- Hit right ahead of event - R = 0.1 m (extremely close)

vertex ($0,0,0$), 'SOUTH', muon dir (001), shower dir (-0.49294100 .870063), hit pos ($0,0,60$), Emuon $10^{\wedge} 3 \mathrm{GeV}$, Eshower $10^{\wedge} 3 \mathrm{GeV}$, cd $\sim 1, \mathrm{R}=0.1$, angle diff. $=29$ deg

- Hit right ahead of event $(0,0,60)-R=0.1 \mathrm{~m}$ (extremely close)
- First hit probability follows similar shape??

- Hit right ahead of event $(0,0,60)-R=0.1 \mathrm{~m}$ (extremely close)

```
- Near peak..
muon PDF values \(0.0186471 . f \quad 91.6892\).v 91.9072 .V \(2.82156 e-42\) PDFmuon.getP() shower PDF values 0.f 0 .v 0 .V -nan PDFshower.getP()
combined PDF values 0.0186471.f 91.6892 .v 91.9072 .V \(2.82156 e-42\) combined.getP()
```

vertex ($0,0,0$), 'SOUTH', muon dir (0001), shower dir (-0.49294100 .870063), hit pos ($0,0,60$), Emuon $10^{\wedge} 3 \mathrm{GeV}$, Eshower $10^{\wedge} 3 \mathrm{GeV}$, cd $\sim 1, R=0.1$, angle diff. $=29 \operatorname{deg}$

- Shift hit to $(60,0,60)-R=60$

- Shift hit to $(60,0,60)-R=60$
- Still similar shape?
vertex ($0,0,0$), 'SOUTH', muon dir (001), shower dir (-0.49294100 .870063), hit pos ($60,0,60$), Emuon $10^{\wedge} 3 \mathrm{GeV}$, Eshower $10 \wedge 3 \mathrm{GeV}$, cd $\sim 1, \mathrm{R}=60$, angle diff $=29$ deg

- Shift hit to $(60,0,60)-R=60$

- Near peak..
 muon PDF values 0.00104698.f 0.00276365 .v 0.0155494 .V 0.0676703 PDFmuon.getP() shower PDF values $0.00161955 . f \quad 0.00521232$.v $0.0185381 \mathrm{~V} \quad 0.0877171$ PDFshower.getP() combined PDF values $0.00266653 . f 0.00797597$.v 0.0340875 .V 0.0789348 combined.getP()

vertex ($0,0,0$), 'SOUTH', muon dir (001), shower dir (-0.49294100 .870063), hit pos ($60,0,60$), Emuon $10^{\wedge} 3 \mathrm{GeV}$, Eshower $10 \wedge 3 \mathrm{GeV}$, cd $\sim 1, \mathrm{R}=60$, angle diff $=29$ deg

JPDF_shower_t::result_type combinedPDF = PDFmuon_hit + PDFshower_hit;

//cout << combinedPDF.f << ".f " << combinedPDF.v << " .v " << combinedPDF.V << " .V " << endl;

```
double p = combinedPDF.getP();
```

getP

475	/**
476	* Get probability of first hit. $\$ n \hline 477 & * The probability is defined at the moment JResultPDF::f and JResultPDF::v have been evaluated \hline 478 & * and it is normalised to the total interval corresponding to JResultPDF::V. \hline 479 & \hline 480 & * \return probability \hline 481 & */ \hline 482 & double getP() const \hline 483 & \hline 484 & return $\exp (-\mathrm{v}) * \mathrm{f} /(1.0-\exp (-\mathrm{v})$);
485	\}

