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General Instructions 
Input files 
Input files for exercises can be found in three places 

1. At nikhef (stbc-i1.nikhef.nl) in directory ~verkerke/stats2020/ 
2. At CERN (lxplus7.cern.ch) in directory ~verkerke/public/stats2020 
3. On the web at http://www.nikhef.nl/~verkerke/stats2020 

 

Running ROOT 
All exercises are based on ROOT. You are recommended to use version 6.14.04, 
in which all prepared material has been tested. To pick up a pre-installed ROOT 
version please execute the following setup script 
 
source /cvmfs/sft.cern.ch/lcg/app/releases/ROOT/6.14.04/x86_64-
centos7-gcc48-opt/root/bin/thisroot.sh 
 
This release will work both at Nikhef and at CERN 
 

Where to work 
If you have an account at Nikhef, please work on stbc-i1.nikhef.nl or 
stbc-i2.nikhef.nl only (these run CentOS7 – required for above ROOT version) 
 
If you have an account at CERN, please work on lxplus7.cern.ch, 
this will select an CentOS7 node (required for above ROOT version) 
 
You can also work directly on your laptop if you have ROOT installed yourself 
 
 
Recommended Exercises for Monday Dec 7 - 2020 
•  Ex1 – ‘Warm up’ 
•  Ex 2 – ML estimation of lifetime (includes a little of math on paper) 
•  Ex 3 – Biases in ML fits for low statistics (mostly ‘try & run’) 
  



Quick reference guide to RooFit model building 
 
In these tutorial exercises we will use RooFit to build probability models as that 
allows to rapidly build complex models. This requires some familiarity with the 
RooFit model building syntax. It is easy enough to pick up ‘on the way’ from input 
files given with this tutorial, but for completeness this page also presents a quick 
reference guide to the model building syntax and strategy 
 
RooFit model structure 
The key feature of RooFit model building is that all elements of a probability model 
(functions, p.d.f.s, variables) are all individual objects that connect to each other. 
For example a Gaussian probability density model is expressed as 
 
  RooRealVar x(“x”,”x”,0,-10,10) ; 
  RooRealVar mean(“mean”,”mean”,0,-10,10) ; 
  RooRealVar sigma(“sigma”,”sigma”,3,0.1,10) ; 
  RooGaussian gauss(“gauss”,”gauss”,x,mean,sigma) ; 
 

The simplest strategy to build these models is to have all objects contain in a 
workspace, and use the ‘factory’ tool to fill the workspace with objects: 
 
  RooWorkspace w(“w”) ; 
  w.factory(“Gaussian::gauss(x[0,-10,10],mean[0,-10,10],sigma[3,0.1,10])”) ; 
  w.Print() ;   // see what’s inside the workspace 
 
Inside the workspace this factory specification builds exactly the model shown 
above. The elements of the model can be accessed as follows: 
 
  RooAbsPdf* gauss = w.pdf(“gauss”) ; // extract a pdf 
  RooRealVar* x = w.var(“x”) ;        // extract a variable 

 
RooFit factory syntax 
The factory syntax is quick to learn since it has very few rules 
 

• To create a variable use x[val,min,max]. 
 

• To create a pdf or function use ClassName::objectName(args…) 
Any RooFit function or pdf class can be created this way. 
You are allowed to omit the ‘Roo’ prefix from any class name. 
The meaning and order of the args match those specified in the constructor 
of the class (after the mandatory name and title). Example: 
 

      C++ constructor: RooGaussian gauss(“gauss”,”gauss”,x,mean,sigma)  
               Factory spec: w.factory(“Gaussian::gauss(x,mean,sigma) 
 
• Any field where an object name is expected must either contain the name of 

a previously created object, or it can be created on this spot. 
 

        w.factory(“x[0,-10,10]”) ; 
         w.factory(“Gaussian::gauss(x,mean[0,-10,10],sigma[3,0.1,10])”) ; 
 
        In 2nd line above, for x, a previously created object is referenced, for mean 
        and sigma, new objects are created in place. 



Special Factory rules for operators 
 
For certain functions and pdf an custom syntax exists to simplify their use. The 
most important ones are shown here 
 
• Addition of two (or more) pdfs 

 
SUM::objName(frac1*pdf1,pdf2) ;         // shape-only pdf 
SUM::objName(yield1*pdf1,yield2*pdf2) ; // extended pdf: N(exp) =y1+y2 
 

• Multiplication of two (or more) pdfs 
 
PROD::objName(pdf1,pdf2,…) ; // product of independent pdfs 
PROD::objName(pdf1|x,pdf2,…) // product involving a conditional pdf 
 

• Interpreted function expressions (all TFormula expressions can be used). All 
symbols reference in the expression must be passed as arguments. 
 
expr::funcName(‘some expression’,<list of objects used>) ; 
 

Example use cases of these operators are given in the input files of various 
exercises and will further clarify their use. More special operator syntax exists, but 
is not needed for this course (e.g. for convolutions, joint models, integrals, 
projections, amplitude sums) 

 

Basic use of RooFit models 
Probability models in RooFit can be used for event generation, (likelihood) fitting 
and plotting. All of these are one-line operations. 
 
• Generation of unbinned toy dataset  

 
RooDataSet* pdf.generate(observables,eventcount) ; 
RooDataSet* pdf.generate(observables) ; for extended models only 
 

• Unbinned Likelihood fit of model to data 
 
pdf.fitTo(data) ; 
RooFitResult* r = pdf.fitTo(data,Save()) ; // save extra info 
 

• Plotting of data and model 
 
     RooPlot* frame = obs.frame() ; // creates empty plot frame 
     data.plotOn(frame) ; // plot data on frame  
     pdf.plotOn(frame) ; // project pdf on obs, normalize to data 
 
Questions? Don’t hesitate to ask! 
  



Exercise 1 – An unbinned maximum likelihood fit  
 
This a mostly a demonstration exercise only that shows some of the functionality 
and the syntax of the RooFit toolkit for data modeling that we’ll be using in the next 
exercises 
 
Copy file ex01.C, look at it and run it. This macro does the following 
 
• It creates a Gaussian probability density function 
• It generates an unbinned dataset with 10k events from that function 
• It performs and unbinned ML fit of the Gaussian model to the toy dataset 
• It makes a plot of the data and overlays it with the Gaussian model 

 
Now comment out the part of the code labeled as ‘block 1’ and run the macro 
again 
 
• This code will print out the covariance matrix and correlation matrix of the fit 

parameters.  
 
Now comment out the code labeled ‘block 2’ and run again. 
 
• This code will visualize the uncertainty of the model on the canvas using the 

error propagation technique. At 10K the event the uncertainty is very small 
(you can see it if you zoom in on the peak region of the pdf) 

• Change the number of generated events from 10K to 100 and change the 
binning of the data in the plot from 100 bins to 10 bins (this is the argument 
in the w.var(“x”)->frame() call. Run again. 

• Lower the number of generated events from 100 to 10 and run again. The 
error on the shape will now be significant, but you see that an unbinned ML 
can reliably fit very small event samples  

 
Now comment out code block 3 
 
• This will visualize the error on the p.d.f shape due to the uncertainty on the 

mean parameter only 
 

  



Exercise 2 – Maximum Likelihood life time estimator  
 
For certain simple cases it is possible to calculate the ML estimate of a parameter 
analytically rather than relying on a numeric estimate. A well-known case is that of 
the fit of a lifetime of an exponential distribution 
 
Copy ex02.C and run it. This example performs an unbinned MLE fit to an 
exponential distribution of 100 events to estimate the lifetime. 
 
Now we aim to construct the analytical ML estimator of the lifetime  
(do this part on paper, not by computer) 
 
• Write down the probability density function for the exponential lifetime 

distribution.  
• It is essential that you formulate a normalized expression, i.e. Int F(t) dt = 1 

when integrated from 0 to ∞.  
The easiest way to accomplish that is to divide whatever you expression you 
have by the integral of that expression over dt. (You can calculate that 
normalization integral on paper) 

• Next write down the analytical form of the negative log-likelihood –log(L) for 
that probability density function given a dataset of N events labeled these xi in 
your expression. Be sure to also include the pdf normalization term in the 
expression 

• The analytical ML estimate of the lifetime tau then follows the requirement 
that  d(-logL)/dtau = 0. Calculate the expression for this derivative solve and 
derive the value of tau for which the requirement d(-logL)/dtau holds. 
 

Finally, implement the analytical calculation of MLE estimator for tau  
in the code of ex02.C 
 
• Uncomment block one, which implements a look over the dataset, retrieving 

the values of the decay time one by one and build your calculation of the 
analytical estimate of tau with that of the numeric calculation from fitTo() 

• Explain why you might have minor discrepancies between the analytical and 
numeric calculations. 

• Increase the event count from 100 to 10000 and run again 
 
  



Exercise 3 – A signal+background background 
 
The most popular statistical models used in particle physics describe the data as a 
sum of a signal and background component in some discriminating observables. 
In this exercise we will explore the features of such a model, especially at very low 
sample sizes. 
 
Copy file ex03.C. This macro performs the following steps 
 
• Construct a model that is the sum of Gaussian signal and an Exponential 

background 
• Generate a toy dataset with 1000 events 
• Perform an unbinned ML fit to the data 
• Plot data and projection of the model 

 
Run the macro and observe its behavior. Then try a few variants 
 
• Reduce the sample size to 100 and 10 and try again. If needed you 

can adjust the binning for the data in the plot projection (this will not affect 
the fit since it use the data unbinned) 

• Uncomment the bottom section that runs a MC Study of the properties of 
this model: it generates 1000 toy datasets, fits each of them and collects the 
fit statistics, by default on the fsig parameter. Does the fit look unbiased? 

• Lower the sample size for the toys in the study from 1000 to 50, and then to 
10 and run for each reduced size again. Have your conclusions changed?  

 
One of the problems the fit runs into at low statistics is that the signal fraction fsig 
has a lower boundary at zero. If statistics are sufficiently small, ML fits will 
frequently run into this boundary, warping distributions.  
 
• To mitigate boundary effects, decrease the lower bound on fsig from 0 to -

1. Rerun the toy study for sample size 10. Does it improve? Rerun again for 
100 to see how the behavior improves. 
 

Finally, we push the model to see how well it can constrain fsig for data that 
doesn’t contain any signal (this strategy relates to understanding the potential for 
discovery of a signal – this will be discussed further in tomorrows lectures). 
 
• Change the default fsig value to zero, and run the study for sample size 

100. Then decrease the sample size to 10 and run again. 
 

As you, at sufficiently low sample size, ML estimators will suffer from biases. ML 
estimators are unbiased, per the ML theorem, if such an unbiased estimator exists, 
but for very low statistics samples such estimators will not exist.  Generally, bias 
terms scale with 1/N, hence decreasing rapidly rising N also in comparison with 
the statistical error that scales with 1/√N 
 



Exercise 4 – A simple two-dimensional model 
 
A simple extension of the 1-dimensional signal+background model of exercise 4 
involves a variant where the mean of the Gaussian signal changes as function of a 
second observable y in the data 
 
Copy file ex04.C. This macro performs the following steps 
 
• Construct an extended model that is the sum of Gaussian signal and an 

Exponential background 
• Generate a toy dataset with 1000 events 
• Perform an unbinned ML fit to the data 
• Plot data and projection of the model on the observable x 

 
Run the macro and observe its behavior.  
 
• Do you understand the shape of the signal in the plot? 
• Change the slope in the mean_func() of the Gaussian signal model to a 

smaller number (or even zero) and see how the shape changes 
• Does the precision of the estimate of Nsig depend on the magnitude of the 

slope of mean_func? Explain why (not)? 
• Do you understand the (anti)correlation between the estimates of 

Nsig and Nbkg? 
• You can (as an option) also visualize the model in 2 dimensions by 

uncommenting the last part of the macro. You may need to rotate the plot 
from its default viewing angle by drag-clicking on it. 

 
  



Exercise 5 – Using the NP Lemma for event selection 
 
The Neyman-Pearson lemma states that the optimal selection of selection of data 
points (x,y,z) that contain a mix background (hypothesis H0) and signal (hypothesis 
H1) is given by a contour of the likelihood ratio 
 

L(H0)/L(H1) > c 
 

where the critical value c can be chosen to obtain a selection with the desired 
tradeoff between purity (ratio of H0 and H1 in selection) and efficiency (fraction of 
H2 in selection). We are going to exploit this NP lemma to create a plot projection 
of a three-dimensional pdf on its observable x, while applying an NP-optimal 
selection criteria on its observables y,z.  
 
Copy file ex05.C. This macro performs the following steps 
 
• Construct a 3D Gaussian signal model, and a 3D Polynomial bkg model 
• Generate a sample of 10.000 events from the model 
• Fit the model to the data 
• Plot a plain projection of the data and model on observable x 

 
As is clear from the plot, when all data is projected in a single observable, there 
substantial background under the signal, as the projection on x does not take the 
discriminating information in observables y,z into account. 
 

• Uncomment the return statement half-way the macro. The macro will now 
additionally do the following 
 

§ Construct a NP-optimal selection criteria f L(H0)/L(H1) where H0=signal, and 
H1=signal+background, for events using the (y,z) information of the model only 

§ Make a plot of the data projected on x, only selecting those events that meet 
L(H0)/L(H1) > 0.7 

§ Make a corresponding projection of the 3-model that integrates out only region 
selected by the requirement L(H0)/L(H1) > 0.7 
 

• Observe the much-improved signal-to-background ratio in the new plot 
• Try to change the Likelihood ratio cut value up and down and see what 

happens? Why does L(H0)/L(H1) > 0.8 result in a empty plot? 
 
Finally we compare the sensitivity to signal significance for two potential workflows 
 
• 1 – No event selection – big fit too all events 
• 2 – NP-optimal event selection using observables y,z.  

     Subsequent fit on selected events in observable x only 
 
The first workflow is already executed in the macro – it is simply the initial fit. The 
second workflow can be enabled by removing the return statement close to the 
end of the macro. How do does the signal significance differ? (In this regime of 
signal yields you can approximate the significance as Z=fsig/σ(fsig). Repeat for 
several different settings of the Likelihood Ratio cut.  



Exercise 6 – The important of accurate modeling   
 
Statistical inference is only valid in the limit that the probability model that is used 
can accurately describe the data. While this seems trivially obvious, plenty of 
problems can arise in practice 
 
Here we investigate a common area of problems – model with tail regimes that 
assign very low probabilities to events occurring in these regions 
 
Copy file ex06.C. This macro performs the following steps 
 
• Construct a narrow Gaussian probability model: the observable range spans 

about 20σ of the Gaussian. 
• Fit sample of 100 points, drawn from the Gaussian to the model 

 
Run the macro and observe its behavior. Is the fit unbiased? 
 
• Uncomment the second code block. In this section, a single outlier event is 

added ‘by hand’ to the dataset and the fit is repeated. How large is the fit 
bias due to this single event? 

• What happens if you move the outlier event to x=9? Can you explain why 
only the width parameter is biased and not the mean parameter? 
 

Outlier events like the one manually added here can occur in real data if detectors 
or reconstruction techniques do not behave according their assumed 
specifications. To avoid strong biases due to (exceedingly) rare outlier points, it is 
prudent to include a term in models that can absorb such unexpected events.  
 
• A prudent solution for narrow signals like the Gaussian model studied here is 

to add uniform background to the Gaussian signal that can model a small 
fraction of events that do not conform to the expected behavior 

• Construct a model that is the sum of the original Gaussian plus a Uniform 
background model, where the fraction of Gaussian signal is floating and 
initialized to a value close to 1 (but not exactly one). Consult e.g. the model of 
ex03.C,ex04.C on the syntax to construct such model. Run the fit and 
visualize the result in the 3rd plot panel. 

• What is the loss in precision on the estimate on the mean and sigma of the 
Gaussian model compared to the original fit without outlier and without outlier 
absorption term? 

   

 
  



Exercise 7 – A likelihood fit for an efficiency curve 
 
This exercise is mostly a demonstration. The goal of this exercise is to 
demonstrate that every modeling problem can be cast in the form of a probability 
model, so that any subsequent parameter estimation can be done with e likelihood 
fit. 
 
Copy ex07.C. This macro presents a classical problem that is usually seen as ‘Χ2-
fit’ problem.  
 
• A dataset has two observables: a continuous observable x, e.g., an energy of 

a triggered object, a label c that indicates if the event is accepted or rejected 
by the trigger.  

• The goal is to fit a turn-on curve of the efficiency of the trigger. This efficiency 
function (which is clearly not a probability model itself!) has an S-curve in it 
that can be fit to describe a turn-on point in the data at some energy, and 
with some resolution (i.e. it is not a very sharp turn-on) 

• The classical (‘naïve’) approach is to first construct an efficiency histogram 
from the data (fraction-accepted vs E). Then a Χ2-fit is performed of the 
efficiency function f(E|p) with some parameters p to the observed efficiency 
histogram. 

• Run the macro – and see the ‘naïve’ approach executed as a plain ROOT Χ2-
fit 
 

Apart from the fact that the Χ2-fit must be a binned fit, the highly non-Gaussian 
nature of the binomial errors on the efficiency data (especially close to 0 or 1) is 
cause for concern. It would thus be preferable to not do this. How can this 
parameter estimation problem be captured in a likelihood model? 
 
• The first step is to realize that one needs to go back to the original 2-

dimensional dataset D(E,c) where E is the energy observable and c is 
discrete labeling observable that can take states ‘accept’ and ‘reject’ 

• Given an efficiency ε(E) that is valid at energy E, the probability model for the 
observable c is a Binomial model with n=2. 

• The conditional probability model for this data is thus simply   

      f(c|E) = Binomial(n=2,k=ε(E)) 
 

• The full pdf would then be f(c|E)*F(E), but this step can be omitted if there is 
no signal and background component to the full model as F(E) could simply 
be taken to be identical the observed distribution of E. 
 

Remove the return statement in the code and run the likelihood fit alongside the 
ROOT Χ2-fit. 
 
• Observe that for 1000 events both fits are comparable in precision 
• Lower the event count to 100 events, or even 50 events, rerun and observe 

the superior stability of the unbinned likelihood-based efficiency fit. 



Exercise 8 – The Central Limit Theorem 
 
In the lectures of Day 1 we saw that the Central Limit Theorem predicts that the 
sum of N measurements has a Gaussian distribution in the limit of N à ∞, 
independent of the distribution of each individual measurement 
 
• In this exercise we will investigate how quickly this convergence happens as 

function of N. 
• We start with a ‘fake’ measurement resulting in a value x with a uniform 

distribution between [0,1] (i.e. this is very non-Gaussian) 
• Then we will look at the distribution of x1+x2, x1+x2+x3, etc and compare 

these with the properties of a Gaussian distribution 
 

Start with file ex08.C 
 
• This macro books a ROOT histogram, runs 10000 experiments and fills the 

‘measured’ value of x in the histogram and plots the histogram and the end 
of the run. 

• RUN: Look at the macro and run it (‘root -l ex8.C’ from the OS command 
line, or ‘.x ex8.C’ from the ROOT command line) 

 
Modify the loop so that instead of filling the result of a single measurement in the 
histogram you store the result of Nsum measurements 
 
• CODE: Allocate a variable xsum that it is initialized to zero 

§ The variable Nsum is already defined in the macro as first argument to macro ex1(). Its 
default value when unspecified is 1. 

• CODE: Make a loop from from j=1 to Nsum (inside the existing loop over i) 
and in new inner the loop add the value ‘measurement’ as returned by the 
‘gRandom...’ line to the value of xsum.  Change the histogram filling code to 
use xsum instead of x 

• The histogram defined by the macro has its range already defined as 
[0,Nsum] so that the summed measurement values always fit in the range of 
the histogram 

• EXEC: Run the macro again now passing value 2 as argument for Nsum  
‘.x ex1.C(2)’ (or root –l ‘ex1.C(2)’ from the OS command line. Note that 
in this case the quotations are essential). Look at the distribution 

• EXEC: Repeat for Nsum=3,5,10,20 and 100. 
 

You will see that around Nsum=10 the distribution is already looks quite Gaussian.  
 
• This is however mostly for the ‘core’ of the distribution. The convergence of 

the tails of the distribution is much slower as we will see next in this exercise 
 
To compare the distribution to a Gaussian we compare the fraction of events in 
the range defined by 1,2,3,4,5 times the measured standard deviation (=√Variance) 



to the fractions expected for a Gaussian 
 
• I.e. we expect for a true Gaussian that 68% of the events is in the ±1 sigma 

range. Then we count which fraction of the xsum distribution is in that range 
• And we repeat for 2,3,4,5 sigma 

 
To do so we need to calculate (on paper) the expected standard deviation of the 
sum of N measurements with a uniform distribution. 
 
• Calculate first (on a piece of paper) the variance of a uniform distribution in 

the range [0,1]. 
• To do so, use the formulas 

where F(x) is the distribution you are averaging over  
(For this case F(x) is a uniform distribution in range [0,1]) 

 
Then once you have variance for a single measurement of x, determine what the 
variance is for the sum of N identical measurements 
 
• If you need help, look at the slides on Central Limit Theorem of Lecture 1 

 
Update the code to add this additional information 
 
• CODE: At the beginning allocate a variable Nsigma1 and initialize it to zero. 

This will hold the number of events in the ‘one-sigma’ range. 
• CODE: In the ‘experiment loop’, once you have calculated Xsum, determine if 

the answer is inside or outside the ‘one-sigma range’, i.e. it is outside the 
range [-1*sigma,+1*sigma]. 

• CODE: At the end of the loop print the fraction of events Nsigma1/Ntot, 
which is the fraction of events outside the one-sigma range of the 
distribution. 

• Compare it the fraction expected for a Gaussian distribution. 
Tip: You can get the exact fraction of events outside a n-sigma Gaussian 
distribution from the following ROOT expression: 
 
    double gaussfrac = TMath::Erfc(n/sqrt(2))  
 
where ‘n’ is the number of sigmas (i.e. 1 will give you 100%-68%≈32%) 

 
Note that there is a statistical uncertainty on the measurement of  
Nsigma1/Ntot which is (to good approximation) sqrt(Nsigma1)/Ntot 
 
• Compare Nsigma1, the stat. unc on Nsigma1, and the expected value of 

Nsigma1 for a Gaussian distribution on one line 
• EXEC: Do this for Nsum=2,5,10,20,100 
• You will see that 10000 experiments provides plenty precision to see that the 

one-sigma range of the distribution of Xsum converges rapidly to that 
expected for a Gaussian distribution. 
 



Now repeat the exercise for 2,3 sigma range. 
 
• CODE: To do so, add variables Nsigma2, Nsigma3, fill them in the event loop 

with the corresponding ranges and compare them (with their errors) to the 
matching fractions for a true Gaussian distribution. 

• EXEC: Do this for Nsum=2,5,10,20,100 
• Do you have enough statistics to measure the convergence for 2 and 3 

sigma? If not, increase the number of experiments by e.g. a factory of 10 
 

Finally add the 4,5 sigma range 
 
• CODE & EXEC: How many experiments do you need to verify 5-sigma 

convergence? (Feel free to stop this exercise if runs start to take too long) 
 
What does it mean? 
• If you have done your exercise correctly you’ll see the following results for the 

Nsum=20 run with Nexp=10.000.000 for 1,2,3,4,5 sigma 
 
n = 3198780 frac = 0.319879  +/- 0.00017 Gauss = 0.317311   rel. = 0.008 
n = 450384  frac = 0.0450384 +/- 6.7e-05 Gauss = 0.0455003  rel. = -0.010 
n = 22954   frac = 0.0022954 +/- 1.5e-05 Gauss = 0.0026998  rel. = -0.149 
n = 329     frac = 3.29e-05  +/- 1.8e-06 Gauss = 6.33425e-05 rel. = 0.480 
n = 0       frac = 0         +/- 0       Gauss = 5.73303e-07 
 

• While the 2,3 sigma fractions are fairly close to Gaussian  the 4-sigma 
number is 50% off  

• E.g. your interpretation of how often a result 4 times the sqrt(variance) away 
from the central value happens is 50% off w.r.t the Gaussian distribution 

• Verifying 5 sigma results is a very time consuming business (even when a 
simulation of your measurement is as trivial as throwing a single random 
number) 

 
Conclusion: interpretation of large deviations expressed as ‘N standard deviations’ 
in terms of probabilities is difficult due to slow convergence of tails  
à To quantify a >3 sigma deviation, an explicit calculation is often needed   
 

 


