Vertex fit
 Elongation study

Recap

- 100 TeV shower events
- Every event is reconstructed with different starting times
- Vertex reconstructed using MC hits

Perpendicular vertex resolution

Shower
For $\varepsilon=0.1, d z_{1}=3 \mathrm{~m}$ at looter

Two additional Samples

- $d z_{x}$ for $\varepsilon_{x}<0.1$
- Lower E contribution at vertex (Z_{0}, t_{0})

Elongation improvement

Reconstruct the same 100 events for different:

- Energy fractions of contribution at vertex
- Sampling fractions between vertex and 1st 10\% sampling point

Perpendicular vertex resolution
What happens to the

- Bias of the resolution
- The minimum -log(Lik)
- The time at which they are optimal

Perpendicular bias

Fitted time

Likelihood

$-\log$ (Likelihood) / len(hits) is comparable for all experiments

At which fitted time is the
-log(Likelihood) at a minimum?
Best likelihood for fit times [-5:3]

0	4.6	4.6	4.6	4.6	4.6	4.6	-4.90
	4.6	4.6	4.6	4.6		4.6	
$\stackrel{1}{7}$	4.6	4.6	4.6	4.6	4.6	4.6	
은	4.6	4.6	4.6	4.6	4.6	4.6	-
-	4.6	4.6	4.6	4.6	4.6	4.6	$-4.75 \stackrel{\text { O}}{\underline{=}}$
	4.6	4.6	4.6	4.6	4.6	4.6	-4.70
	4.6	4.6	4.6	4.6	4.6	4.6	
	4.7	4.7	4.7	4.7	4.7	4.7	
- -	4.9	4.9	4.9	4.9	4.9	4.9	
	0.0	$1 \mathrm{e}-06$	1e-05	0.0001	0.001	0.01	
			Sampli	fraction			

Fitted time

Fit times with best likelihood								- 2.0
	O-	-1	-2	-1	-1	-1	-2	
Optimum in likelihood with best $\longrightarrow \stackrel{\circ}{*}^{+}$		-2	-2	-2	-2		-1	- 1.5
		-1	-1	-1	-1	-1	-2	- 1.0
		-2	-2	-2	-2	-2	0	
		-2	-2	-2	-2	-2	-2	
		0	0	0	0	0	0	
at t $=0$ had a resolution of 11 cm	$\stackrel{\sim}{n}-$	2	2	2	2	2	2	- -1.0
instead of 7.5 cm	$\stackrel{\sim}{0}-$	2	2	2	2	2	2	-1.5
	-	2	2	2	2	2	2	
		0.0	$1 e^{\prime} 06$	1e-05	0.0001	0.001	0.01	-2.0
				Sampling fraction				

Conclusion

- Optimum in perpendicular bias when putting contribution with 1% of the energy at the vertex, found at true event time
- No extra sampling necessary
- BUT: likelihood is at a minimum at $\mathrm{t}=-\mathbf{1}$, so fit will pull to $\mathrm{t}=-\mathbf{1}$

Real hits problem

First hits

