- All events reconstructed with single cascade, track and double cascade hypothesis
- 9 parameters for double cascade fit:
  - First cascade vertex (4) + direction (2)
  - Energies of first and second cascade
  - Double cascade (separation) length

## **Double bang classification**

### • Five criteria:

- 1. Total energy
- 2. Preselection cuts & fit likelihoods
- 3. Double cascade length
- 4. Energy confinement
- 5. Energy asymmetry



| Observable   | Requirement for<br>double cascade | Classification if<br>requirement failed |  |
|--------------|-----------------------------------|-----------------------------------------|--|
| $E_{ m tot}$ | $\geq 60 \text{ TeV}$             | Classification not applicable           |  |
| Preselection | passed                            | Depending on fit likelihoods            |  |
| $L_{ m dc}$  | $\geq 10~{\rm m}$                 | Single cascade                          |  |
| $E_C$        | $\geq 0.99$                       | Track                                   |  |
| $A_E$        | $\in [-0.98, 0.30]$               | Single cascade                          |  |

# **Double bang classification**

### • Five criteria:

- 1. Total energy
- 2. Preselection cuts & fit likelihoods
- 3. Double cascade length
- 4. Energy confinement
- 5. Energy asymmetry





#### i. Both cascades > 1TeV

- ii. Both cascades within < 50 m radius outside of instrumented volume
- iii. Maximum opening angle of 30 deg between best single cascade fit directions and double cascade fit

# **Double bang classification**

### • Five criteria:

- 1. Total energy
- 2. Preselection cuts & fit likelihoods
- 3. Double cascade length
- 4. Energy confinement
- 5. Energy asymmetry





#### i. Both cascades > 1TeV

- ii. Both cascades within < 50 m radius outside of instrumented volume
- iii. Maximum opening angle of 30 deg between best single cascade fit directions and double cascade fit

$$E_C = (E_{C1} + E_{C2})/E_{\text{tot}}$$
  $A_E = (E_1 - E_2)/(E_1 + E_2)$ 

Energies obtained from *track-like energy unfolding* within 40 m of the i-th cascade ?

### Analysis

• Simple power law assumption for astrophysical neutrino flux

$$\frac{\mathrm{d}\Phi_{\nu_{\alpha}}}{\mathrm{d}E} = \phi_{\nu_{\alpha}} \cdot \left(\frac{E}{E_0}\right)^{\gamma_{\mathrm{astro}}}$$

- Multi-component maximum likelihood using PDFs obtained from Monte Carlo
  - Uncertainties due to limited MC-statistics accounted for using effective likelihood (see <u>this paper</u>)
- Individual flavour fractions are fitted as well

$$f_{\alpha} = \phi_{\nu_{\alpha}} / \phi_{6\nu}$$
  $f_e + f_{\mu} + f_{\tau} = 1$ 

• Main background from astrophysical nue and numu

## Tau neutrino interaction candidates

• 41 single cascades, 17 tracks and 2 double cascades

|                       | Event $\#1$          | Event $\#2$    |
|-----------------------|----------------------|----------------|
| Year                  | 2012                 | 2014           |
| Energy of 1st cascade | $1.2 \ \mathrm{PeV}$ | $9  {\rm TeV}$ |
| Energy of 2nd cascade | $0.6  \mathrm{PeV}$  | $80 { m TeV}$  |
| Energy Asymmetry      | 0.29                 | -0.80          |
| Length                | 16 m                 | 17 m           |

- Event 1 ("Big Bird"):
  - Length-to-energy ratio dominated by nutau contribution
  - Though outside 90% of simulated nutau double bangs
  - High E-asymmetry in region with high background expect.
- Event 2 ("Double double"):
  - Length-to-energy ratio around nutau-distribution peak
  - Energy asymmetry in signal-dominated region Nikhef-KM3NeT paper meeting | bjung@nikhef.nl



00

### **Candidate event topologies**



- Two cascade vertices (dark grey dots) not spatially resolvable by eye
- **Bright DOMs** (10x more light than average) excluded from analysis
- Significant difference between predicted photon counts for **single** and **double** cascade for event #2

### A posteriory analysis

- Targeted MC simulation conducted for both candidates
  - 20 mljn passed "Double Double" events
  - 1 mljn passed "Big Bird" events

| Variable                           | Event $\#1$           | Event $\#2$            |
|------------------------------------|-----------------------|------------------------|
| Primary Energy                     | > 1.5  PeV            | > 65  TeV              |
| Visible Energy                     | 1 - 3 PeV             | $60$ - $300~{\rm TeV}$ |
| Vertex, $r - r_{\text{evt}}$       | 50  m                 | 50 m                   |
| Vertex, $z - z_{\text{evt}}$       | $\pm 25 \text{ m}$    | $\pm 25 \text{ m}$     |
| Azimuth $\phi - \phi_{\text{evt}}$ | $\pm 110(40)^{\circ}$ | $\pm 110^{\circ}$      |
| Zenith $\theta-\theta_{\rm evt}$   | $\pm 35(17)^{\circ}$  | $\pm 35^{\circ}$       |

- Define "tauness" as Bayesian posterior prob. for each event originating from a nutau-ineraction •
  - 97.5% tauness for "Double Double"
    76% tauness for "Big Bird"

Assuming previously best fit spectra from this study

$$P(\nu_{\tau} \mid \vec{\eta}_{\text{evt}}) \approx \frac{N_{\nu_{\tau}} P_{\nu_{\tau}}(\vec{\eta}_{\text{evt}})}{|N_{\nu_{\tau}} P_{\nu_{\tau}}(\vec{\eta}_{\text{evt}})| + |N_{\nu_{\tau}} P_{\nu_{\tau}}(\vec{\eta}_{\text{evt}})|} \equiv P_{\tau}$$

Estimated from targeted sim. sets using KDE

• Total astrophysical neutrino flux measured at:

$$\frac{\mathrm{d}\Phi_{6\nu}}{\mathrm{d}E} = 7.4^{+2.4}_{-2.1} \cdot \left(\frac{E}{100 \text{ TeV}}\right)^{-2.87[-0.20,+0.21]}$$
$$\cdot 10^{-18} \cdot \mathrm{GeV}^{-1} \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{sr}^{-1},$$

(in agreement within errors with the study in the link)

Of which tau-neutrino:

$$\frac{\mathrm{d}\Phi_{\nu_{\tau}}}{\mathrm{d}E} = 3.0^{+2.2}_{-1.8} \left(\frac{E}{100 \text{ TeV}}\right)^{-2.87[-0.20,+0.21]} \cdot 10^{-18} \cdot \mathrm{GeV}^{-1} \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{sr}^{-1},$$

Nikhef-KM3NeT paper meeting | bjung@nikhef.nl

### A posteriory analysis

• Targeted MC simulation conducted for both candidate:

- 20 mljn passed "Double Double" events
- 1 mljn passed "Big Bird" events
- Define "tauness" as Bayesian posterior prob. for each
  - 97.5% tauness for "Double Double"
  - 76% tauness for "Big Bird"

Assuming previously best fit spectra from this study

• Total astrophysical neutrino flux measured at:

 $\frac{\mathrm{d}\Phi_{6\nu}}{\mathrm{d}E} = 7.4^{+2.4}_{-2.1} \cdot \left(\frac{E}{100 \text{ TeV}}\right)^{-2.87[-0.20,+0.21]}$  $\cdot 10^{-18} \cdot \mathrm{GeV}^{-1} \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{sr}^{-1},$ 

• Of which tau-neutrino:

$$\frac{\mathrm{d}\Phi_{\nu_{\tau}}}{\mathrm{d}E} = 3.0^{+2.2}_{-1.8} \left(\frac{E}{100 \text{ TeV}}\right)^{-2.87[-0.20,+0.21]} \cdot 10^{-18} \cdot \mathrm{GeV}^{-1} \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{sr}^{-1},$$



Nikhef-KM3NeT paper meeting Measurement of fitted flavour composition!

### **Take-home messages**

- First two double cascades found, indicative of nu-tau interactions, with expectation of
  - First event ("Big Bird") compatible with single cascade from nu-e at 25% level
  - Second event ("Double Double") ~80 times more likely to be nu-tau than nu-e/mu
- Resultant flavour composition of IceCube HESE events measured at:
  - (nu-e: nu-mu: nu-tau) = (0.20: 0.39: 0.42) First time non-zero in all components!
- First non-zero measurement of the astrophysical nu-tau flux:

• 
$$\frac{\mathrm{d}\Phi_{\nu_{\tau}}}{\mathrm{d}E} = 3.0^{+2.2}_{-1.8} \left(\frac{E}{100 \text{ TeV}}\right)^{-2.87[-0.20,+0.21]}$$
  
  $\cdot 10^{-18} \cdot \mathrm{GeV}^{-1} \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{sr}^{-1},$ 

• Zero nu-tau flux disfavoured at 2.8 sigma

# EXTRA

### **Systematic uncertainties**

| Parameter                                                                                                        | Prior (constraint)                                                        | Range                                                                  | Description                                                                                                                                                                                             |                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Astrophysical neutrino flux:<br>$\Phi_{astro}$<br>$\gamma_{astro}$                                               |                                                                           | $[0,\infty) \ (-\infty,\infty)$                                        | Normalization scale<br>Spectral index                                                                                                                                                                   |                                                                                                                                                                      |
| Atmospheric neutrino flux:<br>$\Phi_{conv}$<br>$\Phi_{prompt}$<br>$R_{K/\pi}$<br>$2\nu/(\nu + \bar{\nu})_{atmo}$ | $1.0 \pm 0.4$<br>$1.0 \pm 0.1$<br>$1.0 \pm 0.1$                           | $egin{array}{c} [0,\infty)\ [0,\infty)\ [0,\infty)\ [0,2] \end{array}$ | Conventional normalization scale<br>Prompt normalization scale<br>Kaon-Pion ratio correction<br>Neutrino-anti-neutrino ratio correction                                                                 |                                                                                                                                                                      |
| Cosmic-ray flux:<br>$\Delta \gamma_{CR}$<br>$\Phi_{\mu}$                                                         | $0.0 \pm 0.05 \\ 1.0 \pm 0.5$                                             | $(-\infty,\infty) \ [0,\infty)$                                        | Cosmic-ray spectral index modification<br>Muon normalization scale                                                                                                                                      |                                                                                                                                                                      |
| Detector:<br>$\epsilon_{\text{DOM}}$<br>$\epsilon_{\text{head-on}}$<br>$a_{s}$                                   | $\begin{array}{c} 0.99 \pm 0.1 \\ 0.0 \pm 0.5 \\ 1.0 \pm 0.2 \end{array}$ | $[0.80, 1.25] \\ [-3.82, 2.18] \\ [0.0, 2.0]$                          | Absolute energy scale<br>DOM angular response<br>Ice anisotropy scale                                                                                                                                   |                                                                                                                                                                      |
|                                                                                                                  |                                                                           | Nikhef-KM <del>3Ne</del>                                               | The main systematic uncertain<br>cascade reconstruction is the<br>propagation in the ice [33]. The<br>of the photon propagation of<br>the Cherenkov light patterns,<br>unsclassification of single casc | nty affecting the double<br>anisotropy of the light<br>and directional dependence<br>can cause distortions in<br>leading to an increased<br>ades as double cascades. |