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General Instructions 
Input files 
Input files for exercises can be found in three places 

1. At nikhef (stbc-i5.nikhef.nl) in directory ~verkerke/stats2020/ 
2. At CERN (lxplus7.cern.ch) in directory ~verkerke/public/stats2020 
3. On the web at http://www.nikhef.nl/~verkerke/stats2020 

 

Running ROOT 
All exercises are based on ROOT. You are recommended to use version 6.14.04, 
in which all prepared material has been tested. To pick up a pre-installed ROOT 
version please execute the following setup script 
 
source /cvmfs/sft.cern.ch/lcg/app/releases/ROOT/6.14.04/x86_64-
centos7-gcc48-opt/root/bin/thisroot.sh 
 
This release will work both at Nikhef and at CERN 
 

Where to work 
If you have an account at Nikhef, please work on stbc-i1.nikhef.nl or 
stbc-i2.nikhef.nl only (these run CentOS7 – required for above ROOT version) 
 
If you have an account at CERN, please work on lxplus7.cern.ch, 
this will select an CentOS7 node (required for above ROOT version) 
 
You can also work directly on your laptop if you have ROOT installed yourself 
 
 
Recommended Exercises for Monday Dec 7 - 2020 
•  Ex 9 –  Poisson Counting 
•  Ex 10 – Interval calculations on a Poisson 
•  Ex 11 – “Two Poisson” intervals  



Exercise 9 – Exploring the Poisson counting model 
 
Copy file ex09.C. This macro performs the following steps 
 
• Construct a Poisson probability model P(N|μS+B) with S,B fixed 
• Fits model to 25 observed event à returns fitted value of μ 
• Alternatively, explicitly constructs the likelihood L(25|μ) and visualizes that 
• Also visualized on the same frame is L(μ)/L(μ-hat) 

 
Questions & explorations 
 
• Do you understand the difference between the likelihood and the likelihood 

ratio curve? 
• How does the interval defined by the rise of the likelihood ratio by half a unit 

compare to the MINOS error? 
• Can you construct the 95% interval from the plot? 
 

Copy file ex09_build_Poisson.C This macro builds the same Poisson model as 
ex09.C, but doesn’t do any analysis on it. Instead it writes the model, along with a 
RooStats::ModelConfig object to a workspace file for later analysis 
 
• Look at  ex09_build_Poisson.C, run it, and quit ROOT 
• Open a new ROOT session that reads the ROOT file written by 

ex09_build_Poisson.C named model.root. 
• Retrieve the workspace from the file  

 
RooWorkspace* w = gDirectory->Get(“w”) ; 
 
and print its contents, and understand what is in there. 

 
  



Exercise 10 – Using RooStats calculators 
 
Now that we have a (very) simple statistical model stored in a workspace that is 
annotated with information (RooStats::ModelConfig) that uniquely defines the 
statistical problem that we want to be solved, we can try to run some of the 
RooStats standard interval calculator classes on this problem. 
 
First copy ex10_roostats_plr_interval.C, and run it 
 
• Opens the model.root file, retrieves the workspace and from that the 

ModelConfig object (unique statistical problem definition) and also the 
observed data 

• Instantiates a RooStats Profile Likelihood Ratio calculator and lets it 
calculate the profile likelihood ratio interval on the above problem 

• Reports the results on the command line 
 

Questions & explorations for the Profile Likelihood Calculator 
 
• How does the profile likelihood calculator result compare to your manual 

investigation of the likelihood ratio curve in ex09.C? 
• Calculate the same type of interval at difference confidence levels, e.g. 65% 

and 95%. 
 

Next, copy ex10_roostats_bayes_interval.C, and run it. 
 
• Opens the model.root file, retrieves the workspace and from that the 

ModelConfig object (unique statistical problem definition) and the observed 
data 

• Instantiates a RooStats Bayesian Calculator and lets it calculate the 
Bayesian credible interval on the above problem 

• Reports the results on the command line 
 

Questions & explorations for the Bayesian Calculator 
 
• How does the Bayesian 90% interval compare with flat prior to the 

Frequentist Profile Likelihood Ratio interval of the same size  
• Run the macro for some different interval shapes: e.g. upper limit,  

or shortest interval 
• Explore what happens for various choices of priors, e.g. 1/√μ, or a flat prior 

for μ>0 only? 
• Note that this Bayesian calculator uses a simple numeric integration engine, 

it may emit warnings about numeric precision if pushed to perform complex 
integrations. 

 
  



Exercise 11 - Build the Poisson on/off problem 
 
The Poisson on/off is a famous ‘standard candle’ model among statisticians. The 
reason is that represents a canonical problem, and (exceptionally) that is also 
possible to calculate results for analytically, so it is a useful vehicle to calibrate 
numerical calculation methods. Here we will only explore numeric solutions to this 
model, but we will compare to known analytical result at the end 
 
First copy ex11_build_PoissonPoisson.C, and run it 
 
• Constructs the classic statistical model known as ‘on/off’:  

A Poisson model for the signal region measuring μ*S+B 
A Poisson model for the control region measuring τ*B 

• Here tau is a scale factor for the size of the control region, e.g. if τ=3 then a 
count of 30 in the control region will predict a background rate of 10 in the 
signal region with a relative error of 10/√30. 

• Constructs a RooStats ModelConfig and saves everything to  
a workspace on file. 
 

Questions and explorations 
 
• Do you understand the observed uncertainty on the fitted background 

rate in the SR?  (In terms of given numbers, N_CR=200, tau=10, N_SR=25)? 
• Run the RooStats PLR and Bayesian calculators on this model (from ex10) 
• Can you reproduce the ‘standard candle’ result N_SR=178, N_CR=100, tau=1 

of in the course and confirm that it’s significance is exactly 5 sigma? 
To do so, plot a scan of the profile likelihood ratio of this problem (see ex09.C 
on how to do that), and look at the value of the PLR for μ=0 
 

Next, copy ex11_build_PoissonPoissonGlobs.C, and run it. 
 

• This macro build exactly the same model as the previous macro, but with a 
technical difference – it formulates the observable of the control region as a 
‘global observable’. 
 

A regular likelihood of two models is written in terms of data and models as 
 

     D(x,y)   ßà F(x,y|param) = F(x|param)*F(y|param) 
 

so that in L(param) the values of x,y for F are taken from D(x,y). Observables of 
subsidiary measurements (generalized control regions) often have trivial values (in 
most cases 0), and there are also usually very many of them, so we prefer not to 
carry those in the dataset, hence the Likelihood construction is modified as follows 

 

 D(x)   ßà F(x,y|param) = F(x|param)*F(y=0|param) 
 

In this reorganization, the value of the observable y is ‘hardcoded’ in the model F(y) 
so that it can be omitted from the dataset, and is called a ‘global observable’ 
  



Exercise 12 – The concept of subsidiary measurements 
 
This exercise introduces the concepts of subsidiary measurements, which are a 
generalization of sideband measurement.  
 
A subsidiary measurement can be sideband measurement, but it can also be more 
abstract: a Gaussian approximation of an external measurement, or even a ‘theory 
measurement’, i.e. a likelihood function that encodes the a ‘measurement’ that 
represent a theoretical calculation along with its uncertainty.  
 
Along with subsidiary measurement comes the concept of response functions that 
map the unit Gaussian to the desired response in the physics measurement. 
For example for an original measurement written as 
 
      F(Nsig,Bobs|S,B) = Poisson(Nsig|S+B)*Gaussian(Bobs|B,σB) 
 
is identically expressed as subsidiary measurement as follows 
 
     F(Nsis|S,B) = Poisson(Nsig| S + B*(1+ αB*σB) )*Gaussian(0|αB,1) 
 
Here the response function B*(1+ αB*σB) ensures that the unit Gaussian subsidiary 
measurement has the same impact on the main measurement as the original 
Gaussian(Bobs|B,σB). In the process Bobs has also been eliminated from the dataset, 
as it now replaced by global observable defined inside the dataset 
 
First copy ex12_build_PoissonGaussGlobs.C and run it. This macro implements 
the above implementation of a Gaussian subsidiary measurement. 
 
• This macro builds a variant of the model of 

ex11_build_PoissonPoissonGlobs.C – it changes the control region model 
that measured the background B from a Poisson to a Gaussian. 

• It also maps the physics effect (the magnitude of the uncertainty) in a 
response function encoded in the signal region probability model in terms of 
a nuisance parameter alpha, and reduces the subsidiary measurement of 
alpha to a unit Gaussian. 

• Writes probability model and RooStats ModelConfig to output file 
 

Questions and explorations 
 
• Identify the piece of code that encodes the response function of the 

systematic uncertainty. 
• Modify the response function such that magnitude of the systematic 

uncertainty is doubled and rerun 
• Analyze the model of ex12 with the RooStats PLR and Bayesian calculators 

  



Exercise 13 – Limit setting procedures with CLS 
 
A regular 95% limit setting procedure entails finding the value of μ for which  
the p-value of the corresponding test statistic qμ is 0.05.  The PLR test statistic 
qμ is especially designed for upper limit setting, as it will regard any dataset with 
fluctuation to values greater than expected for the tested hypothesis μ to 
maximally compatible with μ (so that these are not counted ‘against’ the 
hypothesis) 
 
The CLS technique is one of the procedures used in HEP in limit setting to avoid 
so-called spurious exclusions. Spurious exclusions happen when the observed 
event rates is (well) below the background-only expectation, in which case a limit 
setting procedure may report that all signal strengths of a given model are 
excluded at the stated confidence level (usually 95%).  
 
The CLS procedure is an ‘after burner’ on any self-contained limit setting 
procedure: instead of finding the point where qμ=0.05, the point where CLS=qμ/(1-
q0)=0.05 is found, where the denominator 1-q0 gives the p-value for the back- 
ground-only hypothesis. If  (1-q0) becomes <<1 that implies the observed data is 
also unlikely under the background-only hypothesis (e.g. a strong negative 
fluctuation w.r.t the background), and by dividing by this number the CLS value is 
increased and the limit calculation will continue to include this hypothesized μ value 
in the included interval (i.e. it will not be in the excluded interval of μ values) 
  
First copy ex13_roostats_cls_limit.C 
 
• Implements the RooStats hypothesis test inverter limit calculator. 

This is the most general limit calculator. 
• In this macro the calculator is configured to use the 

profile likelihood ratio test statistic for the limit calculation, 
and to assume its known asymptotic distributions 

• In the final limit calculation the CLS technique is enabled, which is 
designed to always return non-empty intervals in the range [0,X] 
 

Questions and explorations 
 
• Run the calculator first on several of the models built so far 

(Single Poisson ex09, Two Poissons ex11, Poisson/Gaussian ex12) 
 

Understand the working of the calculator by identifying its pieces 
 
• An explicit alternative hypothesis is constructed from the workspace 

(ModelConfig for b-only hypothesis). This is needed for the calculation of CLS 
and for the calculation of expected limits under the B-only hypothesis 

• Set up an (asymptotic) calculator that can calculate the p-value of the data 
under both hypothesis (B-only, and S+B(for a given value of μ) 



• Configure the Inverter, the tool that will vary mu in such a way that  
 
     CLS = p-value(S+B)/(1-p-value(B) )  
 
corresponds to the desired confidence level. The value of μ for which this is 
true is then reported as the CLS upper limit 

 
Optionally, you can try also ex13_roostats_cls_limit_toys.C, which is identical 
to the previous macro except that it does not assume asymptotic distributions, but 
rather samples these from toy MC runs. This calculator configuration is also valid 
at low statistics where the asymptotic formulae are not, but is very substantially 
more expensive to evaluate. 


