- Starting with 6 'significant' parameters: β , ν_{1b} , K_{1a} , d_{0b} , b_{1b} , ρ_{0b}
- Scan parameter space for each parameter: for different values of the parameter, run MUPAGE - JSirene - JTE - Jpp track reconstruction
- Run JDataPostfit on the output to produce histograms of the observables & compare histograms using JCompareHistograms tools

<pre>[/sps/km3net/users/bofearra/MUPAGE/ORCA4/test_params > root beta/datapostfit/beta_0.084.datapostfit.root -1</pre>	
root [0]	
Attaching file beta/datapostfit/beta_0.084.datapostfit.root as _file0	
(TFile *) 0x1c9b400	
root [1] .ls	
TFile**	beta/datapostfit/beta_0.084.datapostfit.root
TFile*	beta/datapostfit/beta_0.084.datapostfit.root
KEY: TH1D	job;1
KEY: TH1D	hz;1
KEY: TH1D	ho;1
KEY: TH2D	hzo;1
KEY: TH2D	hxy;1
KEY: TH1D	hq;1
KEY: TH1D	hb0;1
KEY: TH1D	he;1
KEY: TH2D	heo;1
KEY: TH2D	hzq;1
KEY: TH2D	hze;1
KEY: TH2D	hzb0;1
root [2]	

• Scanning [0.8, 1.0, 1.2, 1.6] x nominal value

('ni1b: ', array([0.376, 0.47 , 0.564, 0.658]))
('beta: ', array([0.336, 0.42 , 0.504, 0.588]))
('k1a: ', array([-0.465, -0.581, -0.697, -0.813]))
('d0b: ', array([3.164, 3.955, 4.746, 5.537]))
('b1b: ', array([4.899, 6.124, 7.349, 8.574]))
('rho0b: ', array([22.608, 28.26 , 33.912, 39.564]))

- Compare resulting histograms of observables with data check using quality parameter (i.e. some test statistic)
- E.g. for the significance *S*, compare how the shape differs. Also the reduced chi-squared: $\frac{\chi^2}{NDF}$.

- Comparing output of 700 parameter combinations with one ORCA4 RBR data file
- Every point is the significance for a specific run (unique parameter combination) & associated error

- Comparing output of 700 parameter combinations with one ORCA4 RBR data file
- Every point is the significance for a specific run (unique parameter combination) & associated error

- Significance of nominal parameters: S = 9.3
- For runs with *S* < 9.3 ..

- Significance of nominal parameters: S = 9.3
- For runs with *S* < 9.3 ..

with 10+ examples like this

- The points currently investigated which fall below S_{nominal} value behave similarly, with an improved zenith angle agreement but with a greater discrepancy for the reconstructed energy and # overlays
- The following plots indicated a better significance for the zenith angle distribution *in particular* & is clear by eye
- The only differing parameter between all 3 runs is ho_{0b}

- Significance of nominal parameters: S = 9.3
- For runs with *S* < 9.3 ..

0.2 0.4

0.6

0.8

 $\cos(\theta)$

-0.8 -0.6 -0.4 -0.2 0

 10^{2}

-1

- Significance of nominal parameters: S = 9.3
- For runs with *S* < 9.3 ..

- Significance of nominal parameters: S = 9.3
- For runs with *S* < 9.3 ..

- Significance of nominal parameters: S = 9.3
- For runs with *S* < 9.3 ..

- Significance of nominal parameters: S = 9.3
- For runs with *S* < 9.3 ..

- Significance of nominal parameters: S = 9.3
- For runs with *S* < 9.3 ..

- At least one of the 5 parameters gives a better agreement with data for the zenith angle distribution
- The combination of parameters which improves *not only* this distribution is not clear yet
- Many more runs to go, however the procedure has been optimised

- When not comparing the distribution of beta0 (angular error), more points appear in the phase space with an "improved" significance compared to the nominal values — so more histograms add more constraints?
- The same comparison will be carried out with some simple cuts on the zenith and or energy distribution
- Note that parameters < 0.8*nominal values take much longer to run
- Must keep an eye on the MC-MC comparisons for "good values" to check

https://drive.google.com/file/d/1yLy7cIfPPKJKLKQidGFr441nbpA_PNAD/ view