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PREFACE

This monograph began with research designed to provide a generali-
zation of the Likelihood Principle (LP) to quite arbitrary statistical
situations. The purpose of seeking such a generalization was to partially
answer certain criticisms that had been levied against the LP, criticisms which
seemed to prevent many statisticians from seriously considering the LP and its
implications. The research effort seemed worthwhile because of the simplicity,
central importance, and far reaching implications of the LP.

Background reading for the research revealed a wider than
expected range of published criticisms of the LP. In an attempt to be complete
and address all such criticisms, the research paper expanded considerably.
Eventually it seemed sensible to enlarge the paper to a monograph. This also
allowed for discussion of conditioning ideas in general and for a review of the
implications of the LP. It was decided, however, to stop short of a general
review of conditional methods in statistics. In particular, the monograph does
not discuss the many likelihood based statistical methodologies that have been
developed, although references to these methodologies will be given. This
Timitation was, in part, because such an endeavor would be far too ambitious,
and, in part, because we feel (and indeed argue in Chapter 5) that Bayesian
implementation of the LP is the correct conditional methodology.

The mathematical level of the monograph is, for the most part,
kept at a nontechnical level. The main exception is the generalization of the
LP in Section 3.4, which is (necessarily) presented at a measure-theoretic

level, but can be skipped with no loss in continuity. Also, the monograph

vii
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viii PREFACE

presupposes no familiarity with conditioning concepts. Indeed Chapter 2
provides an elementary review of conditioning, with many examples.

This second edition was produced under the rather severe constraint
that the original manuscript, used for photo-offset printing, was inadvertantly
destroyed; only the photos were kept. Thus changes could only be made by
retyping entire pages or inserting new pages. A list of corrections that were
too minor to justify the retyping of an entire page is given at the end of the
monograph. Inserted pages received decimal page numbers: e.g. 74.1, 74.2. A
list of additional references was added, and new discussions were kindly contri-
buted by M. J. Bayarri and M. H. DeGroot, Bruce Hill, and Lucien Le Cam.

Substantial changes or additions were made in Sections 3.1, 3.5,
4.2.1, 4.4, and 4.5. The changes in Section 4.4 correct a glaring oversight in
the first edition: the failure to emphasize the misleading conclusions that
can result from violation of the Likelihood Principle in significance testing
of a precise hypothesis. Another very weak part of the first edition was
Section 3.5, which discussed prediction, design, and nuisance parameters. The
new material incorporates recent substantive insights from the literature.

Numerous other minor changes and literature updatings were made
throughout the monograph. We did not attempt complete coverage of recent 1it-
erature, however,

We are grateful to a number of people for valuable discussions on
this subject and/or for comments and suggestions on original drafts or the
first edition of the monograph. In particular, we would like to thank George
Barnard, M. J. Bayarri, Mark Berliner, Lawrence Brown, George Casella, Morris
DeGroot, J. L. Foulley, Leon Gleser, Prem Goel, Clyde Hardin, Bruce Hill,

Jiunn Hwang, Rajeev Karandikar, Lucien Le Cam, Ker-Chau Li, Dennis Lindley,
George McCabe, Georges Monette, John Pratt, Don Rubin, Herman Rubin, Myra
Samuels, Steve Samuels, and Tom Sellke. We are especially grateful to M. J.
Bayarri and M. H. DeGroot for an exceptionally complete and insightful set of
corrections and comments on the first edition. We are also grateful to

Shanti Gupta for the encouragement to turn the material into a monograph.
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Thanks are also due to the Alfred P. Sloan Foundation, the National Science
Foundation (Grants MCS-7801737, MCS-8101670A1, and DMS-8702620), and the
Center for Stochatic Processes at the University of North Carolina for support
of the research in the monograph. Finally, we are extremely grateful to

Norma Lucas, Teena Chase, and Betty Gick for excellent typing of the manuscript.

March, 1988 JAMES 0. BERGER
Purdue University, West Lafayette

ROBERT WOLPERT
Duke University, Durham
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CHapTER 1. INTRODUCTION

Among all prescriptions for statistical behavior, the Likelihood
Principle (LP) stands out as the simplest and yet most farreaching. It essen-
tially states that all evidence, which is obtained from an experiment, about an
unknown quantity 6, is contained in the likelihood function of 6 for the given
data. The implications of this are profound, since most non-Bayesian approaches
to statistics and indeed most standard statistical measures of evidence (such
as coverage probability, error probabilities, significance level, frequentist
risk, etc.) are then contraindicated.

The LP was always implicit in the Bayesian approach to statistics,
but its development as a separate statistical principle was due in large part
to ideas of R. A. Fisher and G. Barnard (see Section 3.2 for references). It
received major notice when Birnbaum (1962a) showed it to be a consequence of
the more commonly trusted Sufficiency Principle (that a sufficient statistic
summarizes the evidence from an experiment) and Conditionality Principle (that
experiments not actually performed should be irrelevant to conclusions). Since
then the LP has been extensively debated by statisticians interested in founda-
tions, but has been ignored by most statisticians. There are perhaps several
reasons for this. First, the consequences of the LP seem so absurd to many
classical statisticians that they feel it a waste of time to even study the
issue. Second, a cursory investigation of the LP reveals certain oft-stated
objections, foremost of which is the apparent dependence of the principle on
assuming exact knowledge of the (parametric) model for the experiment (so that

an exact likelihood function exists). Since the model is rarely true, (hasty)
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2 THE LIKELIHOOD PRINCIPLE

rejection of the LP may result. Third, the LP does not say how one is to per-
form a statistical analysis; it merely gives a principle to which any method of
analysis should adhere. Indeed Bayesian analysis is often presented as the way
to implement the LP (with which we essentially agree), a very unappealing
prospect to many classical statisticians.
The major purpose of this (mostly review) monograph is to address
these concerns. A serious effort will be made, through examples and appeals to
common sense, to argue that the LP is intuitively sensible, more so than the
classical measures which it impunes. Also, a generalized version of the LP
will be introduced, a version which removes the restriction of an exactly known
likelihood function, and yet has essentially the same implications. (Other
criticisms of the LP will also be discussed.) Finally, the question of imple-
mentation of the LP will be considered, and it will be argued that Bayesian
analysis (more precisely robust Bayesian analysis) is the most sensible and
realistic method of implementation. A thorough discussion of this issue is,
however, outside the scope of the monograph, so the main thesis will simply be
that the LP is believable and that behavior in violation of it should be
avoided to the extent possible.
Acceptance of such a thesis radically alters the way one views
statistics. Indeed, to many Bayesians, belief in the LP is the big difference
between Bayesians and frequentists, not the desire to involve prior information.
Thus Savage said (in the Discussion of Birnbaum (1962a))
"I, myself, came to take...Bayesian statistics...
seriously only through recognition of the likeli-
hood principle."

Many Bayesians became Bayesians only because the LP left them little choice.

Sufficient time has passed since the axiomatic development of
Birnbaum to hope that any valid objections to the LP would by now have been
found. Indeed, there are numerous articles in the literature presenting

examples, counterexamples, arguments, and counterarguments for the LP. We will
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INTRODUCTION 3

attempt to discuss all major issues raised, and thus will necessarily cover

much of the same ground as these other articles. The collection of relevant
arguments in one place will hopefully make study of this crucial issue much

easier.

Clearly, we cannot claim impartiality in this monograph; indeed the
monograph is essentially aimed at promoting the LP. This can best be done, how-
ever, by purposely raising and answering all objections to it (of which we are
aware), so a substantial accounting of the "other side" will be given. Also,
although our criticism of clas§ica1 modes of thought may seem rather severe at
times, it would be wrong to conclude that we are completely rejecting classical
statistics, as it is practiced. Most classical procedures work very well much
of the time. Indeed, many classical procedures are exactly what an "objective
conditionalist" would use, although for different reasons and with different
interpretations. There are exceptions (e.g. significance testing and much of
sequential analysis - see Chapter 4), where it can be argued that classical
analyses often yield very misleading inferences because of their violation of
the LP.

0f course, classical statisticians do (in practice) condition all
the time; whenever an experimental protocol is altered or a look at the data
reveals the necessity to alter the hypothesized model, conditioning has taken
place. (Conditioning followed by the use of unconditional frequentist evalua-
tions is, however, highly suspect, and is the source of much of the hostility
towards the LP.) Conditioning seems unavoidable in practice, and so it is a
wonderful practical implication of the LP that such conditioning is not only
legitimate, but is proper, providing a suitable conditional analysis is then
performed. Clinical trials is just one area where very desirable simplicity in
experimentation and analysis results from adoption of the conditional viewpoint.
Discussion of such practical implications is given in Chapter 4.

The mathematics and theoretical statistics used in the monograph

will, for the most part, be kept at an easy-to-read level. (The exception is

Section 3.4, where the general LP is developed.) Also, examples will frequently
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4 THE LIKELIHOOD PRINCIPLE

be given in simple artificial settings, rather than realistically complicated
statistical situations, again for ease of reading and because complicated sit-
uations are often too involved to clearly reveal key issues. Advancement of a
subject usually proceeds by applying to complicated situations truths discov-
ered in simple settings.

Throughout the monograph, X will denote the random quantity to be
observed, Z the sample space, x (the observed data) a realization of X, and
Pe(') the probability distribution of X on X, where 6€® 1is unknown. Although
8 will be called the parameter and ® the parameter space, the family {Pe(-),
8€®} need not be a typical parametric family; e could just denote some (possi-
bly nonparametric) index. Also, & will be understood to consist of all unk-
nown features of the probability distribution. Often, therefore, only part of
6 will be of interest, the remainder being a nuisance "parameter." In discus-
sing sequential and prediction problems it will sometimes be convenient to con-
sider unobserved random variables Z, as well as the unknown 6; z will then de-
note a possible value of Z. To simplify the exposition in the monograph, how-
ever, we will usually only consider the simpler case in which Z is absent. Note
that for some statistical problems it is impossible to separate Z and {Pe(')}.
See Section 3.5 for discussion of such problems.

When necessary,¥ will denote the o-field of measurable events in X.
If a density for X exists it will be denoted fe(x), and we will presume the
existence of a single dominating o-finite measure v(-) for {Pe(-), 6€®} such
that Pe(B) = é fe(x) v(dx) for each B€3Z. In all the examples v will be taken
to be counting measure in the discrete case and Lebesgue measure in the contin-
uous case, when X is a subset of Euclidean space. Usually we will write the
reference measure simply as "dx" (implicitly taking Lebesgue measure for v);
the formulas will require minor changes for cases (including those involving

discrete distributions) in which other reference measures are more convenient.
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CuaPTER 2. CONDITIONING

The most commonly used measures of accuracy of evidence in
statistics are pre-experimental. A particular procedure is decided upon for
use, and the accuracy of the evidence from an experiment is identified with the
long run behavior of the procedure, were the experiment repeatedly performed.
This long run behavior is evaluated by averaging the performance of the proce-
dure over the sample space X. In contrast, the LP states that post-experimental
reasoning should be used, wherein only the actual observation x (and not the
other observations in Z that could have occured) is relevant. There are a
variety of intermediate positions which call for partial conditioning on x and
partial long run frequency interpretations. Partly for historical purposes,
and partly to indicate that the case for at least some sort of conditioning is
compelling, we discuss in this chapter various conditioning viewpoints.

2.1 SIMPLE EXAMPLES

The following simple examples reveal the necessity of at least sometimes
thinking conditionally, and will be important later.

EXAMPLE 1. Suppose X] and X2 are independent and

- - - N
Pe(xi = 9-1) = Pe(xi = g+1) = 5 1= 1,2.

Here - » < 6 < » js an unknown parameter to be estimated from X] and X2. It is

easy to see that a 75% confidence set of smallast size for 6 is

. 1 .
the point 2(X1+X2) if X7 X

C(Xy2X,) =

the point X]-l if X] = X2.

5
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6 THE LIKELIHOOD PRINCIPLE

Thus, if repeatedly used in this problem, C(X],XZ) would contain 6 with
probability .75.

Notice, however, that when X # Xy it is absolutely certain that

0 -%(x]+x2), while when X) = X it is equally uncertain whether & = xq-1 or

0 x]+1 (assuming no prior knowledge about 8). Thus, from a post-experimental
viewpoint, one would say that C(x],xz) contains 8 with "confidence" 100% when
X # Xos but only with "confidence" 50% when Xy = X, Common sense certainly
supports the post-experimental view here. It is technically correct to call
C(X],Xz) a 75% confidence set, but, if after seeing the data we know whether it

is really a 100% or 50% set, reporting 75% seems rather silly.

The above example focuses the issue somewhat: does it make sense
to report a pre-experimental measure when it is known to be misleading after
seeing the data? The next example also seems intuitively clear, yet is the key

to all that follows.

EXAMPLE 2. Suppose a substance to be analyzed can be sent either to a
laboratory in New York or a laboratory in California. The two labs seem
equally good, so a fair coin is flipped to choose between them, with "heads"
denoting that the lab in New York will be chosen. The coin is flipped and
comes up tails, so the California lab is used. After awhile, the experimental
results come back and a conclusion must be reached. Should this conclusion
take into account the fact that the coin could have been heads, and hence that
the experiment in New York might have been performed instead?

This, of course, is a variant of the famous Cox example (Cox (1958)-
see also Cornfield (1969)), which concerns being given (at random) either an
accurate or an inaccurate measuring instrument (and knowing which was given).
Should the conclusion reached by experimentation depend only on the instrument
actually used, or should it take into account that the other instrument might
have been obtained?

In symbolic form, we can phrase this example as a "mixed experiment"
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CONDITIONING

in which with probabilities % (independent of o) either experiment E] or
experiment E2 (both pertaining to o) will be performed. Should the analysis
depend only on the experiment actually performed, or should the possibility of

having done the other experiment be taken into account?

The obvious intuitive answer to the questions in the above example
is that only the experiment actually performed should matter. But this is
counter to pre-experimental frequentist reasoning, which says that one should
average over all possible outcomes (here, including the coin flip). One could
argue that it is correct to condition on the coin flip, and then use the
frequentist measures for the experiment actually performed, but the LP dis-
allows this and is (surprisingly) derivable simply from conditioning on the

coin flip plus sufficiency (see Chapter 3).

EXAMPLE 3. For a testing example, suppose it is desired to test HO: e = -1
versus Ha: o = 1, based on X ~ 77(6,.25). The rejection region X > 0 gives a
test with error probabilities (type I and type II) of .0228. If x = 0 is
observed, it is then permissible to state that H0 is rejected, and that the
error probability is o = .0228. Common sense, however, indicates that the
data x = 0 fails to discriminate at all between H0 and Ha‘ Any sensible
person would be equally uncertain as to the truth of HO or Ha (based just on

the data x = 0). Suppose on the other hand, that x = 1 is observed. Then

(pre-experimenta]ly) one can still only reject at o = .0228, but x = 1 is four
standard deviations from ¢ = -1, so the evidence against HO seems overwhelming.

Clearly, the actual intuitive evidence conveyed by x can be quite
different from the pre-experimental evidence. This has led many frequentists
to prefer the use of P-values to fixed error probabilities. The P-value
(against Ho) would here be Pe=_](X > x), a measure of evidence against H0 with
much more dependence on the actual observation, x, than mere rejection at

« = .0228. (Even P-values can be criticized from a conditional viewpoint,

however - see Section 4.4.)
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8 THE LIKELIHOOD PRINCIPLE

Note that there is nothing logically wrong with reporting error
probabilities in Example 3; it just seems to be an inadequate reflection of the
evidence conveyed by the data to report o = .0228 for both x = 0 and x = 1.

Pratt (1977) (perhaps somewhat tongue-in-cheek) thus coins
THE PRINCIPLE OF ADEQUACY. A concept of statistical evidence is (very)
inadequate if it does not distinguish evidence of (very) different strengths.

EXAMPLE 4a. Suppose X is 1, 2, or 3 and © is 1 or 2, with Py(x) given in the

following table:

X
1 2 3
P0 .009 .001 .99
Py -001 .989 .01

The test, which accepts P0 when x = 3 and accepts P] otherwise, is a most
powerful test with both error probabilities equal to .01. Hence, it would be
valid to make the frequentist statement, upon observing x = 1, "My test has
rejected P0 and the error probability is .01." This seems very misleading,
since the likelihood ratio is actually 9 to 1 in favor of PO’ which is being

rejected.

EXAMPLE 4b. One could object in Example 4a, that the .01 level test is
inappropriate, and that one should use the .001 level test, which rejects only

when x = 2. Consider, however, the following slightly changed version:

1 2 3

P, |.005 .005 .99

0

P, |-0051 | .9849 .01

Again the test which rejects P0 when x =1 or 2 and accepts otherwise has error
probabilities equal to .01, and now it indeed seems sensible to take the

indicated actions (if we suppose an action must be taken). It still seems
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CONDITIONING 9

unreasonable, however, to report an error probability of .01 upon rejecting P0

when x = 1, since the data provides very little evidence in favor of P].

EXAMPLE 5. For a decision theoretic example, consider the interesting Stein
phenomenon, concerned with estimation of a p-variate normal mean (p > 3) based
on X n np(e,l) and under sum of squares error loss. The usual pre-experimental
measure of the performance of an estimator & is the risk function (or expected
loss)

R(o.6) = € £ (65,0007,
1=

The classical estimator here is do(x) = x, but James and Stein (1960) showed

that

030 = (1 - By

EXi

has R(e,éd's) < R(e,ao) = p for all 6. One can thus report 95 as always be-

0

ing better than &  from a pre-experimental viewpoint. However, if p = 3 and

x = (0,.01,.01) is observed, then

§973(x) = (0,-49.99,-49.99),

J-S

which is an absurd estimate of 6. Hence § can be terrible for certain x.

0f course the positive part version of GJ'S,

5t (x) = (1 - B2y,
X

i

corrects this glaring problem, but the point is that a procedure which looks

great pre-experimentally could be terrible for particular x, and it may not

always be so obvious when this is the case.

Confidence sets for & can also be developed (see Casella and

Hwang (1982)) which have larger probabilities of coverage than the classical

confidence ellipsoids, are never larger in size, and for small | x|

consist of the single point {0}. Indeed, these sets are of the simple form
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10 THE LIKELIHOOD PRINCIPLE

tor Jo-89"5 () 1% < 2

p(]-u)} if |x] > e

C(x) =
{0} if x| <e,
where xg(l—a) is the 1-ath percentile of the chi-square distribution with p
degrees of freedom, and ¢ is suitably small. Although this confidence proce-
dure looks great pre-experimentally, one would look rather foolish to conclude

when p = 3 and x = (0,.01,.01) that & is the point {0} with confidence 95%.

The above examples, though simple, indicate most of the intuitive
reasons for conditioning. There are a wide variety of other such examples.
The Uniform (6-a,08+8) distribution (o, known) provides a host of examples
where conditional reasoning differs considerably from pre-experimental reason-
ing (c.f. Welch (1939) and Pratt (1961)). The Stein 2-stage procedure for
obtaining a confidence interval of fixed width for the mean of a n(e,oz) dis-
tribution is another example. A preliminary sample allows estimation of 02,
from which it is possible to determine the sample size needed for a second
sample in order to guarantee an overall probability of coverage for a fixed
width interval. But what if the second sample indicates that the preliminary
estimate of 02 was woefully low? Then one would really have much less real
confidence in the proposed interval (c.f. Lindley (1958) and Savage et. al.
(1962)). Another example is regression on random covariates. It is common
practice to perform the analysis conditionally on the observed values of the
covariates, rather than giving confidence statements, etc., valid in an
average sense over all covariates that could have been observed. Robinson
(1975) also gives extremely compelling (though artificial) examples of the
need to condition. Piccinato (1981) gives some interesting decision-theoretic
examples,

A final important example is that of robust estimation. A con-
vincing case can be made that inference statements should be made conditionally
on the residuals; if the data looks completely like normal data, use normal

theory. Barnard (1981) says
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"We should recognise that 'robustness' of

inference is a conditional property - some

inferences from some samples are robust.

But other inferences, or the same inferences

from other samples, may depend strongly on

distributional assumptions."
Dempster (1975) contains very convincing discussion and a host of interesting
examples concerning this issue. Related to conditional robustness is large
sample inference, which should often be done conditionally on shape features
of the likelihood function. Thus, in using asymptotic normal theory for the
maximum likelihood estimator, 6, one should generally use I(é)'], the inverse
of observed Fisher information, as the covariance matrix, rather than I(e)'],
the inverse of expected Fisher information. For extensive discussion of
these and related issues see Jeffreys (1961), Pratt (1965), Andersen (1970),
Efron and Hinkley (1978), Barndorff-Nielsen (1980), Cox (1980), and Hinkley

(1980a,1982).

2.2 RELEVANT SUBSETS

Fisher (c.f. Fisher (1956a)) long advocated conditioning on what he
called relevant subsets of X (also called “"recognizable subsets", "reference
sets", or "conditional experimental frames of reference"). There is a con-
siderable literature on the subject, which tends to be more formal than the
jntuitive type of reasoning presented in the examples of Section 2.1. The
basic idea is to find subsets of % (often determined by statistics) which,
when conditioned upon, change the pre-experimental measure. In Example 1, for
instance,

z = {x: X = x2} U {x: X # xz},
and the coverage probabilities of C(X],Xz) conditioned on observing X in the
"relevant" subsets {x: x| = xz} or {x: X, # x2} are 1 and .5, respectively.
In Example 2, the two outcomes of the coin flip determine two relevant subsets.

In Examples 3, 4, and 5 it is not clear what subsets should be considered
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12 THE LIKELIHOOD PRINCIPLE

relevant, but many reasonable choices give conditional results quite different
from the pre-experimental results.

Formal theories of relevant subsets (c.f. Buehler (1959)) proceed
in a fashion analogous to the following. Suppose C(x) is a confidence procedure
with confidence coefficient 1-a for all o, i.e.,

(2.2.1) Pe(C(X) contains 8) = 1-a for all o.

Then B is called a relevant subset of x if, for some ¢ > 0, either

(2.2.2) Pe(C(X) contains 6|X € B) < (1-a) - ¢ for all o
or
(2.2.3) Po(C(X) contains o|X € B) > (1-a) + ¢  for all e.

When (2.2.2) or (2.2.3) holds and x ¢ B is observed, it is questionable whether
(2.2.1) should be the measure of evidence reported. This formed the basis of
Fisher's objection (Fisher (1956b)) to the Aspin-Welch (1949) solution to the
Behrens-Fisher problem (see also Yates (1964) and Cornfield (1969)). Another
example follows. (For more examples, see Cornfield (1969), Olshen (1977), and

Fraser (1977).)

EXAMPLE 6. (Brown (1967), with earlier related examples by Stein (1961) and
Buehler and Fedderson (1963)). If XyseoosXy is a sample from a n(e,oz)
distribution, both ¢ and 02 unknown, the usual 100(1-0)% confidence interval for
o is

= oy s s - s
C(X,S) = (x'ta/z '/_'Ts X+ta/2 E)’

where X and s are the sample mean and standard deviation, respectively, and
tm/2 is the appropriate critical value for the t-distribution with n-1 degrees

of freedom. For n = 2 and ¢ = .5 we thus have

.5 for all e,oz,

P ,(C(X,S) contains o)
6,0

but Brown (1967) showed that

1+/2) > for all 6,02,

win

{A

P ,(C(X,S) contains o||X|/S
0,0
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CONDITIONING 13

and hence the set

B = {(Xys.eenXy): [X|/s <1+ /2)

forms a relevant subset.

There is a considerable literature concerning the establishment of
conditions under which relevant subsets do or do not exist (c.f. Buehler (1959),
Wallace (1959), Stein (1961), Pierce (1973), Bondar (1977), Robinson (1976,
1979a, 1979b), and Pedersen (1978)). Though interesting, a study of these
issues would take us too far afield. (See Section 3.7.3 for some related mater-
jal, however.) Also, much of the theory is still based on frequentist (though
partly conditional) measures, and hence violates the LP. Of course, many
researchers in the field study the issue solely to point out inadequacies in
the frequentist viewpoint, and not to recommend specific conditional frequentist
measures. Indeed, it is fairly clear that the existence of relevant subsets,
such as in Example 6, is not necessarily a problem, since when viewed completely
conditionally (say from a Bayesian viewpoint conditioned on the data (x,s)), the
interval C(x,s) is very reasonable. Thus the existence of relevant subsets

mainly points to a need to think carefully about conditioning.

2.3 ANCILLARITY

The most common type of partial conditioning advocated in
statistics is conditioning on an ancillary statistic. An ancillary statistic,
as introduced by Fisher (see Fisher (1956a) for discussion and earlier refer-
ences), is a statistic whose distribution is independent of 8. (For a
definition when nuisance parameters are present, see Section 3.5.5.) Thus, in
Example 1, S = |X]-X2| is an ancillary statistic which, when conditioned upon,
gives "conditional confidence" for C(X) of 100% or 50% as s is 1 or O,
respectively. And, in Example 2, the outcome of the coin flip is an ancillary

statistic. The following is a more interesting example.

EXAMPLE 7. Suppose X]”"’Xn are i.i.d. Uniform (e - %, 8 +-%). Then

T = (U,V) = (min Xi’ max Xi) is a sufficient statistic, and S = V-U is an
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14 THE LIKELIHOOD PRINCIPLE

ancillary statistic (having a distribution clearly independent of ). The
conditional distribution of T given S = s is uniform on the set

Z, = {(u,v): v-u=sande - % <u<eo+ % - s}.

Inference with respect to this conditional distribution is straightforward.

For instance, a 100(1-a)% (conditional) confidence interval for o is
C(U,V) = HUsV) 5 3(1-a) (1-5),

one of the solutions proposed by Welch (1939). This conditional interval is
considerably more appealing than various "optimal" nonconditional intervals,

as discussed in Pratt (1961).

There are a number of difficulties in the definition and use of
ancillary statistics (c.f. Basu (1964) and Cox (1971)). Nevertheless, condi-
tioning on ancillaries goes a long way towards providing better conditional
procedures. A few references, from which others can be obtained, are Fisher
(1956a), Anderson (1973), Barnard (1974), Cox and Hinkley (1974), Cox (1975),
Dawid (1975, 1981), Efron and Hinkley (1978), Barndorff-Nielsen (1978, 1980),
Hinkley (1978, 1980), Seidenfeld (1979), Grambsch (1980), Amari (1982),
Barnett (1982), and Buehler (1982).

2.4 CONDITIONAL FREQUENTIST PROCEDURES

An ambitious attempt to formalize conditioning within a frequentist
framework was undertaken by Kiefer (1977). (See also Kiefer (1975, 1976),
Brown (1977), Brownie and Kiefer (1977), and Berger (1984c, 1984d).) The
formalization was in two distinct directions, which Kiefer called conditional
confidence and estimated confidence.

2.4.1 Conditional Confidence

The basic idea of conditional confidence is to define a partition
{Zgz s €d) of x (the sets in the partition are the relevant subsets of %),
and then associate with each set in the partition the appropriate conditional
frequency measure for the procedure considered. In Example 1, the partition

would be into the sets z] = {x: X = xz) and xz = {x: X # xz}. In
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Example 2, the partition would be into the sets where heads and tails are
observed, respectively.
When dealing with a confidence procedure {C(X)}, the conditional

frequency measure that would be reported, if x € Zg were observed, is

rs(e) = Pe(C(X) contains 8|X € zs).

EXAMPLE 7 (continued). Let the partition be g: 0<s < 1} (see Example 7).
Then, for the procedure {C(U,V)},

rs(e) = Pe(C(U,V) contains 6| (U,V) € ZS) z l-a.

In Examples 1, 2, and 7 it is relatively clear what to condition
on. In Examples 3, 4, 5, and 6, however, there is no clear choice of a
partition. In a situation such as Example 3, the following choice is attrac-

tive.

EXAMPLE 3 (continued). Let Zg = {-s,s} (i.e., the two points s and -s) for

s > 0. (We will ignore x = 0, since it has zero probability of occurring.)
The “"natural" measure of conditional confidence in a testing situation is the
conditional error probability function, determined here by

(2.4.1) r (1)

FS(-l) = P_](Rejectinglxs)

P_](X=s)
T P Es)#P_ (F=-5)

17(1+e%).
One would thus .report the test outcome along with the conditional error

4le)']. This conditional error probability has the appealing

probability (1+e
property of being close to 1/2 if |x| is near zero, while being very smali if

|x| is large. Thus it satisfies Pratt's "Principle of Adequacy."

The reason (from a frequency viewpoint) for formally introducing
a partition is to prevent such "abuses" as conditioning on "favorable" relevant
subsets, but ignoring unfavorable ones and presenting the unconditional

measure when x is in an unfavorable relevant subset.
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16 THE LIKELIHOOD PRINCIPLE

2.4.2 Estimated Confidence

An alternative approach to conditioning, which can be justified
from a frequentist perspective (c.f. Kiefer (1977) or Berger (1984c)), is to
present a data dependent confidence function. If a confidence set procedure
C(x) is to be used, for instance, one could report 1-a(x) as the "confidence"
in C(x) when x is observed. Providing

(2.4.2) Ee(l-a(x)) < Pe(C(X) contains 6) for all e,

this "report" has the usual frequentist validity that, in repeated use, C(X)
will contain 6 with at least the average of the reported confidences. Thus,
in Example 2, one could report 1-a(x) = 1 or % as Xy # Xy OF X; = Xo,
respectively. Estimated confidence (or, more generally, estimated risk) can
be very useful in a number of situations where conditional confidence fails

(see Kiefer (1977) or Berger (1984c)).

2.5 CRITICISMS OF PARTIAL CONDITIONING

The need to at least sometimes condition seems to be well
recognized, as the brief review in this chapter has indicated. The approaches
discussed in Sections 2.2, 2.3, and 2.4.1 consider only partial conditioning,
however; one still does a frequency analysis, but with the conditional distri-
bution of X on a subset. There are several major criticisms of such partial
conditioning. (The estimated confidence approach in Section 2.4.2 has a quite
different basis; criticism of it will be given at the end of this section.)

First, the choice of a relevant subset or an ancillary statistic
or a partition czsz s € 8} can be very uncertain. Indeed, it seems fairly
clear that it is hard to argue philosophically that one should condition on a
certain set or partition, but not on a subset or subpartition. (After all, it
seems somewhat strange to observe x, note that it is in, say, Zgs and then for-
get about x and pretend only that Zg is known to have obtained.) Researchers
working with ancillarity attempt to define "good" ancillary statistics to con-
dition upon, but, as mentioned earlier, there appear to be no completely

satisfactory definitions. Also, ancillary statistics do not exist in many
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situations where it seems important to condition, as the following simple

example shows.

EXAMPLE 8. Suppose ® = [0, -‘Z), and

0 with probability 1-¢

0 with probability s.
(An instrument measures 6 exactly, but will erroneously give a zero reading
with probability equal to 6.) Consider the confidence procedure C(x) = {x}
(the point x). Here Pe(C(X) contains 8) = 1-e. It is clear, however, that one
wants to condition on {x: x > 0}, since C(x) = {8} for sure if x > 0. But

there is no ancillary statistic which provides such a conditioning.

In situations such as Examples 3, 4, 5, and 6, the selection of a
partition for a conditional confidence analysis seems quite arbitrary. Kiefer
(1977) simply says that the choice of a partition must ultimately be left to
the user, although he does give certain guidelines. The development of
intuition or theory for the choice of a partition seems very hard, however
(see also Kiefer (1976), Brown (1977}, and Berger (1984c)).

Even more disturbing are examples, such as Example 4(b), where it
seems impossible to perform the indicated sensible test and report conditional
error probabilities reflecting the true uncertainty when x = 1 is observed.

(A three point x cannot be partitioned into two nondegenerate sets, and on a
degenerate set the conditional error probability must be zero or one.) Any
theory which cannot handle such a simple example is certainly suspect.

The situation for estimated confidence theory is more ambiguous,
because it has not been very extensively studied. In particular, the choice
of a particular estimated confidence or risk is very difficult, in all but the
simplest situations. And, in situations such as Examples 3 and 4(b),
estimated confidence functions will have certain undesirable properties. In

Example 3, for instance, any estimated error probability, a(x), which is
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18 THE LIKELIHOOD PRINCIPLE

decreasing in |x| and satisfies the frequentist validity criterion (similar to
(2.4.2))

Ee afX) > Pe(Test is in error) for all o,
must have o(0) > % (since P% (Test is in error) = %). It seems strange,
however, to report an error larger than %—(which could, intuitively, be
obtained by simple guessing). For more extensive discussion of estimated
confidence, see Berger (1984c).

The final argument against partial conditioning is the already
alluded to fact that the most clearcut and "obvious" form of conditioning
(Example 2) implies (together with sufficiency) the LP, which states that
complete conditioning (down to x itself) is necessary. Since this would
eliminate the possible application of frequency measures, new measures of
evidence would clearly be called for.

It should be mentioned that certain other forms of statistical
inference are very conditional in nature, such as fiducial inference developed
by Fisher (see Hacking (1965), Plackett (1966), Wilkinson (1977), Pedersen
(1978), and Dawid and Stone (1982) for theory and criticisms), structural in-
ference developed by Fraser (c.f. Fraser (1968, 1972, 1979)), and pivotal in-
ference developed by Barnard (c.f. Barnard (1980, 1981) and Barnard and Sprott
(1983)). (Barnett (1982) gives a good introduction to all of these approaches.)
The similarities among these methods (and also "objective Bayesian" analysis and
frequentist "invariance" analysis) are considerable, but the motivations can be
quite different. These methods rarely result in unreasonable conclusions from
a conditional viewpoint, and hence do have many useful implications for
conditional analysis. Space preciudes extensive discussion of these
approaches. (Some discussion of structural and pivotal analysis will be given
in Sections 3.6 and 3.7, in the course of answering a specific criticism of the
LP.) Suffice it to say that they are based on "intuitive" principles which can
be at odds with the LP (and Bayesian analysis), and hence leave us doubting

their ultimate truth.
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CHAPTER 3, THE LIKELIHOOD PRINCIPLE AND GENERALIZATIONS

3.1 INTRODUCTION

The LP deals with situations in which X has a density fe(x) (with
respect to some measure v) for all ee®. Of crucial importance is the likeli-

hood function for 6 given X, given by
(3.1.1) 2 (8) = fo(x),

i.e., the density evaluated at the observed value X = x and considered as a

function of 6. Often we will call zx(e) the Zikelihood function for 6 or sim-
ply the likelihood function. The LP, which follows, is stated in a form suit-
able for easy initial understanding; certain implicit qualifications are dis-

cussed at the end of the section.

THE LIKELIHOOD PRINCIPLE. All the information about 6 obtainable from an ex-
periment is contained in the likelihood function for 6 given X. Two likelihood
functions for 6 (from the same or different experiments) contain the same infor-

mation about & if they are proportional to one another.

It has been known since Fisher (1925, 1934) that the "random" 1ike-
1ihood function zx(e) is a minimal sufficient statistic for 6, and hence con-
tains all information about 6 from a classical viewpoint. The LP goes consid-
erably farther, however, maintaining that only zx(e) for the actual observation

X = x is relevant.

19
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20 THE LIKELIHOOD PRINCIPLE

EXAMPLE 9. Suppose Yl’YZ"" are i.i.d. Bernoulli (8) random variables. In
experiment El’ a fixed sample size of 12 observations is decided upon, and the
12

sufficient statistic X1 = 7 Yi turns out to be X = 9. In experiment E,, it
i=1

is decided to take observations until a total of 3 zeroes has been observed,

at which point the sufficient statistic X, = zYi turns out to 9. The distri-

bution of X1 in E1 is binomial with density

which for X; = 9 yields the 1ikelihood function
1 = (12y,.9/7_ .33
ng(e) (9 Yo7 (1-8)".
The distribution of X2 in E2 is negative binomial with density

+2 X

X
(2)9

2
(
X2

2 _ 3
fe(xz) = 1-8)7,

which for X, = 9 yields the Tikelihood function
zg(e) = (ﬂ})99(1—0)3.

In this situation, the LP says that (i) for experiment Ei alone,
the information about 6 is contained solely in 2;(9); and (ii) since 2;(0) and
Eg(e) are proportional as functions of @, the information about 6 in experi-
ments E1 and E2 is identical.

These conclusions are, of course, at odds with frequentist
reasoning. The binomial and negative binomial distributions will tend to give
different frequentist measures. For instance, a one-tailed significance test

of HO: 6 = %-wi]l give significance levels of a = .0730 and o = .0338 in the
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THE LIKELIHOOD PRINCIPLE AND GENERALIZATIONS 21

binomial and negative binomial cases, respectively, so, if significance at the
a = .05 level was sought, one would either reject or not reject depending on
the model. (See Lindley and Phillips (1976) for further discussion.)

This example also evidences a consequence of the LP that will be
discussed later, namely that the "stopping rule" is irrelevant when drawing
inferences about 6. Here, it does not matter whether the stopping rule was to
sample until the twelfth observation or until 3 zeroes were obtained; the data
that 9 ones and 3 zeroes were obtained is all that should be relevant.

It is interesting that even certain Bayesians would, at least for-
mally, also espouse violation of the LP in this example. For instance, the
noninformative (generalized) priors for 6 that are recommended by Jeffreys
(1961) are n,(6) « 67¥(1-6) %, in the binomial case, and m,(6) = 67¥(1-0)"",
in the negative binomial case. These will lead to different posterior distri-
butions and hence (typically) different inferences, even when the Tikelihood

functions are proportional. (See Hill (1974a) for further discussion.)

EXAMPLE 10. Let x = {1,2,3} and ®= {0,1}, and consider experiments E1 and E2
which consist of observing X1 and X2 with the above X and the same 6, but with

probability densities as follows:

X1 X2
1 2 3 1 2 3
1 2
folxy) | .90 .05 .05 fo(x,) | <26 .73 .01
f%(xl) .09 .055 .855 | f%(xz) .026 .803 .171

If, now, Xq = 1 is observed, the LP states that the information
about 8 should depend on the experiment only through (fé(l), f%(l)) = (.9, .09).
Furthermore, since this is proportional to (.26, .026) = (fg(l), f%(l)), it
should be true that X, = 1 provides the same information about 6 as does X = 1
Another way of stating the LP for testing simple hypotheses, as here, is that

the experimental information about 6 is contained in the likelihood ratio for
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21.1 THE LIKELIHOOD PRINCIPLE

the observed x. Note that the 1ikelihood ratios for the two experiments are
also the same when 2 is observed, and also when 3 is observed. Hence, no
matter which experiment is performed, the same conclusion about 6 should be
reached for the given observation. This example clearly indicates the start-
1ing nature of the LP. Experiments E1 and E2 are very different from a
frequentist perspective. For instance, the test which accepts 6 = 0 when the
observation is 1 and decides & = 1 otherwise is a most powerful test with error
probabilities (of Type I and Type II, respectively) .10 and .09 for El’ and .74
and .026 for EZ' Thus the classical frequentist would report drastically
different information from the two experiments. (And the conditional frequen-
tist is also likely to report E1 and E2 differently; indeed, for E2 it is hard
to perform any sensible conditional frequentist analysis because of the three
point X and the widely differing error probabilities.)

This example emphasizes a very important issue. It is clear that
experiment El is more likely to provide useful information about 6, as
reflected by the overall better error probabilities. The LP in no sense
contradicts this. The LP applies only to the information about 6 that is
available from knowledge of the experiment and the observed x. Even though E1
has a much better chance of yielding good information, the LP states that the
conclusion, once x is at hand, should be the same, regardless of whether x came
from E1 or E2. The conflict of the LP with frequentist justifications seems
inescapable. (See also Birnbaum (1977).)

Hi11 (1987a,b) discusses a number of important clarifications or
qualifications of the LP. Several of these are discussed in depth later in the
monograph, but it is perhaps pedagocically best to at Teast mention them here.

The first has to do with the role of 6. As presented up until now,
6 represents only the unknown aspect of the probability distribution of X. For

the bulk of the monograph we will confine attention to this case, it being the
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most familiar statistical situation. Often, however, there are unknowns which
are relevant to a statistical problem but which do not directly affect the dis-
tribution of X. One example is prediction, in which it is desired to predict
an unknown random variable Z, after observing X. Other examples arise in
design and sequential analysis problems, where as-yet-unobserved data can
affect the decision to be made. Examples are given in Section 3.5.

In general, therefore, the LP should be formulated in such a way
that e consists of all unknown variables and parameters that are relevant to
the statistical problem. (Any attempt to precisely define "relevant to the
statistical problem" would involve both decision theory and model formulation,
and lead us too far astray.) The major difficulty with working in such gener-
ality is that of defining what is then meant by a likelihood function for 6
(cf. Bayarri, DeGroot, and Kadane (1987)). We have opted for discussing this
general situation only in Section 3.5, though we believe that virtually all
issues raised for the special case of 6 being the model parameter also apply
to appropriate formulations of the general situation. In any case, it is
important to keep in mind the qualification that e must contain all unknowns
relevant to the problem for the LP to be valid in its simple form.

A second qualification for the LP is that it only applies for a
fully specified model {fe}. If there is uncertainty in the model, and if one
desires to gain information about which model is correct, that uncertainty must
be incorporated into the definition of 6.

A third qualification is that, in applying the LP to two different
experiments, it is imperative that 6 be the same unknown quantity in each.
Thus, in Example 9, we assumed that 6 represented the same success probability
in either the binomial or negative binomial experiment. In applying the LP to
two different experiments, we also require that the choice of an experiment be

noninformative (e.g. implemented by a chance mechanism not involving 8);
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22 THE LIKELTIHOOD PRINCIPLE

this might be violated if the experimenter chooses among possible experiments
on the basis of prior beliefs. Informative experimental choices may be handled
by the methods discussed in Section 4.2.7.

Further elaboration and other qualifications will be introduced as
we proceed. Understanding the limitations and the domain of applicability of

the LP is almost as important as understanding its basis and implications.

3.2 HISTORY OF THE LIKELIHOOD PRINCIPLE

For a history of the concept of likelihood, see Edwards (1974).
The name "likelihood" first appeared in Fisher (1921). Fisher made consider-
able use of 1ikelihood and conditioning concepts (cf. Fisher (1925, 1934,
1956a)) and came close to espousing the LP in Fisher (1956a), but refrained
from complete committment to the principle. Versions of the LP were developed
and promoted by Barnard in a series of works (Barnard (1947a, 1947b, 1949)).
Likelihood concepts were also employed by a number of other statisticians,
cf. Bartlett (1936, 1953).

The LP received major notice in 1962, due to Barnard, Jenkins,
and Winsten (1962) and Birnbaum (1962a). Both papers (and the Discussions of
them) contained numerous compelling examples in favor of the LP, and also
provided axiomatic developments of the LP from the simpler (and more
believable) concepts of sufficiency and conditionality. Birnbaum's develop-
ment is more convincing, and will be given in the next section. The work since
then on the LP and its consequences is considerable, as can be seen from the
references. Noteworthy general discussions can be found in Pratt (1965), Cox
and Hinkley (1974), Dawid (1981), Barnett (1982), and especially Basu (1975).

In fairness, it should be mentioned that Barnard came to support

only a limited version of the LP and Birnbaum ultimately came close to

This content downloaded from 128.173.127.127 on Tue, 28 May 2013 20:57:09 PM
All use subject to JISTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

THE LIKELIHOOD PRINCIPLE AND GENERALIZATIONS 23

rejecting it. The reasons will be discussed in Sections 3.6.4 and 4.1,
respectively.

The above development is a brief history of the LP from a non-
Bayesian perspective. The LP was always implicit in the Bayesian approach to
statistics. This is because, if w(6) is a prior density for ¢, then the
posterior density is

n(e8]|x) = n(e)lx(e)/m(x)

(assuming m(x) = E"zx(e) > 0), which depends on the experiment only through
zx(e) (presuming that selection of = is independent of E and x). Since all
Bayesian inference follows from the posterior, the LP is an immediate conse-
quence of the Bayesian paradigm. Thus Jeffreys (1961) says

"Consequently the whole of the information

contained in the observation that is rele-

vant to the posterior probabilities of

different hypotheses is summed up in the

values that they give to the likelihood."

An important point here is that zx(e) is all that matters to a
Bayesian, no matter what prior density = is used. It is tempting, therefore,
to say that, if Lx(e) contains all the sample information about 6 regardless
of the known prior, then 1x(e) should contain all the sample information even
when the prior is unknown.
The above relationship between the LP and Bayesian analysis should

probably be qualified to some extent, in that it is possible to be a
"frequentist Bayesian." One can believe that only frequentist measures of
procedure performance have validity, and yet, because of various rationality
or admissibility arguments, believe that the only reasonable procedures are
Bayes procedures, and that the best method of choosing a procedure is through
consideration of prior information and application of the Bayesian paradigm.
The posterior distribution would provide a convenient mathematical device

for determining the best procedure, from this viewpoint, but overall
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frequentist Bayes measures of performance, not posterior Bayes measures, would
be the relevant measures of accuracy. The LP directly attacks this view,
arguing that thinking "conditional Bayes," not "frequentist Bayes," is
important.

As somewhat of an aside here, there are two other reasons why
Bayesians should be very interested in the LP. The first is that, in complica-
ted real problems, Bayesians will often spend much of their time simply looking
at likelihood functions and doing maximum likelihood analyses, due to calcula-
tional complexities of a full Bayesian analysis. Emphasizing the importance of
the observed likelihood function is thus to be encouraged. Finally, there is
the very pragmatic reason that promoting the Bayesian position can often be
most effectively done by first selling the LP, since the latter can be done
without introducing the emotionally charged issue of prior distributions (see

Berger (1984b)).

3.3 BIRNBAUM'S DEVELOPMENT - THE DISCRETE CASE

Birnbaum's (1962a) development of the LP from the intuitively
simpler and more plausible concepts of sufficiency and conditionality is
formally correct only in the case of experiments with discrete densities (see
Section 3.4.1). Since the discrete case is also the easiest to understand
intuitively, we restrict ourselves in this section to a discrete sample space
%. We carefully outline Birnbaum's argument, to allow easy dissection by those
who find it hard to believe the conclusion. The mathematical style is kept

fairly informal; rigor poses no problem because of the discreteness.

3.3.1 Evidence, Conditionality, and Sufficiency

By an experiment E, we herein mean the triple (X, o, {fe}), where
the random variable X, taking values in X and having density fe(x) for some o
in @, is observed. (Because of the discreteness, the density can be assumed to
exist, and we will take allsubsets of x to be measurable.) For simplicity of
notation,  andewill be suppressed in the description of E. Virtually all

statistical methodologies require only the above information concerning an
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experiment. (The "structural theory" of Fraser and the "pivotal theory" of
Barnard deem additional information relating X, 6, and the randomness to be
jmportant, however. This issue will be discussed in Sections 3.6.4 and 3.7.)

The outcome of the experiment is the data X = x, and from E and x
we are to infer or conclude something about 6 (or about something related to
8). Following Birnbaum (1962a), we will call this inference, conclusion, or
report the evidence about o arising from E and x, and will denote this by
Ev(E,x). We presuppose nothing about what this evidence is; it could (at this
stage) be any standard measure of evidence, or something entirely new. (Since
E is an argument, it could certainly be a frequentist measure.) Also, we do
not preclude the possibility that Ev(E,x) depends on "other information," such
as prior information about 6, or a loss function in a decision problem. The
focus will be on the manner in which the "report" Ev(E,x) should depend on E and
x. (Dawid (1977) prefers to talk about methods of inference based on E and x,
and principles which these methods should satisfy. In a sense, by letting
Ev(E,x) denote whatever conclusion one is going to report, we are also taking
this view, while keeping Birnbaum's notation.) As one final point, Ev(E,x)
could be a collection of "evidences" about ¢, obviating the criticism that the
LP is based on the assumption that a single measure of evidence exists.

The Conditionality Principle essentially says that, if an experi-
ment is selected by some random mechanism independent of ¢, then only the
experiment actually performed is relevant. (The selection mechanism is
ancillary, so this is a version of conditioning on an ancillary statistic.)
The general conditionality principle is not needed here. Indeed we need only

the following considerably weaker principle, named by Basu (1975).

WEAK CONDITIONALITY PRINCIPLE (WCP). Suppose there are two experiments

E, = (X], 9, {f;}) and E, = (XZ’ 9, {fg}), where only the unknown parameter
need be common to the two experiments. Consider the mixed experiment E*,
whereby J = 1 or 2 is observed, each having probability % (independent of 6,

Xys or X,), and experiment Ej is then performed. Formally, E* = (X*, o, {f'g}),
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where X* = (3,X) and £5((3.x;)) = % fg(xj). Then,

E%, (§.%.)) = EV(E.,x.)s
Ev(E*, (J xJ)) v( J,xJ)
i.e., the evidence about 6 from E* is just the evidence from the experiment

actually performed.

The WCP is nothing but a formalization of Example 2, and hence is
essentially due to Cox (1958). It is hard to disbelieve the WCP, yet, as
mentioned after Example 2, even the WCP alone has serious consequences.

Turning finally to the familiar concept of sufficiency, we state

the following weak version (named by Dawid (1977)).

WEAK SUFFICIENCY PRINCIPLE (WSP). Consider an experiment E = (X, 8, {fe]), and
suppose T(X) is a sufficient statistic for 8. Then, if T(xl) = T(xz),
Ev(E,xl) = Ev(E,xz).

The LP will be seen to follow directly from the WCP and WSP. A
variety of alternate principles also lead to the LP (cf. Basu (1975), Dawid
(1977), Barndoff-Nielsen (1978), Berger (1984a), Bhave (1984), and Evans,
Fraser, and Monette (1985c, 1986)). The WCP and WSP are the most familiar,
however. Another prominent principle is "Mathematical Equivalence," given in
Birnbaum (1972). This principle is a weak version of the sufficiency principle,
stating that if, in a given experiment E, fe(xl) = fe(xz) for all o, then
Ev(E,xl) = Ev(E,xz). One could base the LP on mathematical equivalence, plus
a minor generalization of the WCP. The weakening of sufficiency is carried to
the ultimate in Evans, Fraser, and Monette (1986), which derives the LP solely

from a generalized version of the conditionality principle.

3.3.2 Axiomatic Development

The formal statement of the LP is as follows.
FORMAL LIKELIHOOD PRINCIPLE. Consider two experiments Ei = (xl, 0, {f<la }) and
E2 = (X2, 9, {fg}), where 8 1s the same quantity in each experiment. Suppose

that for the particular realizations X¥ and x% from E; and E,, respectively,
1 2 1 2 p
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2 .(68) = ca_,(o)
xf x§

for some constant ¢ (i.e., f;(xf) = cfg(x’é') for all 8). Then
Ev(E],xf) = EV(EZ’XE)‘

LIKELTHOOD. PRINCIPLE COROLLARY. If E = (X, o, {fe}) 18 an experiment, then

EV(E,x) should depend on E and x only through 1x(e).

THEOREM 1 (Birnbaum (1962a)). The Formal Likelihood Principle follows from the

WCP and the SP. The converse is also true.

Proof. If E] and E2 are the two experiments about o, consider the mixed
experiment E* as defined in the WCP, From the WCP we know that

(3.3.1) Ev(E*,(j,xj)) = Ev(Ej,xj).

Next, thinking solely of E* with random outcome (J,XJ), consider

the statistic
(l,xf) ifd=2, X2 = x;
T(J,XJ) =

(J,XJ) otherwise.

(Thus the two outcomes (l,xf) and (2,x§) result in the same value of T.) T is
a sufficient statistic for s. This is clear, since
1 if (j,xj) =t
* = 3 = =
Po(X* = (J.x;)]T = t # (1.x))

0 otherwise,

and
Po(X* = (1) [T = (1,x§)) = 1-P,(X* = (2,x8)|T = (1,x}))
1 .l
- 2 'fe(x?)
7 Tl 7fe(x3)

= ¢/(1+c),
all of which are independent of 6. The WSP thus implies that
(3.3.2) Ev(E*,(],x?)) = Ev(E*,(Z,x;)).
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Combining (3.3.1) and (3.3.2) establishes the result.
To prove that the LP implies the WCP, observe that, for E*,
= 1§
Y3y (0 7 2 Folg)-
This is clearly proportional to fg(xj), the likelihood function in Ej when xj
is observed, so the LP implies that

EV(E*,(j,xj)) = EV(Ej,xj).

To prove that the LP implies the WSP, it suffices to note that, if
T(x]) = T(xz) in an experiment for which T is sufficient, then X and Xy have

proportional likelihood functions. ||

Proof of the LP Corollary. For given x* € x, define

1 §f X = x*

0 if X # x*,
and note that Y has distribution given by

Y

() = £,0%) = 1-£1(0).

(3.3.3) f

For the experiment E* of observing Y, it follows from the LP that
Ev(E,x*) = Ev(E*,1).

But E*, and hence Ev(E*,1), depend only on fe(x*) = ix*(e) (using (3.3.3)). ||

The above results are worth dwelling upon for a moment. The LP is
extremely radical from the viewpoint of classical statistics, as will be seen
in Chapter 4. Yet to reject the LP, one must Zogically reject either the WCP
or the WSP. But the WSP is, itself, a cornerstone of classical statistics, and

there is nothing in statistics as "obvious" as the WCP (or Example 2).

3.4 GENERALIZATIONS BEYOND THE DISCRETE CASE

Basu (1975) and others have argued that the sample space x in any
physically realizable experiment must be finite, due to our inability to
measure with infinite precision. This suggests that the Likelihood Principle

for discrete experiments (as in Section 3.3) is all that one needs. We are
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philosophically in agreement with this.

On the other hand, continuous and other more general probability
distributions are enormously useful in simplifying statistical computations
and in providing numerical approximations which are often quite accurate. It
is possible for the likelihood function for a continuous model to differ
strikingly from that of the discrete model it is intended to approximate, so
it is not obvious that the validity of the LP in discrete problems extends to
its validity in the approximating continuous problems. In any case, extension
of the LP to more general situations can only strengthen its case. Such an
extension is our task in the present section.

As in Section 3.3, an experiment E = (X, 6, {Pe})will be understood
to involve the observation of the random variable X, having probability distri-
bution Pe onX, 6 € ® (It will not be necessary to assume the existence of
a density.) There is, unavoidably, measure-theoretic mathematics in this
section, but the section can be skipped, if desired, without any essential
loss of continuity.

The sample space Z will be assumed to be a locally-compact
Hausdorff space whose topology admits a countable base (LCCB space, for short),
and the Pe will be assumed to be Borel measures. Of course, X often arises as
an x-valued random variable on a probability space (9, &, {“e}) equipped with
a family of probability measures indexed by 6 € ®. Such underlying structure

will not be relevant in our analysis, however.

3.4.1 Difficulties in the Nondiscrete Case

In an experiment E = (X, o, {Pe}) for which there is an x € X
satisfying Pe({x}) = 0 for every o0 € ®, it is difficult to assign any particu-
lar meaning to "Ev(E,x)". For example, Basu (1975) and Joshi (1976) have
observed that a naive application of Birnbaum's (1962a) sufficiency principle
would suggest for such an x that Ev(E,x) = Ev(E,y) for every y € %, since the
map T: x > % which takes x onto y and leaves all other points (including y)

fixed is sufficient for ¢. This is particularly disturbing for continous
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distributions, since thenPe({x})=0for every x € X and every 8 € @; Birnbaum's
sufficiency principle then suggests that all possible observations lend
precisely the same evidence (and therefore none) about 6.

The unique specification of a likelihood function causes similar
problems. If there is no single o-finite measure v on X whose null sets
coincide with those Borel sets N for which Pe(N) = 0 for all 8 € ®, then no
likelihood function exists. This is the usual state of affairs in nonpara-
metric problems (recall that ® could be an arbitrary index set) and can even
arise in simple parametric examples; for example, Pe(A) = % fAdx + %-IA(S),
® =% = [0,1], describes an experiment in which X = & with probabi]ity-% and
is otherwise uniformly distributed over the unit interval; no o-finite measure
v dominates {Pe}’ and no likelihood function exists. (Incidentally, this seems
to be a source of confusion in certain "counterexamples" to the LP such as the
second example in Section 2.5 of Birnbaum (1969).)

Even in problems where there is a measure v with the indicated

properties, the Radon-Nikodym derivatives

2, (e) = fe(X) = Pe(dX)/v(dX)

are determined only up to sets of v-measure zero; these functions of e could be
specified in an entirely arbitrary manner for all x in any set Nc % with

v(N) = 0. One way to salvage a likelihood principle in the face of such
ambiguity is to specify a particular version of Pe(dx)/v(dx) for each e; for
example, in case a (v-almost everywhere) continuous density exists we could

set Q, = {open neighborhoods of x € %} and put

2,(6) = inf sup (PB(U)/v(U))
Venx Uenx

tcv
for x in the support of v, zx(e) = 0 otherwise.
By restricting our attention to (v-almost everywhere) continuous
densities, continuous sufficient statistics, etc. we could develop versions of
the conditionality, sufficiencj, and likelihood principles very similar to

those in the discrete setting.
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Instead we will develop versions of these principles applicable
for all experiments, including those with discontinuous density functions and
even those for which no Tikelihood function exists. The price we pay for such
generality is that our conclusions will all be weakened by the qualification
"for all x € x outside a fixed set N with Pe(N) = 0 for all e", which we shall
abbreviate "for {Pe} a.e. x". It is important to note that N will be unknown
to the statistician, and hence the only assurance that the actual observation
x is not in N is the faith that events of probability zero do not happen. This
is, of course, a statement in the classical frequentist framework, but estab-
lishing a version of the LP within this framework should, at least, be con-

vincing to frequentists.

3.4.2. Evidence, Conditionality, and Sufficiency

As before, denote by Ev(E,x) the (undefined) evidential content of
an observation x in an experiment E = (X, o, {Pe}). The following are the
appropriate generalizations of the WCP and sufficiency principle for non-

discrete experiments.

WEAK CONDITIONALITY PRINCIPLE. Consider the mixture, E*, of two experiments
E] = (X]’ 0, {P;}) and Ez = (XZ’ 0, {Pg}), defined as E* = (x*, e, {Pg})’
where X* = (J,XJ), J=1or 2 (as EJ is performed) with probability %-each
(independent of o), and

IS TP 1 p2((x..
PE(A) = 3 PML: () € AY) + 3 PR(ix,: (20x,) € AD).

Then,

Ev(E*,(j,xj)) = Ev(Ej,xj) for {P¥} - a.e. (j,xj).

If the sample spaces in E] and E2 are countable, we could delete
"impossible" outcomes (i.e., x; for which P;(xi) = 0 for all & € @) and dis-
pense with the “{Pg} - a.e." qualification above, thus recovering the discrete
WCP.

A formal definition of sufficiency is as follows. Let

E = (X, o, {Pe}) be an experiment and T: % » 7 a measurable map from % to
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another LCCB space 7. The statistic T determines a family {Pg} of Borel

measures on J by

PL(A) = P (T7N(A)),

and hence an experiment ET = (T, 7, {Pg}). Unless T is 1-1 we expect (in

T will tell us less about 6 than E, since different outcomes

general) that E
X € Z with possibly different evidential import can be mapped onto the same

T(x) € 7. The exceptional case is that in which T is sufficient.

DEFINITION. For the experiment ET, suppose there exists a family {9;: t e}

of Borel probability measures on X satisfying

PoA) = [ a(RIPG(at) = [ ar(y) (AP ()

for all Borel sets Ac X. Then T is called "sufficient” (or sometimes

"sufficient for o").

Note that 9 is not permitted to depend upon g; otherwise g9, = P
would always work. Any one-to-one measurable mapping T is sufficient; just
let g, be a point mass at T'](t) € X.

The Sufficiency Principle makes precise the notion that T(x) inJs

tells as much about g as x in E;

SUFFICIENCY PRINCIPLE (SP). If T: % +J is sufficient, then

Ev(E,x) = Ev(ET,T(x)) for {Pe} - a.e. X €X%..

Again we may delete the impossible outcomes when % is countable to
remove the “{Pe} - a.e." qualification and conclude that Ev(E,x) = Ev(E,y)
whenever a sufficient statistic T satisfies T(x) = T(y), and so recover the

discrete WSP of Section 3.3.1.

3.4.3. The Relative Likelihood Principle

Let E, = (X], 9 {P;}) and E, = (XZ’ R {Pg}) be two experiments

and suppose (for motivational purposes) that each admits a likelihood function,
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i.e. a g-finite measure v; on the sample space Z; and a family {f;(-)} of

integrable functions satisfying

P;(A) = {‘f;(x)vi(dx), Ac ;.

The Likelihood Principle (were it to hold here) would assert that

Ev(E],x]) = Ev(Ez,xz)

whenever f;(x]) = cfg(xz) for all e € ® and some constant ¢ = c(x],xz) not
depending on o, i.e. whenever the relative Iikelihood c = f;(x])/fg(xz) does
not depend on 8. Our freedom to specify f;(xi) arbitrarily whenever
vi((xi}) = 0 makes it clear that this principle needs reformulation before it is
suitable for experiments with uncountable sample spaces. (However, at pcints
X and Xo which are atoms of v and vos respectively, the LP is reasonable, and
can be shown to follow from the WCP and SP as in Section 3.3.)

To develop a suitable general principle, we generalize the concept
that the relative likelihood of X and Xy is independent of 6. Basically, if
a mapping exists between two subsets of 4 and %o for which the Radon-Nikodym
derivative of the induced measure with respect to the existing measure (on, say,
z]) is independent of o, then we can establish an equivalence of evidence
between the corresponding observations in the subsets. The reasons for
generalizing the LP in this direction are: (i) It can be stated in great
generality, without requiring models or densities; (ii) It will be shown to
follow from the WCP and SP, as did the LP; and (iii) It, in turn, can be shown
to imply (in substantial generality) the Stopping Rule Principle and Censoring
Principle, besides having directly important implications of its own. The
major limitation of the RLP {compared to the LP) is that it does not provide
any such convenient summarization of evidence as the likelihood function (which

need not exist in the general case).

RELATIVE LIKELIHOOD PRINCIPLE (RLP). Let ¢: U.l - U2 be a Borel bimeasurable
one-to-one mapping from U]<: Z, onto U2 S Zos and suppose there exists a

strictly positive function C on U, such that for all 6 € @,
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34 THE LIKELIHOOD PRINCIPLE

(3.4.1) P2(A) = j_] [1/c(x)Pa(dxy), Ac U,
¢ (A)

Then EV(Eq,x;) = EV(E,» (X)) for (P)) - a.e. x; € U;.

Note that the RLP does not say anything for particular X Indeed,
if X has zero probability for all e, then ¢ could be defined arbitrarily at
X and still satisfy (3.4.1). Thus the RLP can only be interpreted in a
pre-experimental sense: if ¢ satisfies (3.4.1), evidentiary equivalence holds
with probability one on U,. Where ¢ or U, come from is irrelevant. The

following theorem shows that the RLP is indeed a generalization of the LP.

THEOREM 2. For two experiments E; = (X,, 0, (P}) and E, = (Xy, o, (P2)) with
countable sample spaces devoid of outcomes impossible under all 6, the LP and

the RLP are equivalent.

Proof. MWithout loss of generality, we take the dominating measures vy and Vo

to be counting measure on Z and Zos respectively, so the likelihood functions

are f;(xi) = P;({xi}). First, assume the validity of the LP, and let

Po(M) = [ D/ct0Tey()
¢ (A)

for some : Uy > U, and al1 Ac U,. Fix any x; € Uy and set x, = o(x;),
A= {xp}. Then fg(xz) = [1/c(x])]f;(x1) for all e, so the LP asserts that
Ev(E{»xq) = Ev(Ez, ¢(x])).

Conversely, assume the RLP holds, and suppose that f;(x]) = cfg(xz)
for some x; € Zy» Xy € Xy, ¢ >0, and all 6 € 8. Put Uy = {x;}, U, = (x5},
and define o: U] > U2 by ¢(x]) = Xy (Note that we are free to choose U], U2’
and ¢ in any fashion compatible with the conditions in the RLP, but evidentiary
equivalence need not hold on any null set.) Regard c as the constant value of

a strictly positive function on U]. Then the RLP asserts that

Ev(E],x]) = Ev(Ez, ¢(x])) for {P;} - a.e. x; € U],

i.e. that Ev(E],x]) = Ev(Ez,xz) (by hypothesis % contains no point at which
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f;(x]) vanishes for all 6, so the "{P;} - a.e." qualification is

unnecessary). ||

THEOREM 3. The WCP and the SP together imply the RLP.

Proof. Let E] and EZ be two experiments, ¢ a bimeasurable mapping from a Borel

set U; < x, onto U, € Z,, and c: Uy ~» (0,») a measurable function satisfying
2 _ 1
PE(R) = [, [V/e(x)IP)(ax)
¢ (A)

for all Borel Ac U2, all 6 € ®. Let E* be the mixture of E] and EZ’ and
define a mapping T: X* > x* by
(2,9(xy)) ifi=1andx €U,
T(i,Xi) =
(i,xi) else.
This determines a new experiment E*T= (T, x*, {Pg}), where PE(A) = Pg(T'](A)).
First we show that T is sufficient. For each t = (i,xi) € x*

define a measure gy on x* by
exi(Ai) = et(A) ifi=1or %i ¢ U,
g4 (R) =
e s L .-
(Cex](A]) + exz(Az))/(1+c) if 1=2,x,€U, and x; = ¢ (x,).
Here ¢ = c(x) and ex],sxz,et denote the unit point masses at x; € Z;, X, € Z,»

t € x* respectively; Ai denotes {xi €x;: (i,xi) € A}. It is straightforward

to verify that
_ T
PX(A) = [g, ()P (dt)

for each Borel Ac x*, so T is sufficient.
By the SP we can conclude that
Ev(E*,(1,xy)) Ev(ErT,(2, ¢(x{))) and

EV(EX,(2,x,)) = EV(E*T,(2,%,))

1 2 -
for {Pe} - a.e. X € Z and {Pe} - a.e. X, € Zoe In particular, for
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36 HE LIKELIHOOD PRINCIPLE

({Pé} - a.e.) x € Uy and X, ¢(x1) we have

EV(ES,(1,x))) = EV(EXT, (2,x))) = Ev(EX,(2,x,)).
By the WCP we have

Ev(E*,(l,xl)) = EV(EI’XI) and Ev(E*,(Z,xz)) = Ev(Ez,xz),
so we can conclude that

EV(EI’XI) = Ev(Ez, w(Xl))

1
for {P.} - a.e. x; €. |
The RLP will be used in Chapter 4 to establish general versions of
important consequences of the LP. Theorem 3 demonstrates that rejection of
these consequences (and several are quite unpalatable from the frequentist

viewpoint) implies rejection of the WCP or the SP.

3.5 PREDICTION, DESIGN, NUISANCE PARAMETERS, AND THE LP

3.5.1 Introduction

The LP as stated above has the very important qualification that it
does not apply if 6 does not include all unknown quantities germane to the ex-
periment or problem. For instance, in design or prediction problems the un-
known future observation is obviously relevant, and yet is not necessarily a
part of @ - the parameter defining the distribution of the observable X. A
related difficulty is that, often, only a part of 6 is really of interest, the
remainder being a "nuisance" parameter. These issues are explored in this
section.

We begin by expanding the definition of & to include unobserved and

nuisance variables. Define

8 = (z;0) = (y,w;g,m),

where z = (y,w) is the value of an unobserved variable Z, with y being of in-

terest and w being a nuisance variable, and where w = (£,n) is the parameter
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that determines the distributions of both X and Z, with £ being of interest and
n being a nuisance parameter. (We will purposefully remain vague on the defi-

nition of "nuisance variable" and "nuisance parameter"; formal definitions could
be attempted along decision-theoretic lines, but would take us too far afield.)

To indicate that evidence about ¢ and y is desired from E we will write
EVy,E (E,x)

for the evidence about & and y from the observation of x in an experiment E.
Two difficulties arise in attempting to apply the LP in this more
general context. The first is that this generalized 6 is no longer just the
parameter defining the distribution of X. Thus the definition in (3.1.1) of
zx(e) as the density of X given 6 may no longer be a suitable definition. In-
deed, if Z is conditionally independent of X given w, then (by the definition

of conditional independence) it can be shown that (3.1.1) becomes
%y (8) = fz,m (x) = fw (x),

which does not even involve z. The second difficulty is that the nuisance
parameter, n, will appear in this likelihood function even though it is not
of interest.

To resolve these difficulties and indicate the role of the LP, we
will discuss alternative definitions of the likelihood function which bring out
the role of important unobserved variables and suppress the role of nuisance
parameters, and we will indicate under what circumstances these forms of the

1ikelihood function may be substituted for the simple (3.1.1).

3.5.2 Unobserved Variables: Prediction and Design

The following example shows that a naive application of the LP can

be misleading if future observations are of interest.

EXAMPLE 11. We have available a sequence of observations Xi = (Ui’ Vi)

(i =1,2,...) where
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38 THE LIKELIHOOD PRINCIPLE

P(V,i+1 = 1|Vi =1) = 1/2, P(Vi+1 = OIV,i =1) =1/2
P(V].+1 = 1|Vi =0) =0, P(Vi+1 = OIVi =0) = 1.
(Define Vg = 1). When Vi = 1, Uiy will be independent of the previous U,

with a 77(g,1) distribution. When Vi = 0, on the other hand, Ui+1 will be zero.
(This would correspond to a situation in which a measuring instrument is used
to obtain the important observation Ui’ while Vi tells whether the equipment
will work the next time (Vi = 1) or has irreparably broken (Vi = 0)).

Imagine that xl,...,xnhave been observed, and that v = 1 for
i=1,...,n-1. The likelihood function for & is then given by

f (Ui) « a N(Gn,n'l) density.

zx(£)= e

n= s

i
The LP thus says that the evidence about & is contained in mx(i), and if we are
stopping the experiment nothing else is needed. However, in deciding whether
or not to take another observation, it is obvious that knowledge of i is
crucial. If Vo = 1 it may be desirable to take another observation, but if
v_=0 it would be a waste of time (since the measuring instrument is broken).

n
This example is related to a limitation of sufficiency (cf. Bahadur (1954)).

The apparent failure of the LP in Example 11 is really the failure
to include all unknowns in the specification of 6; only £ is included. For

this problem the next observation, X (and perhaps further observations), are

n+l
also important unknowns. And the 1ikelihood function for this future obser-
vation and & does depend on Vo Examples such as this have often been touted
as counterexamples to the LP. There are at least two possible replies.

The first possible response is to simply exclude problems involving
such unobserved Z from consideration. This was essentially the tack we took

earlier in the monograph, motivated by a desire for simplicity of exposition.

This response is clearly not very satisfying.
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A second possible response is to redefine the likelihood function
so as to incorporate Z. In the first edition of this monograph it was essen-
tially suggested that one define the 1ikelihood function for 6 = (z,w) =

(y, w; £, n) to be
(3.5-1) lx(e) = f(g’n) (x,y,W);

this is, of course, just the joint density of (X,Z) given the parameter

w = (£,n), but here it is to be considered a function of the unknown 6 = (z,w)
when the observed value X = x is inserted. Such redefinition of zx(e) indeed
works, in the sense that the LP will still then apply and be derivable from
appropriate versions of the Conditionality Principle and Sufficiency Principle.
We have not carefully investigated this, however. (It should be emphasized
that (3.5.1) is not the density of X, given o, so that this Tikelihood function
is quite different from (3.1.1). For Bayesians, the distinction is whether to
include the unobserved variable Z as part of the model parameter or as part of
the observation; we will argue in the next section that it makes no difference.)

While (3.5.1) can be used to establish the LP in this more general
context, it has certain practical limitations as a definition of Tikelihood.
The most serious limitation is that it must be utilized very cautiously.

Common techniques such as maxirmm likelihood can often be disastrous if
applied directly to this lx(e). For examples, see Bayarri, DeGroot and Kadane
(1987); henceforth, BDK.

A related objection to (3.5.1) is that its definition is, in a
sense, quite arbitrary. Extensive discussion of this point can also be found
in BDK, with many examples. It is a point with which we essentially agree but,
following Berliner (1987), view as tangential to the LP. The LP leaps into
action after X, Z, w, and fw(x,z) have been defined, and X = x observed. The
process of getting to this point is inherently vague and rather arbitrary;
but that doesn't alter the fact that, having reached this point and assuming

that the model is correct, all information about 6 = (z,w) is contained in
(3.5.1) for the given data.
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While (3.5.1) is thus formally satisfactory for use in the LP, the
practical difficulties surrounding its use and definition suggest looking for
an alternative "likelihood function." A very appealing possibility is present-
ed in Butler (1987), discussion of which we defer to the next section. Among
the many other references discussing likelihood for unobserved variables
(typically in prediction) are Geisser (1971), Kalbfleisch (1971), Lauritzen
(1974), Aitchison and Dunsmore (1975), Hinkley (1979), and Butler (1986).

Design problems deserve special emphasis. Before the experiment is
conducted, X itself is the unobserved variable, and should hence be identified
with Z in the above formulation. (In sequential or multistage experiments, at
each step or stage the previously taken observations are x, while the future
observations are Z.) The LP does not forbid averaging over unobserved vari-
ables, and so does not formally contraindicate use of many classical design
criteria. For instance, the LP does not say that it is wrong to choose the
sample size in a testing problem by consideration of type I and type II error
probabilities. (Of course, after the data have been taken, the LP would
argue against use of these pre-experimental error probabilities as measures of
evidence for or against the hypotheses.)

While not disallowing the use of classical design criteria, the
LP can have a substantial practical effect on design; a proponent of the LP
(i.e. a conditionalist) would want to design an experiment so as to have a
high probability of obtaining accurate conditional (post-experimental) conclu-
sions, rather than mere pre-experimental frequentist assurances of accuracy.
The difference in viewpoint can be significant in that the conditionalist can
be more flexible in his approach to design, often simply sampling data until
enough (conditional) evidence has been accumulated. By the Stopping Rule
Principle (discussed in Section 4.2 and shown to be a consequence of the LP) it
is quite valid for the conditionalist to employ such stopping rules of conven-
ience. A frequentist analysis, on the other hand, requires that the probabili-
ties of stopping for each possible reason be known at the outset, and that all

these stopping probabilities be incorporated in the analysis.
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THE LIKELIHOOD PRINCIPLE AND GENERALIZATIONS 41

Similarly the LP gives 1ittle guidance in assessing the overall
performance of a decision procedure §. Such an assessment might be desired in
quality control and other situations where a particular procedure will be used

repeatedly. Thus suppose one faces a sequence of problems Xi ~ Pe » on each of
i

which a certain procedure & will be used. Evaluation of the procedure § will
typically involve some type of average over the sample space because future
observations Xi are unknown; as with design problems, however, this in no way
contradicts the LP. (The LP does, of course, say that it is wrong to report
such procedure performance assessments as the evidence about a particular 8;

upon observing a particular Xi)' See Section 4.1 for further discussion.

3.5.3 Nuisance Variables and Parameters

When 6 = (£,n) with n a nuisance variable, the LP says that all
evidence about 6 is contained in the likelihood function Lx(e); it seems
reasonable to interpret this broadly enough to infer that zx(e) should also
contain all evidence about the part £ of 6. This can be made formal through the
NUISANCE VARIABLE LIKELIHOOD PRINCIPLE. Since evidence about 6 depends on E
and X only through zx(e), EVE(E’X) also depends on E and X only through
1X(e). More generally when © = (y,W;E,n), where y and & are the important
unobserved variables and unknown parameters while W and n are nuisance vari-
ables and parameters, Evy,E (E,x) depends on E and x only through zx(e)

as defined in (3.5.1).

With this amendment, the LP says that Evg(E,x) (or more generally
Evy’g(E,x)) involves E and x only through zx(e) = 2x(s,n) (or more generally
Lx(e) = 2X(y,W;£,n)), but does not say what to do about n (or (w,n)); the LP
does not say how to interpret 1x(e) so as to isolate the evidence about y and
£. While this formally falls in the domain of "utilization of the likelihood

function," a topic that we are avoiding, a brief discussion of certain methods

of dealing with such nuisance quantities is desirable.
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41.1 THE LIKELIHOOD PRINCIPLE

The first key observation is a formalization of the suggestion in
Butler (1987) for dealing with nuisance variables or parameters that have known

distributions:

MARGINALIZATION PRINCIPLE: If the distribution of an unobserved nuisance vari-
able or parameter is given, form a marginal likelihood function from the joint
density of X and the nuisance variable or parameter by simply integrating

out the nuisance variable or parameter in this joint density.

The first step in this marginalization process can always be done;
w can be immediately eliminated (if present) because mx(e) = f(g n)(x,y,w)

specifies its distribution. Thus nx(e) can be reduced to

2x(y,g,n) = f f(gm)(x,y,W) dw.

A further marginalization step can be taken when the distribution

of n (or part of n) is given. Thus if n = (nl,nz), and it is given that n2 has

density n(nzlg,nl), the likelihood function can be further marginalized to

(3.5.2) ex(y,end) = [ £,y (x,yaw) w(n?le.nl) dw dn?
X (E’n)

EXAMPLE 11.1. Consider the random effects problem where

Xes = ns *oesss i=1,...,1, J=1,...,d,

ij i ij
the €ij being i.i.d. N(O,cz) and the ng being i.i.d. W(u,rz); here 02, u, and
12 are unknown. Suppose that interest centers on the "hyperparameters"

1 2

£ = (u,rz). Then the parameters n= = and n2 = (“1’ Noseees “I) are nuisance

g
parameters, and the distribution of n2 is given. Indeed n(nzli) is
"1(“%’T2£)’ where 1 = (1,...,1)t and [ is the identity matrix. A standard cal-
culation (cf. Berger (1985)) then yields for (3.5.2) (note that (y,w) is not

present here)
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1, _ 2 2
i;(im ) = l;(U,T Y )

I 2
exp{- _xl(ii-u)"-/[Z(r2+ IIT) expl-s7/(26%))
i=
2+ 272 I ’

J
where X, = _Z Xij/J and s% = LI (xij - ii)z.

j=1 i3

The suggestion to use (3.5.2) as the likelihood was made in Butler
(1987) to answer the criticisms in Bayarri, DeGroot, and Kadane (1987) concern-
ing the arbitrariness and difficulty in use of the likelihood defined in
(3.5.1); use of (3.5.2) seems to be quite successful in this regard. We
support using (3.5.2) as the "practical" definition of 1ikelihood, noting that
it is fully consistent with our preferred (see Chapter 4) Bayesian approach to
utilization of 2x(e). Most non-Bayesians would also probably approve of
(3.5.2) as the definition of likelihood; failure to do so leaves one open to
the serious criticisms in Bayarri, DeGroot, and Kadane (1987). It is also
probably true that a version of the LP based on (3.5.2) could be shown to
follow (with certain qualifications - cf. the comments at the end of the
section) from versions of the Conditionality Principle and Sufficiency Princi-
ple. We have not looked into the matter, however.

Use of (3.5.2) does not completely solve the nuisance parameter
h

problem, of course, because z;(y,s,n still depends on the nuisance parameter

nl. There is, unfortunately, no "consensus" approach to elimination of nl. In
the remainder of the section, a brief introduction to some of the proposed
methods for elimination of nl will be given.

The Bayesian approach to the problem is conceptually straightfor-

1

ward. One simply determines n(n1|5), the conditional prior density of n” given

£, and calculates the reduced likelihood function
(3.5.3) Bly.e) = [ aplyenh) wGle) et

The product of this and the marginal prior density, n(g), will be proportional
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to the posterior distribution of (y,£) given x, so that zg(y,g) clearly suffices
for the Bayesian. A strong case can be made that even the non-Bayesian condi-
tionalist should operate by using (3.5.3), with w(nlli) chosen to be some

"noninformative" prior density for nl

given £. Presentation of this case would,
unfortunately, take us too far afield.

The most common non-Bayesian approach to elimination of nl is
through maximization: 1i.e., consideration of

¥ (y,6) = sup ex(y,e,nl).
1
n

The dangers in use of Ex have been well-documented and have resulted in a
search for alternative methods (see Section 5.2 for references).

Alternative non-Bayesian methods typically approach the problem of
eliminating nl through ideas of partial or conditional 1ikelihood. The idea of
partial Tikelihood (cf. Kalbfleisch (1974), Sprott (1975), Cox (1975), Dawid
(1975, 1980), Barndorff-Nielsen (1978, 1980), Hinkley (1980), and Kay (1985))
is to factor the 1ikelihood as (ignoring, for simplicity, future observations
Z = (y,w) and the possibility that part of n has a known distribution)

2(

(3.5.4) 2.(0) = ii(e) 2

X Ean)s

and then to work with zi(g) exclusively. This is successful when zi does not

contain much information about £, or when the information is very hard to
extract because of high variation due to n. It is particularly attractive in
the special case (to which we return in Chapter 4) in which zi contains no

information about £, i.e. in which
(3.5.5) 2 (8) = 21(5) lz(n)-
X X X

This arises when an ancillary statistic T exists for ¢, ancillary in the strong

sense that

fo(x) = g, (x|T) h (T);
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(3.5.5) is then immediate. (Other, broader, definitions of ancillarity also
appear in the literature, but lead to expressions as in (3.5.4) rather than
(3.5.5). Also, attempts have been made to find approximate decompositions of

the form (3.5.5); cf. Hinde and Aitkin (1986).)
EXAMPLE 12. Suppose E consists of observing

X = ((Ylszl):---’(YnsZn))’

where the (Yi’zi) are i.i.d. pairs having a common bivariate normal distribu-

tion with unknown mean (uY,uZ) and covariance matrix

Of interest is the regression of Y on Z; thus interest centers on ¢ = (a,B,Tz),
where
2
%12 2 (01p)

,T=0111‘_" ’

a = uy - Bu,, B =
Y z 911992

922
since E(Yi]Zi) = a+Bl, and t2 is the conditional variance of Y given Zi'
Letting 8 = (uy, Mzs 0115 129 022), n = (022, “Z)’ and

T-= (Zl""’zn)’ a standard calculation gives

1 0 2, ko 1 0 2
exp{ - o2 ‘Z [y;-(a+82,)1%) 77 expl- 5o 'Z (z;-u,)
o i=1 957 22 i=1

k
1
fe(X) o
T

g, (xI T, (7).
Thus (3.5.5) is satisfied (and, indeed, T is ancillary for £).

It seems natural, when (3.5.5) holds, to state that all evidence
about £ available from E and x is summarized in li(g). Thus, in Example 12,
it seems natural to base the regression analysis on gg(xlT), the conditional
distribution of the Yi given the observed zZ;. This is, indeed, virtually

always done in regression; the z; are treated as nonrandom, i.e., are
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conditioned upon.

Basing the analysis only upon zi(z) is not always justified. If
knowledge of n would communicate information about £, then zi(n) cannot,
theoretically, be ignored. (For practical reasons, however, one might
frequently ignore such information - see Section 4.5.4) The most natural
way to rigorously state this is in terms of Bayesian analysis: if £ and n
are apriori independent, then zi(n) contains no information about ¢. This is

clear, since then (3.5.3) becomes (ignoring y)
B _ 1 2 1
2,(8) = [ 2 (€) 2,(n) mp(n) dn = 2 (£).

The standard conditioning on the z; in Example 12 is thus rigorously
justifiable only when ug and 0oy are felt to be apriori independent of o, 8,
and 12, a reasonable assumption in many situations.

Although Bayesian reasoning provides the intuitive basis for
stating that a nuisance parameter carries no information about ¢, we will
sidestep the issue and simply give an operational definition compatible with

the LP.

DEFINITION. Suppose E is such that (3.5.5) is satisfied. Let E" be the

"thought" experiment in which, in addition to X, n is observed. Then n is a

noninformative nuisance parameter if EVE(E",(x,n)) is independent of n.

NONINFORMATIVE NUISANCE PARAMETER PRINCIPLE (NNPP). If E is as in (3.5.5) and

n 18 a noninformative nuisance parameter, then
EV, (E,x) = Ev (E",(x,n)).

The NNPP states the "obvious," that if one were to reach the
identical conclusion for every n, were n known, then that same conclusion
should be reached even if n is unknown. This principle will be used in the

discussion of random stopping rules and random censoring in Chapter 4.
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As a final qualification, it should be noted that each of these
methods for suppressing the role of nuisance parameters is only applicable when
a decision or action is to be taken on the basis of evidence already recorded,
and no further taking of evidence is contemplated. For example, the Likelihood
Principle does not imply that the Bayesian's reduced likelihood function,
zi(y,g), summarizes all evidence from an experiment E about a parameter of
interest £ and an unobserved variable df interest y, if that evidence must
later be combined with other evidence from further trials also governed by the
same nuisance parameter n. Future observations may offer new evidence about
the joint distribution of £ and n; by integrating away (or by maximizing away)
the nuisance parameter n we would lose the chance to use that new evidence to
transform present evidence about n into evidence about £. Thus, inExample 11.1,

2

it would not suffice to carry along only l;(u,T ,02) if additional replications

Xi (for i = 1,...,I) were to be obtained at a later time. Even if future
observations will not be taken, a Bayesian could not report 25(5) as a complete
summary of the evidence to another Bayesian who might use a different condition
al prior n(nllg); despite the nuisance, the entire likelihood function

zg(i,nl) must be reported in order to convey all information.

3.6 CRITICISMS OF BIRNBAUM'S AXIOMATIC DEVELOPMENT

Birnbaum's axiomatic development of the LP has been subjected to
considerable scrutiny. Errors in Birnbaum's arguments did exist, as was men-
tioned in Section 3.4.1 (see also Birnbaum (1972), Basu (1975), Joshi (1976),
and Godambe (1979)), but these errors were correctable and did not affect the
basic truth of the arguments. Also easily handled are certain criticisms of
the LP arising from its misapplication or misinterpretation. Several such
misapplications and misinterpretations have already been mentioned; for

completeness we restate them here.
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(i) The LP applies only when & includes all unknowns relevant to
the problem. For design, prediction, sequential analysis, meta-analysis, and
in many scenarios, the important unknowns often include more than just e,
the unknown parameter of the probability model. But the LP can be reformu-

Tated to include such unknowns; see Section 3.5.

(ii) Sometimes a frequentist measure of the performance of a pro-
cedure - such as a sampling inspection plan or a diagnostic test - is specified,
by contract or law, to be of primary interest. Then, of course, the LP (when

stated for o alone) does not apply.

(iii) There can be ambiguities in the definition of the 1ikelihood
function. The problem can usually be resolved, however, by the approaches

discussed in Sections 3.4 and 3.5.

(iv) There can be situations in which the choice of experiment
conveys information about 6. For instance, one might judge that the experimen-
ter never would have chosen the given experiment unless he suspected thﬁt, say,
6 was small. The LP will still then apply, in the sense that the experimental
evidence is still contained in zx(e); it is just that one will then have addi-
tional evidence provided by the choice of experiment. (In a sense, the choice

of experiment should be treated as additional data.)

(v) There are periodically attempts to prove the LP wrong by ar-
guing, in a given example, that a particular likelihood-based method (e.g.,
maximum likelihood estimation) gives a bad result. But the LP prescribes no
particular method for utilization of zx(e). This issue is extensivelydiscussed

in Chapter 5.

(vi) The LP does not apply to the information conveyed about dif-
ferent parameters from different experiments. It may be tempting to say that,
if E1 is binomial (n,el) and E2 is binomial (n,ez) and 10 successes (or ones)

are observed in each of the experiments, then since the 1likelihood functions
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for the two situations are the same (as functions), one should reach the same
conclusions about 0, and 8- But the LP does not say this; it applies only
when 8, and 6, are the same parameter, i.e., are physically or conceptually
the same quantity.

There have been a number of criticisms directed at the explicit and
implicit principles used in Birnbaum's development of the LP. We address these

criticisms in this and the following sections.

3.6.1 The Model Assumption

The most frequently expressed criticism of the LP is that it is
supposedly very dependent on assuming a particular parametric model with a
density for X; since models are almost never known exactly, it is felt that
the LP is only rarely applicable. It is, of course, easy to criticize almost
any statistical theory for being model dependent, but let us examine the
issue seriously anyway.

The first point to note is that, even if there are various
possible models under consideration, the LP still says that the information
in the data, for any possible model, is contained in the likelihood function
for that model. The evidence conveyed by the data certainly changes as
different models are considered, but the likelihood functions should still be
considered the vehicles of this evidence.

To be more formal about this, we need only recall that 6 need not
be restricted to being a typical parameter, and indeed can represent various
models. The situation of discrete X is easiest to see: thus, if
Z = (XysXps...}, we could simply let ¢ = (e],ez,...) denote a point on the
infinite dimensional simplex

@={e: 0<o, <1 and 2o = 11,
and define
Pe(xi) = 6.
Then {Pe} is the class of all probability distributions on X, and the LP

applies to this completely nonparametric setup, as well as to any situation
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where a restricted class of models (corresponding to some subset of @) is
considered. Of course, we will usually only be interested in some function
v(e), but if all the evidence about 8 is contained in the 1ikelihood function,
then the same should be true of y(6). The argument in Section 3.4 in favor of
considering only discrete situations (in foundations) thus indicates that the
LP always applies.

Even in continuous situations, there is no need to tie the LP

to restrictive parametric models. For instance, consider the following example.

EXAMPLE 13. Suppose X],...,Xn are i.i.d. observations from some distribution,
known to have a density (with respect to a given measure v), but otherwise

unknown. Let ® be the set of all such densities, so that the density of

f (x) =

o e(xi).

ll'= >

i=1
For instance, this would be the situation if the X; were known to have a
distribution with a continuous density with respect to Lebesgue measure on a
Euclidean space. Thus a likelihood function does exist in such nonparametric
situations, and the LP (more properly the heuristic LP discussed in Section
3.4.1) would apply. "Robustness" problems typically fall into the setting

where a subset of @ (say, all densities close to some prescribed parametric

family of densities) is under consideration. Again, the LP will usually apply.

It can be argued, of course, that one may be dealing with a
general non-dominated family {Pe} or, alternatively, that the LP does not
really apply to the nondiscrete case, but there is still the RLP to contend
with. Again, ¢ could just be used to index the distribution, so the RLP will
essentially always be applicable, yet it is inconsistent with frequentist
reasoning and will be seen to yield strong conclusions such as the'Stopping
Rule and Censoring Principles. In conclusion, therefore, although the LP is
usually stated in terms of a particular parametric model with densities, it

(or its generalizations) are essentially always applicable. (Implementing the
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LP can, of course, be much more difficult in nonparametric situations, as will

be discussed in Chapter 5.)

3.6.2 The Evidence Assumption

A less common criticism of Birnbaum's development is the question-
ing of the existence or meaning of Ev(E,x). As noted in Section 3.3.1, however,
this can have essentially any interpretation (initially) and need not consist

of any single measure, so it is hard to see the force of this objection.

3.6.3 The Weak Conditionality Principle

A possible point of criticism is the Weak Conditionality Principle.
Indeed, a committed frequentist might well reject this principal, saying it is
based on the erroneous belief that one can obtain evidence (in the intuitive
sense) about a particular o from a particular experiment (c.f., Neyman (1957,
1977)). Instead, the argument goes, one can only state the performance of a
procedure that will be used repeatedly, and this should (or at least could)
involve averaging over both E] and E2. In a sense, this position is logically
viable. Its scientific desirability is very questionable, however, as Example
2 in Section 2.1 illustrates. This issue will be discussed further in Section
4.1.

Durbin (1970) raises the point that if the Weak Conditionality
Principle is allowed to apply only to conditioning variables which depend
solely on a minimal sufficient statistic, then the LP does not follow. (This
is because, in the proof of Theorem 1, the conditioning statistic, J, is not
part of the minimal sufficient statistic when the two 1ikelihood functions are
proportional. Sufficiency says "discard J," after which it is clearly
impossible to condition on J.) No plausible reason has been advanced for so
restricting the Weak Conditionality Principle, however, and the idea seems

unreasonable as a reexamination of Example 2 shows.

EXAMPLE 2 (continued). Let Xc denote the outcome of the California experiment,

and suppose that there was some possible outcome N of the New York experiment
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for which zxc(e) would have been proportional to me(e). Then, in the mixed
experiment E*, the outcomes Xc and N would be identified by a minimal suffi-
cient statistic, precluding application of the restricted WCP. If, however,
there was no X\ then conditioning on the California experiment would be
allowed. Thus, by Durbin's argument, whether or not onechooses tocondition on
the actually performed California experiment with observation Xc would depend
on the existence, or lack thereof, of an observation N> in the unperformed
New York experiment, having a 1ikelihood function proportional to that of Xc-
Such dependence of conditioning on the incidental structure of an wnperformed

experiment would be rather bizarre.

Other rejoinders to Durbin's criticism can be found in Birnbaum
(1970) and Savage (1970). Savage invokes a "continuity" argument, showing
that following Durbin's restricted WCP can involve drawing substantially
different conclusions when a problem is changed in an insignificant way (such

as slightly perturbing the likelihood function of XN above).

3.6.4. The Sufficiency Principle

Surprisingly, the most common and serious axiomatic criticisms of
the LP are those directed at the Sufficiency Principle. This may seem strange,
sufficiency being such a central part of classical statistics, but issues can
be raised.

The first issue is a valid limitation of the SP: if one faces a
decision in which the consequences (or loss) depend on x, and not just on the
action taken and unknown o, then the SP need not be valid. Such situations
are relatively rare, however, and could be handled with a reformulation of the
LP to the effect that Ev(E,x) should depend on 1x(e) and X.

A second issue, raised by Kalbfleisch (1974, 1975), is that the LP
does not follow from the WCP and SP if sufficiency is not allowed to apply to
simple mixture experiments. The problems with such a restriction of sufficiency
are that (i) It seems artificial, there being no intuitive reason to restrict

sufficiency to certain types of experiments; (ii) It is difficult and perhaps
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impossible to clearly distinguish between mixture and non-mixture experiments

(cf. the discussion in Kalbfleisch (1975)); (iii) Mixture experiments can of-
ten be shown to be equivalent tonon-mixture experiments (cf. Birnbaum (1962a)),
making the distinction seem unreasonable; and (iv) In almost any situation,
behavior in violation of sufficiency can be shown to be inferior (see Section
3.7). Evans, Fraser, and Monette (1986) contains further discussion.

The most serious criticism of the SP comes from ideas of Barnard
(cf. Barnard, Jenkins, and Winsten (1962), Barnard (1980, 1981), Barnard
and Godambe (1982), and the discussions in Birnbaum (1962a), Basu (1975), and
Wilkinson (1977)) and Fraser (cf. Fraser (1963, 1968, 1972, and 1979)). They
question the "sufficiency" of representing the experimental structure solely
in terms of probability distributions on the sample space indexed by the
unknown 6; Dawid (1977) called this the Distribution Principle (DP). The
criticism of the DP (and hence the SP) is that there may be important infor-
mation lost concerning the relationship between X, 6, and the "randomness" in
the problem. (An important observation is that, while relevant to the LP,
this criticism is not relevant to certain of the most controversial relatives
of the LP, such as the Stopping Rule Principle; cf. Dawid (1986).)

This criticism turns out to be quite difficult to answer, striking
at the core of virtually all approaches to statistics. One response is to
attempt an axiomatic development of the LP which incorporates "structural"
information. Such a development can be found in Berger (1984a), but is some-
thing of a failure, containing a suspect axiom from the above viewpoint. Also
in Berger (1984a), therefore, the issue is addressed from the viewpoint of
coherency and admissibility; it is shown that incorporating "structural" in-
formation in violation of sufficiency results in inferior behavior. These
arguments are familiar, but because of the importance of the issue and the
bearing these arguments have on any proposed violation of the LP, they are
reviewed in Section 3.7. (Evans, Fraser, and Monette (1986) also contains
relevant discussion.) Incidentally, the need to resort to coherency and

admissibility bears out I. J. Good's discussion of Birnbaum (1962a), that
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derivation of the LP via the WCP and SP is mainly a sociofogical contribution
to statistics, since Bayesian coherency axiomatics would give the LP directly.
While agreeing, we feel that the sociological contribution is very substan-
tial; many people will (for whatever reasons) accept the WCP and SP, yet
resist the LP.

In the remainder of this section, we briefly outline the objection
to the SP that is raised in the theories of Pivotal Inference (cf. Barnard
(1980, 1982) and Barnard and Sprott (1983)) and Structural Inference (cf.
Fraser (1968, 1972, 1979)). The key idea is that it may be known that

X = h(e,w),
where w is an unknown random quantity taking values in @ according to a known
distribution Q, and h is a known function from @ x @ - 2 (Often in
Structural and Pivotal inference, Q is known only to belong to some class 2.
For simplicity, we assume Q is known.) This is actually more or less the
"structural" formulation of the problem. The formulation in Pivotal Inference
is based on "pivotals" w = g(X,8) having known distributions. Typically g
will be an appropriate inverse function of h, so the two approaches are very
related. We will, for the most part, consider the structural formulation,
although comments about differences for the pivotal model will be made. The
structural model is sometimes called a functional model (cf. Bunke (1975) and
Dawid and Stone (1982)), but we will stick with Fraser's original term. The
following example, from Fraser (1968) (and related to an example in Mauldon

(1955)), illustrates the key issue.

EXAMPLE 14. Suppose X = (X{,X,), 6 = (oy,7,¢), and P, is bivariate normal

with mean zero and covariance matrix

2
U-l TQ]
t = 0y (12+¢2)

This could arise from either of the following two structural models:
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(i) w-= (m],wz) is bivariate normal, mean zero and identity covariance matrix,
and

(3.6.1) X = hio,w) = (a]m], rw]+¢m2);

(ii) w is the same but

(3.6.2) X = h*(e,w) = (T'w]+¢'w2, 020)]),

where g, = /12+¢2, ' = o]r/cz, and ¢' = a]¢/02. In Pivotal Inference, one
would write (3.6.1) and (3.6.2) as

(3.6.])I w = ((U-"U)z) = (x'l/o"’ (Xz'TX]/O")/¢)a

(3.6.2)' w = (w],wz) = (Xz/ozs _(x]"l"xz/oz)/¢')s

and W] and Wy would be the pivotals with known distribution upon which the
inference would be based. In pursuing this example later we will assume that

independent observations X],...,Xn from the model are taken, giving the

"sufficient" statistic § = _E (x')Y(x"), which has a Wishart (n, §) distribu-
tion. =

In the above type of situation, which we will call a P-S (for
Pivotal-Structural) situation, an experiment is specified by
E=(X, 0, h, w, Q). As in Example 14, one could have a single probability-
modeled experiment, E = (X, o, {Pe}), arising from more than one P-S experiment.
In such situations there is a definite loss of structure in reduction to a
probability model. The question that will be addressed in the next section is
whether this structure contains any useful information. Of course, the point
is moot unless P-S theory actually recommends differing actions or conclusions
for differing P-S models which have the same probability model. An example
where this is the case for Pivotal theory can be found in the discussion by
Barnard in Berger (1984a). A possible example for Structural theory is

Example 14.

EXAMPLE 14 (continued). A part of Structural Inference is the construction of

"structural distributions" for ¢. These can presumably be used, in the same
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manner as posterior or fiducial distributions, to make inferences or probability
statements about 6. The structural densities, based on S, for ¢ = (o], T, ¢)
are given for the two models (3.6.1) and (3.6.2), respectively, by (see

Fraser (1968))

(3.6.3) m,(e]s) = K,(S)fe(S)o$¢'],
and
(3.6.4) ny(8]s) = Ky(s)f(s)(x2+s2) o7,

(These happen to correspond to the posterior distributions with respect to the
right invariant Haar measures on the lower and upper triangular group decompo-
sitions of {.) Examples will be given in the next section which show that use

of these differing structural distributions can lead to differing conclusions.

3.7 VIOLATION OF THE LIKELIHOOD PRINCIPLE: INADMISSIBILITY AND INCOHERENCY

3.7.1 Introduction

The alternative to justification of the LP from "first principles"
is to show that behavior in violation of the LP is inferior. The only convinc-
ing method of demonstrating such inferiority is to show that such behavior can
be improved upon in repeated use. We thus turn to measures of long run per-
formance of statistical procedures or methods. We will not argue that
measures of long run performance have an important practical role in
statistics (as frequentists would argue), but we will argue that they have the
important theoretical role of providing a test for proposed methodologies: it
cannot be right (philosophically) to recommend repeated use of a method if the
method has "bad" long run properties. Both of the main approaches to long run
evaluation, decision theory and betting coherency, will be discussed. We will
further argue that the decision-theoretic approach is the more satisfactory
of the two (even for "inference" problems), although either approach strongly
contraindicates violation of the LP.

A violation of the LP will occur (in the discrete case) when there

are two experiments E] and E2, with xi € z] and xé € Zy satisfying (for some
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positive constant c)
Ty o 204
(3.7.1) fe(x]) =c fe(xz) for all o,

and for which

(3.7.2) Ev(E],xi) # Ev(Ez,xé).

Consider now the mixed experiment E*, in which J = 1 or 2, with probability %
each, is observed (independent of all elements of the Ei)’ and experiment EJ is
then performend. According to the WCP,
* 1 =
Ev(E .(J,xj)) EV(Ej,xj),

which combined with (3.7.2) yields the conclusion
(3.7.3) Ev(E*,(],xi)) # Ev(E*,(2,xé)).

It will be behavior according to (3.7.3) that is shown to be inferior in
repeated use.

In the nondiscrete case, we can consider violation of the RLP (see
Section 3.4.1). Thus suppose that, in the situation of the RLP, there exists a

set Ac Uy, with P;(A) > 0 for all o, and such that
(3.7.4) EV(Ey,x;) # EV(E,y, o(x)).

Again considering the mixed experiment E* and applying the WCP, one obtains

that, for x; € A,
(3.7.5) EV(E*, (1,%)) # EV(E*,(2, o(x,))),

behavior which will be shown to also have bad long run properties.

The experiment E* will preserve all "structural" features of E] and
EZ’ so the only objection that could be raised concerning the above line of
reasoning is the use of the WCP. Although some frequentists will reject the
WCP (and are then exempt from the conclusions of this section) most will find
such rejection difficult. Virtually all other theories accept the WCP, and
are hence subject to evaluation through E*. Among the theories which seem to
accept the WCP, and yet sometimes advocate violation of the LP, are (the

already discussed) Pivotal Inference and Structural Inference, Fiducial
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Inference, Plausibility Inference (see Barndorff-Nielsen (1976)), and certain
noninformative prior Bayesian theories (see Example 9 in Section 3.1). It
should be noted that it is actually rather rare for these theories to conflict
with the LP. Indeed the conflict would not be worth making an issue of, were it
not for the purported refutations of the LP that seem to arise from these
theories. The "refutations" are always of the form - “following theory A
conflicts with the LP, so the LP must be wrong." We will argue (via long run

evaluation) that the reverse is true.

3.7.2 Decision Theoretic Evaluation

The decision-theoretic approach supposes that the result of the
statistical investigation is to take an action a € G {(which could conceivably
be the action to take a particular "inference"), the consequence of which, for
given data x and when 8 obtains, is the loss L(a,8). It is also supposed that
the statistical method being evaluated provides an action to take for each
possible x, thus defining a statistical procedure &(-): % -~ G. (For the
most part we will stick to nonrandomi zed procedures for simplicity.) As usual
in frequentist decision theory, we define the frequentist risk and the Bayes

risk (with respect to a prior distribution = on @) as, respectively,
R(e,8) = EjL(8(X),0), and r(m,s) = E"R(6,5).

Following Hi1l (1974b) and Berger (1984a), and in a similar manner

to many betting scenarios, we consider the following game.

EVALUATION GAME. Player 1 proposes use of 6] and Player 2 proposes 62. A
master of ceremonies will choose a sequence 8= (e].ez,...) € C (a class of
relevant sequences), and for each 8; the experiment E will be independently
performed yielding an observation X; (from the distribution Pe.). Player j
will use Gj(xi), paying to the other player his "loss" L(6j(xi;,ei). After n

plays, Player 2 will have won

S =

1 : 2
n [L(5 (x-i)se') - L(5 (xi)sei)]-

1

ne—1>s
—

i
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If, for any g €C,

(3.7.6) PQﬂiﬂ;nf%Sn>-m =1,

then 62 will be called C-better than 6].

Although there are a number of reasonable choices for C in the

Evaluation Game, a particularly attractive choice is

Co = {g: there exists a compact set K< @ for which 6; € K for every i}.

This choice is attractive because reality is bounded, but the bound is often
unknown (and, hence, we entertain unbounded models). With such a c, the
Evaluation Game seems to be a fair way of testing the performance of a proce-
dure. If 6] is certain to lose an arbitrarily large amount in comparison with
62, it would certainly seem unwise to call 6] fundamentally sound. The follow-

ing theorem is useful in dealing with Ce-

THEOREM 4. Suppose R(8,62) < R(6,8') for all e, that [R(0,5')-R(8,62)]
18 continuous in 0, and that the random variables
- 1 2
Z'i - [L(¢S (X.i),e.i)'l-(‘s (X'I)’e'l)]

have uniformly bounded variances (which is trivially satisfied if L is

bounded). Then 62 18 Cc-better than 6] in the Evaluation Game.

Proof. Define

b0;) = Eg (2;) = R(s;,6')-R(s;,6%).

i 1

By the strong law of large numbers,

n
% _2] [Zi'¢(91)] -0 almost surely,
i=
so that, for any g,
‘minf o1 7]
3.7.7 P (lim inf —S > 0) =P _(1im inf — 7} y(e;) > 0).
( ) ,an_mnn an_m niZ]’

But since the o, lie in some compact set and y(6) is continuous and
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positive,
inf w(ei) > 0.

i<

The conclusion is immediate from (3.7.7). ||

The condition “R(e,az) < R(e,sl) for all 6" in Theorem 4 implies

1

that 6 is inadmissible in a frequentist decision-theoretic sense. This is

1 in the Evaluation Game. Indeed

really the key condition in the failure of §
we can, in a loose sense, equate such failure with inadmissibility. The

exact relationship depends on the choice of ¢ in the Evaluation Game, so we
will sometimes use the term "inadmissibility" to encompass the whole idea.

Adopting a decision-theoretic viewpoint for evaluation can be
criticized, especially for inference problems in which losses (if they exist
at all) are vague or hard to formulate. This is not the place to argue the
case for a decision-theoretic outlook, and indeed a justification of decision
theory is not needed for our purpose here. OQur goal is to judge the claim in
P-S analysis (and other approaches) that the LP is invalid, because it ignores
important features of the experiment. We will essentially try to argue that,
in any decision problem, repeated violation of the LP will result in long run
loss. Most statisticians would probably have qualms about trying to argue
that, even if the LP should be followed in any decision problem, it need not be
followed in inference problems. Essentially such an argument would be of the
variety - "I know I'm right, but will not allow any quantifiable evaluation
of my methods."

We will avoid the "unfair" possibility of taking an inference
procedure and evaluating it with respect to a particular loss function. It is
somewhat more fair to evaluate it with respect to a very wide range of loss
functions, and inferior performance for a wide range of reasonable losses
should be a serious concern. More commonly, however, we will consider
particular losses as given, and see where the following of P-S (or other)

reasoning might lead us. Criticizing P-S reasoning (in particular, possible
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violation of the LP) in decision settings for which it was never intended is,
of course, an uncertain undertaking, especially since it is not clear what
P-S reasoning in decision contexts would be. Of relevance here is the
following comment of Hill (1974b):

"But no matter what is meant by inference,

if it is to be of any value, then somehow

it must be used, or acted upon, and this

does indeed lead back to the decision-

theoretic framework. I suspect that for

some 'inference' is used as a shield to

discovery that their actions are incoherent."

As an example of a reasonable "inference" loss, imagine that a

given "confidence" set C is to be used, and that the desired inference is a
measure, 8(x), of the "chance" or "confidence" with which we wish to assert
that C contains 6. No matter what interpretation is attached to &§(x), it
seems reasonable to measure its performance via a loss function which reflects
whether or not 6§ does a good job of indicating the presence of & in C. One

such loss function is
(3.7.8) L(s(x),0) = (Ic(e)-s(x))z,

essentially the quadratic scoring function of deFinetti (1962). (Any other
proper scoring function would also be reasonable - c.f. Lindley (1982).) Note
that for any "posterior" distribution, n(e|x), for e, the optimal choice of

&(x) in (3.7.8) is
(3.7.9) s"(x) = e8I (q) = pm(81X) (g ¢ ),

j.e., the posterior probability of C. Thus, to test the inferences
provided by Structural Inference in Example 14, it seems reasonable to use

the structural distributions provided by (3.6.3) and (3.6.4) to determine

o w
) ](s) and & 2(s) via (3.7.9), and then test the implied procedure in the

Evaluation Game for the mixed experiment E* (see Section 3.7.1). We will
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return to this example later.

The simplest situation, in which violation of the LP (or RLP)
results in failing the Evaluation Game for E*, is when L is strictly convex
in"a" for all 8. (For some other situations, see Berger (1984a).) Consider
first the discrete case in Section 3.7.1. A violation of the LP (see (3.7.3))

would imply use of a 5] in E* for which
(3.7.10) s (1) # 61 ((2x9)).

Consider, however, the procedure

w5y 8 (axi )+ 1y ' ((2axg))  for

XJ- = X] or X2

(3.7.1) ¥l =
81((3.x;)) otherwise,

where ¢ is from (3.7.1). Using the strict convexity of L, one obtains that
(3.7.12) L62((3.x5))08) < iy Ll ((1,xd)) 0)
+ Tary L8 ((2,x)) 46).

An easy calculation, using (3.7.1), then shows that

(3.7.13) Ra,5")-R(s,62) = {5E £1(xt)a(e),

where a(g) is the difference between the right and left hand sides of (3.7.12).
Under the additional easily satisfiable conditions of Theorem 4, it is

1

immediate that s fails the Evaluation Game for all ¢ € Cor (This is all, of

course, a form of the Rao-Blackwell Theorem.)

EXAMPLE 9 (continued - see Section 3.1). Suppose it is desired to estimate o
under the loss L = (e-a)2 (or any other strictly convex loss), and that 84
would be recommended for E] and 8y for EZ’ where 5](9) # 52(9); thus a
violation of the LP will have occurred. (Neither Pivotal nor Structural
inference would necessarily recommend different actions here, but the

Jeffreys noninformative prior Bayes theory and also Akaike (1982) would seem to

so recommend.) The situation meshes exactly with the discrete setting discussed
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above, and so if one (following the WCP) used
1, B
(3-7-]4) S ((J’Xj)) = 6J(XJ)

for the mixed experiment E*, (3.7.13) would hold. It follows from Theorem 4

1

that 6 fails the Evaluation Game for ¢ € Cp Note that 6] would not fail the

1 for

Evaluation Game for any ¢ which converged to zero or one. The failure of §
any § € C,,, Or even more generally for any 6 which lies within a compact subset
of @ some positive fraction of the time, strikes us, however, as strong enough

evidence to rule out using 6].

The non-discrete version of the above argument for convex loss
would assume (see the discussion around (3.7.4)) that, in violation of the

RLP for E*,
(3.7.15) s1(1,x))) #61(@2s o(x))),  for x, € A.
The analog of (3.7.11) is now

(3.7.16) s2((3.x4)) = EL8 (2K T(3.x;) 1,

the conditional expectation of 6] given T, where T is the sufficient
statistic (in E*)
(2, (xq))  if j =1 and x; € U,
T((3,%)) =
(j.xj) otherwise.
The appropriate versions of (3.7.12) and (3.7.13) can easily be established

and under reasonable conditions, failure of 5] in the Evaluation Game follows.

EXAMPLE 14 (continued). Suppose it is desired to estimate } (which is
equivalent to 6) under the strictly convex loss

(3.7.17) L(s,4) = tr(st™)-Tog det(s™)-2.

(The loss L(s,%) = tr(d)t']-l)2 would work similarly - see James and Stein
(1961) and Selliah (1964).) If one treats m(e|s) and ﬂ2(6|S) in (3.6.3) and

(3.6.4) as posteriors and calculates the optimal estimators with respect to

This content downloaded from 128.173.127.127 on Tue, 28 May 2013 20:57:09 PM
All use subject to JISTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

58 THE LIKELIHOOD PRINCIPLE

(3.7.17), one obtains

)" 0 n-1)"1 0
t )
L sps 85(s) = sy Sy

(3.7.18) &,(s) =
-1 -1
0 (n-1) 0 (n+1)

1]
w

where s = sLsE = susﬁ, SL and Sy being lower and upper triangular, respectively.

If these estimators would be used in E] and E2, the WCP would lead to using the
estimator 6]((j,s)) = Gj(s) in the mixed experiment E*,

To establish failure of 6] in the Evaluation Game, let
A= {s: 6](5) # 62(5)} and note that A has probability one for all 6. This
situation satisfies the conditions of the RLP with U] and U2 being the entire
sample space, c(+) = 1, and ¢ being the identity map (since the probability
space is identical for E] and EZ)’ and also satisfies (3.7.15). The estimator

s2 in (3.7.16) is simply

§2((3,5))

7 81 ((1,8)) + 5 62((2,5))

1 1
'2-6](5) +’2_62(S)9
and, from the strict convexity of the loss, it follows easily that (for E*)

R(8,6%) < R(8,6')  for all .
Furthermore, the conditions of Theorem 4 can easily be verified in this
situation, and so the conclusion of the theorem applies: 62 is better than 6]
in the Evaluation Game for all bounded sequences 9.

Of course, this same analysis would hold for any estimators that
differ for E] and E2, not just for 6] and 62 in (3.7.18). Thus violating the
RLP by using different estimators in the two cases seems definitely contra-
indicated.

The same kind of conclusion follows in the "inference" situation of
giving the “"confidence" to be attached to a set C, using a loss such as (3.7.8).
If n](e|s) and w2(9|s) are used as posteriors to produce probabilities that e

is in C (via (3.7.9)) and these probabilities differ (as will usually be the
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case), an analysis virtually identical to that above shows that the violation
of the RLP results in an inference for E* which fails the Evaluation Game for
all bounded §. Again, one could object to evaluating inferences via (3.7.8),
but use of any reasonable measure of the performance of inferences would lead

to the same conclusion.

3.7.3 Betting Evaluation

Studying coherence in betting has a long tradition in statistics,
especially Bayesian statistics. The typical scenario deals with evaluation
of methods (usually inference methods) which produce, for each x, either a
probability distribution for e, say qx(e) (which could be a posterior distribu-
tion, a fiducial distribution, a structural distribution, etc.), or a system of
confidence statements {C(x), 6(x)} with the interpretation that 8 is felt to be
in C(x) with probability 6(x). For simplicity, we will restrict ourselves to
the confidence statement framework; any {qx(e)) can be at least partially
evaluated through confidence statements by choosing {C(x)} and letting &(x) be
the probability (with respect to qx) that o is in C(x).

The assumption is then made (more on this later) that, since &(x) is
thought to be the probability that e is in C(x), the proposer of {C(x), &(x)}
should be equally willing to accept either the bet that 6 is in C(x), at odds of
(1-5(x)) to &(x), or the bet that ¢ is not in C(x), at odds of &(x) to
(1-6(x)). An evaluations game, as in Section 3.7.2, is then proposed, in
which the master of ceremonies again generates 0, and Xi’ Player 1 stands ready
to accept bets on {C(x), &(x)}, and Player 2 bets s(x) at odds determined by
5(x). Here, s(x) = 0 means no bet is offered; s(x) > 0 means that an amount
s(x) is bet that 6 € C(x); and s(x) < 0 means that the amount |s(x)| is bet
that o ¢ C(x). (As discussed in Robinson (1979a), restricting s(x) to satisfy
[s{x)| < 1 is also sensible.) The winnings of Player 2 at the ith play are

W = [Ic(xi)(ei)-S(xi)JS(xi),

n
and of interest is again the limiting behavior of %-.{]wi. If, for some ¢ > 0,
i=
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. ...1 " _
(3.7.19) Pe(]1m inf ﬁ-iz1wi >e) =1

R e
for all sequences § = (e]tez,...), then {C(x), &(x)} will be called incoherent,
or alternatively s(x) will be said to be a super relevant betting strategy. If
it is merely the case that (3.7.19) holds for any ¢ € Co with ¢ = 0, then
{C(x), 8(x)} will be called weakly incoherent or s(x) will be said to be weakly
relevant. (These concepts can be found in different, but closely related, forms
in such works as Buehler (1959, 1976), Wallace (1959), Freedman and Purves
(1969), Cornfield (1969), Pierce (1973), Bondar (1977), Heath and Sudderth
(1978), Robinson (1979a, 1979b), Levi (1980), and Lane and Sudderth (1983).)

If {C(x), 6(x)} is incoherent or weakly incoherent, then Player 1
will for sure lose money in the appropriate evaluations game, which certainly
casts doubt on the validity of the probabilities §(x). A number of objections
to the scenario can, and have, been raised, however, and careful examination
of these objections is worthwhile.

Objection 1. Player 1 will have no incentive to bet unless he perceives the
odds as slightly favorable. This turns out to be no problem if incoherence is
present, since the odds can be adjusted by ¢/2 in Player 1's favor, and
Player 2 will still win. If only weak incoherence is present, it is still
often possible to adjust the odds by a function g(x) so that Player 1 perceives
that the game is in his favor, yet will lose in the long run, but this is not
clearly always the case.

Objection 2. Weak incoherence has been deemed not very meaningful, since a
sequence § = (e],ez,...) could be chosen so that Player 1 is not a sure loser.
However, the fact that Player 1 is a sure loser for any 8 € C, seems quite
serious.

Objection 3. Of course, frequentists who quote a confidence level s for
{C(x)} remove themselves from the game, since they do not claim that & is the
probability that ¢ is in C(x), and hence would find the betting scenario

totally irrelevant.
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Objection 4. The game is unfair to Player 1, since Player 2 gets to choose
when, how much, and which way to bet. Various proposals have been made to
"even things up." The possibility mentioned in Objection 1 is one such, but
doesn't change the conclusions much. A more radical possibility, suggested
by Fraser (1977), is to allow Player 1 to decline bets. This can have a
drastic effect, but strikes us as too radical, in that it gives Player 1
license to state completely silly 6(x) for some x. It is after all {§(x)}
that is being tested, and testing should be allowed for all x.

Objection 5. The most serious objection we perceive to the betting game is
that {s(x)} is generally not selected for use in the game, but rather to
communicate information about 6. It may be that there is no better choice of
{6(x)} for communicating the desired information. Consider the following
example, which can be found in Buehler (1971), and is essentially successive
modifications by Buehler and H. Rubin of an earlier example of D. Blackwell.

EXAMPLE 15. Suppose x and @ are the integers, and that Pe(X=e+1) =

Pe(X=e-]) = ;. We are to evaluate the confidence we attach to the sets

C(x) = {x+1} (the point (x+1)), and a natural choice is §(x) = % (since o is
either x-1 or x+1, and in the absence of fairly strong prior information about
9, either choice seems equally plausible). This choice can be beaten in the
betting game, however, by betting that g is not in C(x) with probability g(x),
where 0 < g(x) < 1 is an increasing function. (Allowing Player 2 to have a
randomized betting strategy does not seem unreasonable.) Indeed, the expected
gain per bet of one unit, for any fixed g, is %-[g(e+1)-g(e-1)] > 0, from
which it is easy to check that s(x) = %—is weakly incoherent. (A continuous
version of this example, mentioned in Robinson (1979a), has X ~ %(6,1),

n
® = IR], C(x) = (-, x), and s(x) = -;—-)

In this and other examples where {5§(x)} loses in betting, one can
ask the crucial question - Is there a better § that could be used? The
question has no clear answer, because the purpose of § is not clearly defined.

One possible justification for s(x) = %-in the above example is that it is the
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unique limiting probability of C(x) for sequences of what could be called
increasingly vague prior distributions. (A more formal Bayesian justification
along these lines would be a robust Bayesian justification, to the effect that
the class of possible priors is so large that the range of possible posterior
probabilities for C(x) will include 1/2 for all x.) An alternative justifica-
tion can be found by retreating to decision theory, and attempting to quantify
how well §(x) performs using a loss such as (3.7.8). One can then ask if
there is a better § in terms, say, of the decision-theoretic Evaluation Game
for bounded 9. The answer in the case of Example 15 is - no! A standard
limiting Bayes argument can be used to show that §(x) = % is decision -
theoretically admissible for this loss, from which it follows that, for any
other §*, a bounded (indeed constant) sequence § can be found such that ¢ is
better than &é* in the Evaluation Game.

The Evaluation Game (or decision-theoretic inadmissibility) with
respect to losses such as (3.7.8) can be related to incoherency, and seems to
be a criterion somewhere between weak incoherency and incoherency (c.f.
Robinson (1979a)). This supports the feeling that it may be a more valid
criterion than the betting criterion. This is not to say that the betting
scenarios are not important. Buehler, in discussion of Fraser (1977), makes
the important point that, at the very least, betting scenarios show when
quantities such as §(x) "behave differently from ordinary probabilities." And
as Hill (1974b) says

“...the desire for coherence...is not
primarily because he fears being made
a sure loser by an intelligent opponent
who chooses a judicious sequence of
gambles...but rather because he feels
that incoherence is symptomatic of some-
thing basically unsound in his attitudes."
To show that violation of the LP (or RLP) leads to some form of

incoherence, it is again necessary to consider the setup in Section 3.7.1.
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Taking the discrete case first, suppose a fixed set Cc @ is assigned
"confidence" ay in E] when xi is observed, but "confidence" az(# u]) in E2
when xé is observed. If the WCP is followed for the mixed experiment E*, the
confidence function 5§ employed satisfies

‘5((15)("')) = b # ) = 5((2'Xé));

the appropriate version of (3.7.3). Consider now the betting strategy (see the
beginning of the section for interpretation)

0 if xj # X or x2

5((jaxj)) = if j = k and X; = X or x;

Cjaj
-cj(l-aj) if j # k and X5 = X} Or X3,

where ¢ = 1, ¢, = ¢ (from (3.7.1)), and k = 1 or 2 as @y <oy OF ay > ay,
respectively. If this strategy is used with odds corresponding to o5 when

(j,xj) is observed, the expected gain can be easily calculated to be
1 .1
7 fo(x)lag-ap].

If f;'(xi) is bounded away from zero for all bounded sequences g, it follows
easil; that & is weakly incoherent.

In the nondiscrete case, one replaces oy above by aj(xj) (the
“confidence" in C if X5 is observed in Ej), and assumes that, for some

Ac U, with P;(A) > 0 for all s,

1
a-l(x]) # az(cp(x])) for X € A.

The corresponding confidence function in the mixed experiment E* is
6((j,xj)) = aj(xj), which again violates the RLP. Consider, now, the betting
strategy
0 if (5.x5) ¢ A*
s((3sx5)) = § ¢5(x;5)a;5(x;) if 3=k((3,x;)) and (j,x;) € A*
=¢5(x;)(1-a5(x;)) if §#k((3,x;)) and (3.x;) € A%,

where c](x]) =1, CZ(XZ) = c(¢'](x2)) (see (3.4.1)),
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Ax = {(T,x): xp € AU ((2s9(x))): x; € A},

and
1 if j=1 and a](x.') < aZ(:‘P(X])) or
; -1
k(%)) = j=2 and a (e (%)< ay(x,)
2 otherwise.

The expected gain for this betting strategy can easily be calculated to be
1 1
£ E-Ia](x])-a2(¢(x]))|Pe(dx]).

Weak incoherency will again follow under reasonable conditions.

For general theorems on coherence, consult Heath and Sudderth
(1978) and Lane and Sudderth (1983) and the references therein. These theorems
indicate that, unless & for E* is compatible with some posterior distribution,
incoherency will result. A coherent & will not violate the LP (or RLP), and so
incoherence of violation of the LP is quite general. Again, however, this may
not be as convincing as the decision-theoretic refutation of violation of the

LP which was discussed in Section 3.7.2.
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CHAPTER 4, CONSEQUENCES AND CRITICISMS OF THE LIKELIHOOD
PRINCIPLE AND RELATIVE LIKELIHOOD PRINCIPLE

Most people who reject the LP do so because it has consequences
they do not like. Of course any theory deserves to be rejected if its conse-
quences are erroneous, but great care must be taken in making sure that the
consequences really are wrong and not just in opposition to the intuition
currently dominant in the field. In this section we discuss some of the more
surprising consequences of the LP and RLP, and investigate the conflicts with
prevalent statistical intuition. It will come as no surprise that we feel

that the conflicts are always resolved in favor of the LP and RLP.

4.1 INCOMPATIBILITY WITH FREQUENTIST CONCEPTS

4.1.1 Introduction

The philosophical incompatibility of the LP and the frequentist
viewpoint is clear, since the LP deals only with the observed x, while frequen-
tist analyses involve averages over possible observations. It cannot be said,
however, that any particular frequentist procedure conflicts with the LP,
since the procedure could happen to correspond to a sensible conditional
procedure. Such a correspondence does, in fact, occur in many statistical situ-
ations. For instance, much of frequentist normal distribution theory inference
provides the same numerical measures of “confidence" as does noninformative
prior conditional Bayesian theory (because of the symmetries or group structure
of the problem), although the interpretations of these measures are different.
(A cynic might argue that frequentist statistics has survived precisely because

of such lucky correspondences.) Nevertheless, enough direct conflicts have been

65
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(and will be) seen to justify viewing the LP as revolutionary from a
frequentist perspective.

We have already alluded to the fact that a frequentist can
logically dismiss the LP, essentially by rejecting the WCP and concluding that
the concept of learning or drawing conclusions about 6, for a particular
experiment, is meaningless. Thus Neyman (c.f. Neyman (1957, 1967, 1977))
espouses the viewpoint that only the performance of a procedure in repeated use
is relevant, and that it is a mistake to think in terms of learning about
particular e. Though logically viable, this viewpoint is scientifically
unappealing. Experiments are done precisely to obtain "evidence" about
unknown 6, and investigators will not take kindly to being told that this is
meaningless. Thus Birnbaum (1977) argues that Neyman-Pearson conclusions are
virtually always used in an "evidentiary" fashion, rather than as measures of
procedure performance in repeated use. Savage put this very succinctly when
talking about confidence sets in Savage et. al. (1962):

"The only use I know for a confidence
interval is to have confidence in it."

Supposing then that we are going to use a frequency measure as a
measure of evidence about 8, what classical justifications for such behavior
can be advanced? There are at least the following four:

(i) Frequency measures are "objective", having a well defined physical

interpretation, and science demands objective statistical measures.

(ii) The use of frequency measures (and procedures based on them) is
reasonably sound and safe for nonspecialists.

(ii1) One needs "repeatable" experiments in science, i.e., any evidence
gathered about ¢ should also be 1ikely to be found if the experiment is
repeated; this will supposedly be true if frequency measures of evidence are
used.

(iv) The following principle should be followed:

CONFIDENCE PRINCIPLE. Any statistician who uses a methodology in which he makes
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statements orn draws conclusions with specified accuracy, should be guaranteed

that in the Long nun his actual accunacy will be at Least that promised.

We will briefly examine these four justifications.

4.1.2 Objectivity

It should be observed, first of all, that the LP is entirely objec-
tive, stating only that the evidence about & is contained in the likelihood
function. Also, the likelihood function has as much physical reality as any
frequency measure calculated for a presumed model. It would thus be logically
sound to pass on to the next issue. We dally, however, because of the problem
of using the 1ikelihood function. Indeed, since in Chapter 5 we will argue for
Bayesian use of the 1ikelihood function, issues of objectivity will become relevant.

The Bayesian answers to criticisms of objectivity are either (i)
objectivity is a myth, or (ii) only through "noninformative" prior Bayesian
analysis can objectivity be really attained. As an example of the first
argument, Box (1980) states:

"In the past, the need for probabilities

expressing prior belief has often been thought

of, not as a necessity for all scientific

inference, but rather as a feature peculiar to

Bayesian inference. This seems to come from

the curious idea that an outright assumption

does not count as a prior belief... 1 believe

that it is impossible logically to distinguish

between model assumptions and the prior

distribution of the parameters."
A general review of this objectivity issue is given in Berger and Berry (1987).
(See also Berger (1985).) The only portion of frequentist theory formally
exempt from the argument is (completely) nonparametric analysis, and, even
then, the choice of a particular procedure to use can be argued to be a

highly subjective input.
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If the model can be claimed to have some objective status, there
is still argument (ii) (above) to contend with. The idea behind this argument
is that one can lay claim to objectivity only by purposely striving for it,
through use of what is deemed to be an "objective prior." Substantial
support for this position can be found in Jeffreys (1961), Box and Tiao (1973),
Zellner (1971), Rosenkranz (1977), Bernardo (1979), Berger (1980, 1984¢), and
Jaynes (1981, 1982). Regardless of the validity of argument (ii), it is a
fact that use of noninformative priors is objective, purposely not involving
subjective prior opinions, and is consistent with the LP, The measures of
evidence used are, of course, probabilistic statements about the unknown 6
itself (through the formal posterior distribution of o) and hence may be
deemed less "real", but a very strong case can be made that "evidence" about
uncertain quantities should only be quantified probabilistically (c.f.
deFinetti (1972, 1974)). There are also other likelihood based methods which
can be classified as objective, as will be seen in Chapter 5. Hence, even if
deemed obtainable and desirable, objectivity is not a reason to reject the LP

in favor of frequency measures.

4.1.3 Procedures for Nonspecialists

We accept the argument that it is important to develop reasonably
simple statistical procedures which can be safely used by nonspecialists.
However, it is not at all clear that this need be done from a frequency
viewpoint. First, frequency methods often attain formal simplicity by
obscuring difficult issues, such as the choice of error probabilities in a
test or the choice of a partition in a conditional confidence procedure
(see Section 2.5). Second, relatively simple procedures and methods of
evaluation consistent with the LP can be developed (w/o the introduction of
subjective priors) as the books of Jeffreys (1961), Box and Tiao (1973), and
Zellner (1971) indicate. We are continually surprised at the ease with which
the use of noninformative priors, as in these books, gives excellent

(conditional) procedures. Indeed, as mentioned earlier, many reasonable
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frequentist procedures are, at least approximately, noninformative prior Bayes
procedures, and "frequency confidence" then often coincides with "posterior
confidence." When this correspondence does not occur, such as in unconditional
frequentist approaches to the examples in Section 2.1, the frequentist approach
is definitely suspect. Further discussion and references can be found in
Berger (1980). Note that we are not maintaining that the use of noninformative
priors solves all problems and is foolproof, but only that, if procedures

which are simple to use and interpret are deemed necessary, then there are

good conditional alternatives to frequentist development of procedures. We
have also slighted the subjective Bayes solution to the problem, which will,
however, be discussed in Chapter 5.

In this situation, where a procedure is developed for use by
nonspecialists, the performance of the procedure in repeated use is certainly
relevant (see Section 3.5.4), though not necessarily of primary importance.
Good frequency performance can even be of interest to the striét conditionalist,

as the following example indicates.

EXAMPLE 16. Suppose a confidence procedure C(x) is to be used (i.e., when
X = x is observed it will be stated that 6 € C(x)), having frequentist
coverage probability

r(e) = PB(C(X) contains 8) > 1-a.

A conditional Bayesian (for simplicity) would, for a prior distribution » on @,
be interested in having good posterior probability that e is in C(x), i.e.,

would want

a(x) = PreIX) g ¢ c(x))
to be large, where n(e|x) is the posterior probability distribution of
given x. But, letting m denote the marginal distribution of X (i.e.,
m(.) = E"Pe(-)) and IB(y) denote the usual indicator function on a set B, it

is clear that
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EMx) = " (1X) (g ¢ cx))

- EJomt distbn. (G,X)[Ic(x)(e)]

E"Pe(C(X) contains 8)

> l-a.
Since this relationship holds regardless of =, a conditionalist could feel
that A(x) is "likely" to be large if C(x) is used and « is small, and hence be
willing to use C(x) when unable to carry out a trustworthy Bayesian analysis.
See Pratt (1965) and Berger (1984b) for more general development and specific

examples.

It is important to emphasize that the primary goal in situations
such as Example 16 should still be good conditional performance, and that the
frequentist measure does not guarantee this. Conceivably, x(x) could be very
small for some x (and all m), which is certainly relevant since such x could be
observed. Thus our view is that procedures should usually be developed from a
conditional viewpoint, and their frequency properties perhaps investigated to
ensure robustness. Of course the already existing classical procedures which
have good conditional properties are fine. Other discussions of this point can

be found in Godambe and Thompson (1977), Godambe (1982a,b), and Berger (1984e).

4.1.4 Repeatability

There is certainly truth to the observation that, if a scientific
experiment claims to have obtained strong evidence about 6, then many
scientists expect future similar experiments to also provide strong evidence.
The frequency measures, based on imagining repetitions of the experiment,
seem ideally suited to achieve this. There is a serious concern here, however,

as the following example indicates.

EXAMPLE 17. Suppose X has the two point distribution given by Pe(X =0) = .99
and Pe(X = 9) = .01. (Either 8 will be measured exactly, or no observation

will be recorded.) If now x = 5 is observed, it should certainly be concluded
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that ¢ = 5 exactly (very strong "evidence"), but repetitions of the experiment

are very unlikely to reproduce the result.

It could perhaps be argued that science should not believe "lucky"
observations, as in the previous example, and hence should not think
conditionally on the data. This seems too severe a straightjacket, however.
One can always be skeptical of lucky observations and seek possible alternative
reasons for them, but their conditional evidential interpretation should be
allowed. Such conditional interpretations can, of course, also be verified or

disproved by future investigations.

4.1.5 The Confidence Principle

The Confidence Principle was implicit in much of Neyman's early
development of the frequentist viewpoint (c.f. Neyman (1967) and also Neyman
(1957, 1977) and Berger (1984c)), and was stated explicitly by Birnbaum (c.f.
Giere (1977) and Birnbaum (1968, 1970, 1977)), who ultimately came to reject
the LP because of its conflict with the Confidence Principle. Other discussions
of this or related principles can be found in Cox and Hinkley (1974) (which
distinguishes between strong and weak versions, the weak version allowing
conditioning on relevant subsets), Kiefer (1977b), Le Cam (1977), and Barnard
and Godambe (1982). Critical discussion can be found in Jeffreys (1961),
Hacking (1965), Edwards (1972), deFinetti (1972, 1974), Pratt (1977), and
Jaynes (1981, 1982). The following mathematical formulation of the
Confidence Principle will be useful in the discussion, and is related to the

Evaluation Game in Section 3.7.2.

THE FORMAL CONFIDENCE PRINCIPLE. A procedure & is to be used for a sequence of

problems consisting of observing X ~ Pe-' A criterion, L(ei,é(xi)), measures
i
the performance of & in each problem (small L being good). One should report,

as the "confidence" in use of §,

(4.1.1) R(8) = sup lim % E L(ei,s(xi)),
g M= i=1
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assuming the limit exists with probability one. (It can usually be showm that

R(s) = sup R(8,5), where R(6,5) = EeL(e,G(X)).)
[¢]

EXAMPLE 18. Suppose § is a confidence procedure, so that G(Xi) c @ will be the
confidence set when X; is observed. The natural measure of the performance of
6(xi) is

L(ei’a(xi)) = ]—15(Xi)(ei)’

since this measures. whether or not 6(Xi) does contain ei' The risk of 6 is
R(e,s) = EeL(e.a(X)) = 1-P (s(X) contains 6),
and it is easy to show, for this problem, that

R(s) = sup R(g,5) = 1-inf Pe(s(X) contains g).
8 8

Hence the "report," according to the Confidence Principle, should be one minus

the minimum coverage probability of s.

Although the Confidence Principle is formulated above only in terms
of repetitive use of s for problems of the same form (but possibly differing
ei), it can easily be generalized to inciude use of § for different types of
problems. Such a generalization adds little conceptually, however. The appeal
of the Confidence Principle is undeniable. By following it, the actual average
performance of § in repeated use will be at least as good as the reported
performance R(§). There are several problems in following the Confidence
Principle, however.

The first difficulty is that, in virtually all statistical investi-
gations, extensive assumptions concerning the model, etc., are made. Thus a
person claiming to err no more than 5% of the time because he follows the
Confidence Principle, is really saying he errs no more than 5% of the time if
all the model assumptions he makes are correct. This removes some of the
Tustre from the principle.

A second serious issue is the need to have a valid bound, R(s), on
the performance of 6. This is an often unappreciated aspect of the frequen-

tist position. Indeed, the frequentist position is often viewed as requiring
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only the reporting of the function R(e,s). Without the bound, R(5), however,
no guarantee of long run performance, in actual use of § on different problems,

can be given.

EXAMPLE 19. Consider simple versus simple hypothesis testing, and suppose one
always uses the most powerful test of level o = .01. One can make the
frequentist statement that only 1% of true null hypotheses will be rejected
(i.e., R(s,6) = .01 for s equal to the null), but this says nothing about how
often one errs when rejecting. For instance, if the test has power of .01
(admittedly terrible power, but useful for making the point) and the null and
alternative hypotheses occur equally often in repetitive use of the test, then
half of all rejections will be in error. Thus one can not make meaningful
statements about actual error incurred in repetitive use, without an appropriate

bound on R(e,s) for all .

The problem with needing R(s) is, of course, that it could be a
useless bound (or could even be infinite). Indeed, whenever R(s,5) is highly
variable as a function of g, the reporting of R(s) is 1ikely to be excessively
conservative. The conditional frequentist approaches discussed in Section 2.4
have considerable promise in overcoming this difficulty, however, and can be
given interpretations compatible with the Confidence Principle.

Ultimately, the only clear objection to the Confidence Principle is
that it conflicts with the LP. This was indicated in the examples and discus-
sion in Chapter 2, and will be seen in later examples also. Most condition-
alists view the Confidence Principle, while attractive, as an unattainable
goal. (Note, however, that a Bayesian conditionalist follows the Confidence
Principle to the extent that his statements of accuracy will be correct, in
the long run average sense, if his prior assumptions are correct; one could,
indeed, argue that it is the Bayesian who is honestly trying to follow the
Confidence Principle by clearly stating the beliefs and assumptions his
assessments are based on.) In choosing between the LP and the Confidence

Principle, it is important to recall the simple axiomatic basis of the LP, and
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to realize that no such basis has been found for the Confidence Principle.
Indeed, the long run performance view is deemed rather peculiar by most
uninitiated people (c.f., the discussions in the early papers of Neyman in

Neyman (1967)).

4.2 THE IRRELEVANCE OF STOPPING RULES

4.2.1 Introduction

One of the most important applications of the LP and RLP is the
Stopping Rule Principle (SRP). Stated informally, the SRP is simply that the
reason for stopping experimentation (the stopping rule) should be irrelevant to
evidentiary conclusions about 6. The theoretical and practical implications of
the SRP to such fields as sequential analysis and clinical trials are
enormous, and will be partially discussed in Sections 4.2.3 and 4.2.4. The
SRP itself will be discussed at two levels: in Section 4.2.2 it will be
presented in a relatively simple sequential setting, in which it will be shown
to follow solely from the LP, while in Section 4.2.6 a very general version
will be developed from the RLP. Section 4.2.7 discusses situations in which
the SRP is not applicable, and Section 4.2.5 points out an interesting conflict
between frequentist admissibility and the frequentist belief in the importance
of considering stopping rules.

The Stopping Rule Principle was first espoused by Barnard
(1947a, 1949), whose motivation at the time was essentially a reluctance to
allow an experimenter's intentions to affect conclusions drawn from data.
(More will be said of this shortly.) The principle was shown to be a conse-
quence of the LP in Birnbaum (1962a), and Barnard, Jenkins and Winsten (1962),
and argued to hold in essentially complete generality by Pratt (1965). Other
good discussions of the principle can be found in Anscombe (1963), Cornfield
(1966) , Bartholomew (1967), Basu (1975), Berger (1980), and in many Bayesian

works such as Edwards, Lindman, and Savage (1963).
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Before formally introducing stopping rules and the stopping rule
principle, it is useful to illustrate certain of the ideas through a simple
example. The following example, from Berger and Berry (1987), demonstrates
the possible extreme dependence of frequentist measures upon the intentions
of the experimenter concerning stopping the experiment. The example clearly
questions the sensibility of such extreme dependence. (Berger and Berry,

1987, also contains other simple examples, on both sides of the issue.)

EXAMPLE 19.1. A scientist enters the statistician's office with 100 observa-
tions, assumed to be independent and from a N(e,1) distribution. The scientist
wants to test Ho: 6 = 0 versus H]: 6 # 0. The current average is ih = 0.2, so
the standardized test statistic is z = /n|x - 0| = 2. A careless classical
statistician might simply conclude that there is significant evidence against
H0 at the 0.05 level. But a more careful one will ask the scientist, "Why did
you cease experimentation after 100 observations?" If the scientist replies,
"I just decided to take a batch of 100 observations," there would seem to be no
problem, and very few classical statisticians would pursue the issue. But
there is another important question that should be asked (from the classical
perspective), namely: "What would you have done had the first 100 observations
not yielded significance?"

To see the reasons for this question, suppose the scientist
replies: "I would then have taken another batch of 100 observations." This
reply does not completely specify a stopping rule, but the scientist might
agree that he was implicitly considering a procedure of the form:

(a) take 100 observations;

(b) if /T00|X;qql2 k then stop and reject Hy;

(c) if /TUU]§}00|< k then take another 100 observations and reject if
V200 |Xp00 |2 k-

For this procedure to have level o = 0.05,k must be chosen to be 2.18
(Pocock, 1977). Since the actual data had /|50|§}00| =2<2.18, the scientist

could not actually conclude significance, and hence would have to take the
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next 100 observations.

This strikes many people as peculiar. The interpretation of the
results of an experiment depends not only on the data obtained and the way it
was obtained, but also upon thoughts of the experimenter concerning plans for
the future.

Of course, this can be carried further. Suppose the puzzled
scientist leaves and gets the next 100 observations, and brings them back.

Consider two cases. If v200 2.1<2.18 then the results are not

Xp00! =
significant. But they would have been significant had the scientist not
paused halfway through the study to calculate z! (It would certainly be
tempting not to disclose this interim calculation, and essentially impossible
to determine whether or not the scientist had made an interim calculation!)

On the other hand, suppose v200|X,qq| =2.2>2.18, so now significance has

been obtained. But wait! Again the statistician asks what the scientist
would have done had the results not been significant. Suppose the

scientist says, "If my grant renewal were to be approved, I would then take
another 100 observations; if the grant renewal were rejected, I would have

no more funds and would have to stop the experiment in any case." The

advice of the classical statistician must then be: "We cannot make a
conclusion until we find out the outcome of your grant renewal; if it is

not renewed, you can claim significant evidence against HO, while if it is
renewed you cannot claim significance and must take another 100 observations."
The up-to-now honest scientist has had enough, and he sends in a request to
have the grant renewal denied, vowing never again to tell the statistician
what he would have done under alternative scenarios.

Note that we are not faulting the classical statistician here for
ascertaining and incorporating the stopping rule in the analysis. If one in-
sists on utilization of frequentist measures, such involvement of the stopping
rule (even if it exists only in the imagination of the experimenter) is manda-
tory. The need here for involvement of the stopping rule clearly calls the

basic frequentist premise into question, however.
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4.2.2 The (Discrete) Stopping Rule Principle

So as not to obscure the essential nature of the SRP, the discus-
sion in this section will be restricted to the following fairly simple
situation. Suppose E' is a sequential experiment consisting of (i) a
sequence of independent observations X], X2,..., which will be observed one
at a time and which have common density fe(x); and (ii) a non-randomized

stopping rule, 1, which can be represented by a sequence of sets,
Am<: 2" = .. (the m-fold Cartesian product of %),
having the property that

(4.2.1) if 5m = (x],...,xm) €A sampling stops;

if ém € A;, sampling continues.

Since the observations will be observed sequentially, it is clearly unnecessary
to have Am contain points whose first j coordinates were in Aj for any j < m;

thus we henceforth assume that
m-j _ :
Am n Aj x % [} for j < m.

The stopping time, N, corresponding to t is that (random) m for which ém € Ay
the realization of N will be denoted by n. As usual, only proper stopping
rules will be considered, i.e., those which have N finite with probability one
for a1l o. The probability density of the random experimental outcome

5" = (Xpsee.5Xy) is then
TN nn
(4.2.2) fe(é ) = IAn(% )iglfe(xi).

EXAMPLE 20. Suppose the X, are n(e,1).
Case 1. Consider the stopping rule, 1'], defined by
g ifm#k

x= if m= k.
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1
The experiment E* s thus the fixed sample size experiment which always

observes precisely k observations.

Case 2. Consider the stopping rule, 12, defined by

(4.2.3) A= Mex™ |k | > knF),

where im is the mean of (x],...,xm) and K is a fixed positive constant. (By
using the Law of the Iterated Logarithm, TZ can be shown to be a proper stopping

rule.) This stopping rule is rather peculiar, in that it says to stop sampling

when the sample mean is K standard deviations from zero.

EXAMPLE 21. Suppose the X, are Bernoulli ().

1
Case 1. Let E* be the fixed sample size experiment which takes k observa-

tions, where k < 2.

2 be defined by

2
1

Case 2. let t

A

(13, A2 = ((0,0),(0,1)3, A5 =8 for j > 2

2
(i.e., stop if X] = 1, and otherwise stop after observing X2), and let E' be

the corresponding sequential experiment.

STOPPING RULE PRINCIPLE (SRP): In a sequential experiment E', with observed

final data &", Ev(ET,én) should not depend on the stopping rule .

The SRP would imply, in Example 20, that if the observation in
Case 2 happened to have n = k, then the evidentiary content of the data would
be the same as if the data had arisen from the fixed sample size experiment in
Case 1. A sihi]ar conclusion would hold in Example 21 if n = k occurred.

When x is discrete, the SRP is an immediate consequence of the. LP.

i=1
which does not depend on the stopping rule. For derivation of the SRP .in

n
This is immediate from (4.2.2) in that g n(8) is proportional to n fe(xi)’
X

general (from the RLP) see Section 4.2.6.
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4.2.3 Positive Implications

A recurring problem in classical statistics is that of optional
stopping. Ideally (from a classical viewpoint) an experimenter chooses his
stopping rule before experimentation, and then follows it exactly. Actual
practice is, however, acknowledged to be quite different. Experiments may end
because the data looks convincing enough, because money runs out, or because
the experimenter has a dinner date. Indeed, 1ittle or no thought may have been
given to the stopping rule prior to experimentation, in which case, upon stop-
ping for whatever reason, the data is often treated as having arisen from a
fixed sample size design. Optional stopping may often be harmless (such as
when the experimenter quits to have dinner), but stopping "when the data looks
good" can be a serious error when combined with frequentist measures of
evidence. For instance, if one used the stopping rule in Case 2 of Example 20,
but analyzed the data as if a fiwxed sample had been taken, one could guarantee
arbitrarily strong frequentist "significance" against HO: 8 = 0 by merely
choosing large enough K.

Optional stopping poses a significant problem for classical
statistics, even when the experimenters are extremely scrupulous. Honest
frequentists face the problem of getting extremely convincing data too soon
(i.e., before their stopping rule says to stop), and then facing the dilemma
of honestly finishing the experiment, even though a waste of time or dangerous
to subjects, or of stopping the experiment with the prematurely convincing
evidence and then not being able to give frequency measures of evidence. One
could argue that experiments should be designed to allow for early stopping in
response to clear evidence (and, indeed, many such stopping rules have been
created, as in the theory of "repeated significance testing"), but there will
often be unforeseen eventualities that crop up in sequential experimentation,
leaving a strict frequentist in an embarassing position.

Contrast this enormous dilemma with the startling simplicity
resulting from use of the SRP. The SRP says that it just doesn't matter; stop

for whatever reasons, which (conditional on the data) do not depend on 6 (see
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Section 4.2.7), and use an appropriate conditional analysis based on % n(e)

X
N

(or, alternatively, _g fe(xi))‘ The reason for stopping is simply not relevant.
As Edwards, Lindman:-gnd Savage (1963) say

"The irrelevance of stopping rules to

statistical inference restores a simpli-

city and freedom to experimental design...

Many experimenters would like to feel free

to collect data until they have either

conclusively proved their point, conclusively

disproved it, or run out of time, money, or

patience."
Anscombe (1963) simply makes the blunt statement "Sequential analysis is a
hoax." These comments should be qualified, of course, to the extent that
design will depend on the stopping rule. In other words, choosing between two
sequential designs obviously involves consideration of stopping rules. Indeed,
the most difficult part of (theoretical) sequential (decision) analysis is that
of deciding, at a given stage, whether to stop sampling or to take another
observation (i.e., choosing the stopping rule). Much of the work done in
classical sequential analysis has addressed this problem, and is hence of
considerable relevance.

The other desirable implication of the SRP is that analysis of an
experiment can be done objectively, in the sense that it is no longer necessary
to know the experimenter's intentions towards stopping. It seems very strange
that a frequentist could not analyze a given set of data, such as (x],...,xn)
in Example 20,if the stopping rule is not given. If the experimenter forgot to
record the stopping rule and then died, it is unappealing to have to guess his
stopping rule in order to conduct the analysis. As mentioned earlier, it was
apparently this feeling, that data should be able to speak for itself, that led
Barnard to first support the Stopping Rule Principle.
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The above idea is actually a general consequence of the LP, and is
useful to apply in areas other than optional stopping. Consider the following

example.

EXAMPLE 22. An experiment was conducted with two treatment groups (T] and T2)
and a control group (C), the outcomes for each experimental unit being simply

success (S) or failure (F). The data was

c T T2
S 8 12 2
F 12 8 8

In analyzing the results, the experimenter noted that, in comparing T] with C,
a standard analysis under the null hypothesis of no treatment effect was not
significant at level o« = .1 (one-tailed), but that if the patients in T2 and C
were pooled, then T] was significantly better at the o = .02 level. The
experimenter went on to say that T1 was really the treatment of interest and
that T2 was thought to have no effect but was just included for thoroughness,
and hence that pooling T2 and C is acceptable.

To the criticial appraiser, this creates doubts concerning
hypothesis selection and confirmation from the same set of data. On the other
hand, maybe the experimenter really was planning to pool T2 and C all along
(and was sure T2 was no worse than C), an especially plausible possibiiity
considering that only 10 patients were given T2. In any case, it is discon-
certing that to analyze the problem from a frequentist perspective we have to
know what the experimenter's intentions were. Trying to analyze hard data
by guessing what the experimenter was thinking before doing the -experiment
seems rather strange. (Of course, a Bayesian won't necessarily be able to
avoid such considerations, since the experimenter's statements may well affect
prior probability judgements. The uncertainty will be up front in the prior
where it belongs, however, with the data speaking for itself through the

1ikelihood function.)
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4.2.4 Criticisms

The rosy statements in the previous section concerning the SRP can
be viewed as hopelessly misguided by frequentists, since frequency measures are

so dependent on stopping rules. Consider Examples 20 and 21, for instance.

EXAMPLE 21 (continued). In the fixed sample size experiment, Xk would be an
unbiased estimator of 6 for either k = 1 or 2. If one were to ignore the
stopping rule, 12, in Case 2, however, and still use the sample mean as the

estimator, a "problem" of bias arises. Indeed, the sample mean, XN’ has

Eg¥y

Pe(X]=1)E9[X]|X]=]] + Pe(x]=0)Ee[X2|x1=o]

1
o+ 8(1-9),

which is biased upwards. Thus if a conditionalist stated he would be using
XN’ regardless of the stopping rule, the experimenter could use 12 and "make @

appear larger than it really is" (if desired).

EXAMPLE 20 (continued). This example has been extensively discussed, in terms
of its relationship to the SRP and the LP. Armitage (1961) published (to our
knowledge) the first such discussion. Basu (1975) gives a particularly
thorough examination of a version of the example. For definiteness in highlight-
ing the "paradox," let us assume that a 95% "confidence interval" for 6 is
desired, and that an "objective" conditionalist states that, if a fixed sample

of size n were taken, he would use the interval
- - L L
(4.2.4) Cn(xn) = (xn-(1.96)n 2,xn + (1.96)n7%).

Of course, he would not interpret confidence in the frequency sense, but
instead would (probably) use a posterior Bayesian viewpoint with the noninform-
ative prior density =(g) = 1, which leads to a n(in,n'%) posterior distribution
for ¢ (also, the usual fiducial distribution and the likelihood function for
8).

Suppose now that the experimenter has an interest in seeing that

e = 0 is not in the confidence interval. He could then use the stopping rule
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in (4.2.3) for some K > 1.96. The conditionalist, being bound to ignore the
stopping rule, will still use (4.2.4) as his confidence interval, but this can
never contain zero. Hence the frequentist probability of coverage of (4.2.4),

namely

2
r(e) = P; (Cy(Xy) contains o),

is such that r(0) = 0 and (by continuity) r{(e) is near zero for small 6. The
experimenter has thus succeeded in getting the conditionalist to perceive that

g # 0, and has done so honestly.

Examples 20 and 21 are typical of how the SRP (or the LP) seems to
allow the experimenter to mislead a conditionalist. The "misleading", however,
is solely from a frequentist viewpoint, and will not be of concern to a
conditionalist. Before discussing why, two comments about Example 20 should

be gotten out of the way.

(i) Use of a stopping rule, such as that in (4.2.3), can be chancy for an
experimenter if ¢ = 0 is a real possibility, since then N is likely to
be extremely large. (This has no real bearing on the arguments here,
however. )

(i1) A Bayesian conditionalist might not completely ignore a stopping rule
such as that in (4.2.3), if he suspects it is being used because the
experimenter thinks s might be zero. The Bayesian might then assign some
positive prior probability, », to g being equal to zero, in recognition
of the experimenter's possible knowledge. (The stopping rule is affect-
ing only the prior, however, not "what the data says.") A Bayesian
analysis in this situation is strikingly different than that in the
“noninformative" case. Indeed, as a particular example, if the ¢ # 0 are
given prior density (1-) times a n(O,pz) density, then the posterior

- -1
probability that s = 0, given the observation X, = Kn 2, is

2 2 2
"(O]Rn = Kn'%) = []+(A-]-])(1+np2)-%eK no/2(1+np )]’]_
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2

For some specific numbers, suppose that ,° = 10, K = 3, and n = 10,000. Then,

n(0]x, = 3n7%) = [1+(71-1)(.285)17".

For moderate 1, this says that 6 = 0 is quite plausible when n is large, even
though in is three standard deviations from 0. (This is essentially

"Jeffrey's" or "Lindley's" Paradox.)

Finally, let us return to Examples 20 and 21 and see if the
conditional perspective might not after all be more intuitively appealing.
The use of a biased estimator in Example 21 is really not that troubling, since
bias has long been a suspect criterion (especially when compared to, say, the
plausibility of the Weak Conditionality Principle). We will concentrate on

the more disturbing Example 20, therefore.

EXAMPLE 20 (continued). First of all, the likelihood function for 6 (when we
stop at time n) is proportional to a n(in,n'%) density. This clearly indicates
that any particular value of 6 near in is more plausible than a value far from
in. The interval in (4.2.4) is a reasonable choice from this viewpoint,
although other conditionalists might vary the constant 1.96 or shift somewhat
towards a suspected prior mean.

Contrast this with the rather unreasonable way in which a frequen-
tist must behave to obtain, say, coverage probability of at least .95 for all
6 when K is large. It can be shown that a frequentist should stick to
connected intervals (to minimize size for a given coverage probability) and
that, when (say) in is slightly bigger than KnT% and n is féir]y large {which
will typically be the case for large K and the stopping rule (4.2.3)), these
intervals must usually include both zero and ;n’ Hence, in order to ensure the
desired coverage probability at zero when K is large, a frequentist will modify
(4.2.4) by replacing a small portion of this interval of "likely" o, such as
(in + (l.96-en)n'%, in + (1.96)n-%), with a big interval, [0, in-(l.96)n'%),
of unlikely 6. This seems unreasonable. The conditionalist knows that an in

- 1
satisfying X, > Kn™ (with n very large) could have arisen from & = 0, but
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values near in are so much more likely to be the true o that he "bets" on
these. It should be reemphasized that the conditional analysis is predicated
on ¢ = 0 having no special plausibility; if it does, the Bayesian conclusions

(see (ii) above) will be quite different.

The above attempts are probably unlikely to satisfy a frequentist's
viclated intuition, if the frequentist is not practiced in thinking condition-
ally. As Savage said in Savage et. al. (1962)

"I learned the stopping rule principle

from Professor Barnard, in conversation

in the summer of 1952. Frankly, I then

thought it a scandal that anyone in the

profession could advance an idea so

patently wrong, even as today I canscarcely

believe that some people resist an idea so

patently right."
0f some force may be the argument that, if one's intuition gives contradictory
insights, it should be trusted in simple situations, such as Example 2, rather
than in extremely complex situations such as Example 20. The next section

also lends support to the case for ignoring the stopping rule.

4.2.5 Stopping Rules and Inadmissibility

In Section 3.7 it was argued that behavior in violation of the LP,
but consistent with the WCP, tends to be decision-theoretically inadmissible.
We rephrase the conclusion, in this section, to show that behavior dependent
on the stopping rule will often be inadmissible.

Suppose we have possible observations X],Xz,...,vas in Section
4.2.2, and are considering two possible stopping rules, 1] and 12, with
respective stopping sets {A;} and {Ai}. The stopping rules, r] and 12, are
presumed to have the possibility of yielding common data, 5"; i.e., there is

1 2

presumed to be some n* and A c An* n An*

1 2
in both E' and E' for all g. Examples 20 and 21 are of this type, since the

such that A has positive probability
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sets Ai have positive probability for all e (under both ET] and ETZ), so that
A= Ai works.

Suppose that we face a decision problem concerning 6, consisting of
choice of an action a € G under a loss function L(a,8) which is strictly
convex in"a" for each 6. (More general loss functions can often be handled
also.) Proposed for use in E' and ETZ, respectively, are decisionrules
6](5") and az(én). If, now, the stopping rule is felt to make a difference, ¢,

and P should differ for at least some of the possible common observations.

Thus we suppose that there is some A* < A for which
* * *
(4.2.5) 5](§n ) # 62(é" ) for %n € A*,

Consider, next, the mixed experiment, E*, consisting of observing
J
J =1 or 2 with probability % each and then performing E* . This is a well

N
defined sequential experiment with random observation (J, X J), NJ being the

J
stopping time for E' . If the WCP is followedfor E* and (4.2.5) holds, then

the decision rule, §, used for E* should satisfy
* * *
s((1,x")) # 6((2,6M))  for " € Ax,

(Alternatively, this inequality should hold on some A* if it is felt that the
stopping rule actually used - i.e., the value of j - really is relevant to
the decision.) But, the estimator
% 6((1,§"*)) + %-6((2,5"*)) if n = n* and §" € A*
s*((5.xM) =
§((3,5"))  otherwise

satisfies (because of the strict convexity of L)

(4.2.6)  L(s*((5,5")),0) < 5 L(sC(1.6™)),0) + 3 L(s((2.6™)).0).

1

! and E2 stand for expectation in experiments E*, E' , and

0’ 8
E' , respectively, the frequentist risk (in E*) of &* satisfies

Hence, letting E*, E
2
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Ny
R(e,8%) EgL(G*((J,§ )),e)

N N
LENLG*((1,5 1)) 00 + 3 EQLGs*((2. %)) .0)

N N
TELGs((1,% D),0) + 3 E2Ls((2,% 2))10)

A

N
ExL(s((J,X )50)

]

R(6,6).

(The inequality above is strict because of (4.2.6), the fact that A* has

1 2
positive probability for all o in E* and E* , and providing R(e,s) is finite.)
This establishes the inadmissibility of allowing the stopping rule to affect

the decision making.

EXAMPLE 21 (continued). Suppose that the goal is to estimate 6 under squared
error loss, and that, because of the bias in use of XN for the stopping rule
12, an estimator az(én) would be used (in E¥ ) such that 52(5") is not e?ual
to in for at least one possible observation, say, n =1, Xy = 1. Let E' be
the fixed sample size experiment of size k = 1, and suppose that al(x]) = X
would be used for this experiment. However, the experimenter chooses between
performing ET] and ET2 on the basis of a fair coin flip (J = 1 or 2). This is
exactly the situation discussed above, and if the experimenter follows his
vinstincts" and uses different estimates (depending on J or the actual

stopping rule employed)when X = 1 is observed, he will be behaving in an

inadmissible fashion.

The development above is just a special case of that in Section
3.7, which in turn is basically just a version of the Rao-Blackwell theorem.
(Here, J is not part of the sufficient statistic for e in E* when é"* € A*,
and decision rules should be based only on the sufficient statistic.) The
reason for explicitly giving the development in the sequential framework is
to clearly exhibit the conflict between the frequentist desire for
admissibility and the intuitive notion that the stopping rule used should

matter.
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4,2.6 The General Stopping Rule Principle

The SRP can be generalized to an essentially arbitrary sequence of
experiments, and shown (in this generality) to follow from the RLP. Thus
suppose we have available a sequence El’EZ"" of experiments (replacing the
i.i.d. observations, X]’XZ""’ of Section 4.2.2) consisting of observing Xj
on xj. We can consider, for each m, the composite experiment .

E" = (X", o, (P])) consisting of observing X" = (X;,....X ) onz" = LS with
probability distribution Pg. (If the experiments are independent, P? will

simply by the product measure of the individual distributions on xj.)

We consider sequential procedures in which we decide, after
performing experiments E],...,Em, whether or not to perform Em+]. As usual,
we can allow this decision to depend upon the outcome of an auxilliary chance

mechanism, leading to the following general notion of a stopping rule.

DEFINITION. A stopping rule is a sequence | = (ro,r],...) in which g € [0,1]

N

is a constant and T’ 2" > [0,1] a measurable function on %" for m > 1.

The intention is that rm(ém) represent the conditional probability
of stopping after only m observations, given that we have taken m observations
and have observed ém = (x],...,xm). The nonrandomized stopping rules discussed
in Section 4.2.2 are the special case where the T, can only assume the values
0 and 1. When convenient, we shall regard Tg as a function on the one-point

set zo = {p}, the "sample space" for the null experiment E0 = Czo, 8, {Pg}),

0's only point for all e.

with Pg the point mass at %
Now define X* = {(m,ém): mé€ N, )\gm e x™. For
)\gm = (x],...,xm) €ex"and 0 < j <m, let )\gm"] = (x],...,xj) ¢ 23 denote the

0

initial segment; of course éo =@ € 2 no matter what %m € 2" might be. For

each stopping rule,k,determine a family {Pé} of measures on Z* by setting

m-1 .
PA(m,A) = £jgo(l-tj()‘(lm,\]))rm(%m)Pg(d’,‘Sm)
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for each m and Borel set Ac x". With this definition, 9 is the probability
of performing EO, i.e. of taking no data at all. After observing %m, rm(%m) is
the conditional probability of taking no more observations.

If Pé(x*) = 1 for all e, then the procedure is certain to stop
eventually and T is called proper; otherwise T is improper and, for at least
one 6, there is a positive probability (1-P§(x*)) that the sequential procedure

would require sampling an infinite number of times. For a proper stopping

rule, T, we can consider the sequential experiment
N
EL = ((N,XD), 0, (PED),

where N denotes the (random) stopping time. (It is notationally convenient to
include N as part of the observation although it could, of course, be
recovered from %N.)

The Stopping Rule Principle for this general setting is

formalized in the following theorem, and is shown to follow from the RLP.

THEOREM 5 (The Stopping Rule Principle). From the RLP, it follows that, for

any (proper) stopping rule ,
Ev(EL, (n,x") = Ev(E".x")
for {Pé}-a.e. (n,én), i.e. the evidence concerning © in EX is identical with

that for the fixed sample size experiment En (with the observed n), so that

by i8 irrelevant.
Proof. Pick n€ N and let Uy < X* be the set of points (n,x") with " € z"
n-1 .
satisfying 0 < t.(x™ 1 (1-7,(x"*9)), and let c: U, > (0,») be the indicated
v g 3N 1

product. Map U, onto U, = { Nex™ (nx") € Uy} by setting (n,x") = x".
pontef =X X1 el einX ) = X

Then ¢ is one-to-one and bimeasurable, and

PRRY = [ DV/e(pIPE(ey).
¢ (A)

The assertion of the theorem now follows from the RLP. ||
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Notice that ® was not required to be a subset of some Euclidean
space, nor was {Pg} required to be a dominated family; thus even in situations
where no version of the usual LP can apply, the SRP is valid (provided, of
course, that the WCP and SP, and hence the RLP, are accepted). This was
observed in Pratt (1965).

4.2.7 Informative Stopping Rules

Even the definition of a stopping rule given in the last section
may seem somewhat narrow when compared with the vast possibilities for
informal stopping discussed in Section 4.2.3. Stopping rules which appear to
be more general can be created by introducing an auxilliary variable Y
(possibly random), and allowing T the conditional probability of stopping at
stage m, to depend on the value of Y, as well as on %m. This actually adds
very little generality, however, since the values of Y at each stage could
simply be incorporated into the data Xi' The following example illustrates

the importance of sometimes doing this.

EXAMPLE 23. Suppose X],Xz,... are independent Bernoulli (e) random variables,
with ¢ = .49 or 6 = .51. The observations, however, arrive randomly. Indeed,
if & = .49, the observations arrive as a Poisson process with mean rate of 1
per second, while if 6 = .51, the observations will arrive as a Poisson
process with mean rate of 1 per hour. The "stopping rule" that will be used
is to stop the experiment at the first observation that arrives after 1 minute
has eiapsed. One can here introduce Y = time, and write down the stopping
rule in terms of Y and the Xi.

It is intuitively clear that this stopping rule cannot be ignored
since, if one ends up with 60 observations, knowing whether the experiment ran
for 1 minute or 2 % days is crucial knowledge. Incorporating Y into the data
resolves all ambiguities, however. Thus, simply define Yi as the (random)
time at which the izh observation arrives, and consider the experiment to
consist of observing (X],Y]), (XZ’YZ)"" . The stopping rule will be given
by

This content downloaded from 128.173.127.127 on Tue, 28 May 2013 20:57:09 PM
All use subject to JISTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

CONSEQUENCES AND CRITICISMS OF THE LP AND RLP 89

0 if Y < 1
Tl (X sy ) see e (xpay))) =
1 ify,x1,
and is of the form discussed in Section 4.2.6 (or even Section 4.2.2). The
importance of the number of observations arriving during the time span of
the experiment will be reflected in the portion of the likelihood function

due to the Y

Slightly more generality might be needed than afforded by simply
observing the auxilliary variables at the observation times (as in Example 23)
and including them as part of the observations, but the idea is clear:
consider all available observational information as part of the data Xi. (of
course, some auxilliary information may be considered too informal to include
as part of the data, and yet may have some effect on stopping, but such
information should only be ignored if it seems relatively unimportant, in
which case its effect on stopping can probably also be ignored.)

Even within the above more general perspective on stopping rules,
a difficulty might still arise. This difficulty is that the stopping rule
might be unknown or partially unknown, in that cessation of the sequential
experiment could depend on unobservable random quantities whose probability
distributions are not completely known. Following the convention of Section
3.5 and letting o denote all unknown quantities, we could thus write a general
stopping rule in terms of rm(%m,e). (Actually, by including a uniform random
variable in 6, it would be possible to have the T, assume only the values
zero or one.) The general density on x* (densities, and discreteness if
necessary, being assumed to retain compatibility with Section 3.5) would then

be
- Ny _ n-1 n,j LIS
fe((n’é )) = [jzo(]"rj(,)é ;e))]Tn(§ se) 9(’)\(4 ),

where fg is the density corresponding to Pg. Again following Section 3.5, one
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could write 8 = (£,n), where £ is of interest and n is a nuisance variable.
If, for the observed (n,én), rj(én’j,e) does not depend on £ for j < n, and
if n is a noninformative nuisance parameter (see Section 3.5) for the fixed
sample size experiments involving observation of %", then the LP and NNPP
(see Section 3.5) imply that % is irrelevant. Such a g is called
noninformative; otherwise 1 is said to be informative and the SRP will not
apply. (Raiffa and Schlaifer (1961) introduced these terms.)

We do not pursue the matter further because informative stopping
rules occur only rarely in practice (providing all observational information
is incorporated into the Xi’ as in Example 23). There exists a certain amount
of disagreement concerning this point, but the disagreement seems to be
primarily due to the misconception that an informative stopping rule is one
for which N carries information about 6. This is not the definition of an
informative stopping rule. Very often N will carry information about 6, but
to be informative a stopping rule must carry information about 6 additional to

that available in éN, and this last will be rare in practice.

4.3 THE IRRELEVANCE OF CENSORING MECHANISMS

4.3.1 Introduction

Another great simplification that application of the LP (or RLP)
makes possible is in the handling of censoring. Data is often observed in
censored form, and the mechanisms causing the censoring can be quite involved.
In most such cases, the LP (or RLP) will imply that only the result of the
censoring, and not the censoring mechanism or distribution, is relevant to
conclusions about s.

Section 4.3.2 considers the situation of fixed (nonrandom)
censoring, and establishes a version of the irrelevance of censoring
mechanisms called Censoring Principle 1. One of the implications of Censoring
Principle 1 is that the evidential import of an uncensored observation, from
an experiment in which censoring was possible, is the same as the identical

observation from an uncensored version of the experiment.
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Section 4.3.3 considers random censoring, and establishes
conditions under which the distribution of the censoring random variable is
irrelevant. The main condition is on the censoring mechanism itself, and
leads to the concept of a noninformative censoring mechanism. This concept
is surprisingly simple and powerful. It is not the case, however, that all
sensible censoring mechanisms are noninformative, although many common ones
are. This issue is discussed in Section 4.3.4.

The Censoring Principle, as it applies to uncensored observations
in nonrandom censoring, seems to be due to John Pratt (see Pratt (1961, 1965),
his discussion in Birnbaum (1962a), and the discussion in Savage et. al.
(1962)). The general Censoring Principles developed here and the concept of a
noninformative censoring mechanism appear to be new, however. Before
proceeding with these general developments, it is worthwhile to present an
illuminating (and entertaining) example from Pratt's discussion of Birnbaum
(1962a). The example makes a simple version of the Censoring Principle seem

intuitively obvious.

EXAMPLE 24 (Pratt). A sample of 25 observations was taken from a n(e,oz)
population, and inference about the population mean was desired. A1l observa-
tions were found to 1ie between 72 and 99, and a standard normal analysis was
performed by a frequentist statistician. The statistician reported the
analysis to the experimenter, but, curious about the observed 99, asked the
experimenter how high his measuring instrument (assumed to be perfectly
accurate) read. The experimenter said that the instrument only read to 100,
but that, if he had observed a reading of 100, he would have switched to
another instrument which had a range of 100 to 1000. The statistician was
happy with this response, and satisfied with a job well done.

The next day the experimenter called about something else, and
mentioned that he had just checked the high range instrument and found that it
was broken. The statistician asked if the experimenter would have had the

instrument repaired before completing the previous experiment, to which the
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experimenter said no. The statistician then said that what were really being
observed were observations, Xi’ from the truncated distribution with the

usual normal density for X; < 100 but the point mass

P ,(100) = é ————JI——-exp{- —17-(x-e)2}dx
8,0 100 (2n)=o 20

at x; = 100. This, said the statistician, calls for a different analysis; for
instance, the usual 100(1-a)% confidence interval for e in the normal situation
would no longer have probability of coverage of at least 1-a in the truncated
situation. The experimenter reacted to this with outrage, saying that he
observed precisely what he would have observed had the high range instrument
been working (all observations were less than 100), and that the condition of
an instrument never used in the experiment hardly seemed relevant to the
information about o obtained from the experiment. The frequentist statistician

merely shook his head at the naivete of experimenters,

4.3.2 Fixed Censoring and Equivalent Censoring Mechanisms

Consider an experiment E = (X, o, {Pe})' Fixed censoring occurs when,
instead of X, one observes Y = g(X), where g is a known function from % into
%. Thus the experiment really performed is E9 = (Y, o, {Peog']}). (As
usual, if Acy, g'](A) = {x €x: 9g(x) € A})

EXAMPLE 25. Suppose X = (X],...,Xn), where the X, represent the times of
death due to cancer of patients in a cancer survival experiment. Suppose,
however, that the experiment will last only ten years, so that the real data

will, for the iEﬁ patient, be
vl w2y s
(4.3.]) Yi = (Y]- ,Yi) = (mm{Xi,]O}, 1[0’10](xi))

(i.e., the truncated survival time and an indicator as to whether the
observation is or is not truncated). Thus

(4.3.2) Y =g(X) = (Y],...,Y ).

n

This is an example of what is commonly called type I censoring. Example 24 is
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also of this type.

EXAMPLE 26. Suppose that X = (X],...,Xn), but that the n-r largest of the X,

will be truncated at the rEn largest. Thus let

_ oyl vy g
(4.3.3) Y'i = (Yi’Yi) = (mln{Xi,X(r)}. I[-w,X(r)](Xi))’

where X(]) 5_X(2) 5,..5_X(n) are the order statistics for X. Again
(4.3.4) Y = g(X) = (Y],...,Yn).

This is an example of what is commonly called type II censoring.

EXAMPLE 27. Suppose x = R", % = z x {0,1}, and for some fixed p > 0,
(X,0) if [X] <o

(4.3.5) g(x) =
(oX/|X],1) if |X| > o.

Then E9 represents the experiment in which the radius of X is truncated at o,
but the direction, X/|X|, of X is faithfully reported. This is not a

standard "type" of censoring, but fits easily within our framework.

Our goal in this section is to indicate that the only effect a
censoring mechanism should have on a conclusion is to convey knowledge concern-
ing the actual location of x in%x. This may seem intuitively obvious, but
Example 24 is a prime illustration of how this is not the case classically.

We formalize this notion in the following definition.

DEFINITION. Let E = (X, o, {Pe}) be a given uncensored experiment, and
consider two fixed censoring mechanisms 9 and 9,- These mechanisms will be

said to be equivalent on Ac X if, for all x € A,

(4.3.6) 67 (9, (%)) = g5'(g,(x)).

As a spectial case, a single fized cemsoring mechanism, g, will be said to be

equivalent to no censoring on Ac X if g'l(g(x)) = X for all x € A.
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The idea in the above definition is that, for censoring mechanism
g;»> one observes Yi = gi(x) and that the only information communicated by the
censored data, Yis is that x was in g;](yi). If (4.3.6) is satisfied, then
9 and 95 will always convey the same information (for x € A). And a g which
is equivalent to no censoring (for x € A) conveys exactly the same information
that x does. In Example 24, it is clear that the censoring mechanism is
equivalent to no censoring on A = {x: X; < 100, i = 1,...,25}; in Example 25,
g is equivalent to no censoring on A = {x: X; < 10, i = 1,...,n}; and, in
Example 27, g is equivalent to no censoring on A = {x: |x]| <p}. As an

example of possible equivalence of two different censoring mechanisms, consider

the following combination of Examples 25 and 26.

EXAMPLE 28. Suppose X = (X],...,Xn), where the Xi can assume only positive
5nteger values. Let g; be as in (4.3.1) and (4.3.2), g, be as in (4.3.3) and
(4.3.4), and A = {x: x(r) = 10}. It is easy to check that, for x € A,

gil(gl(x)) = gg‘(gz(x)) ={zeh z; = x; if x; <10}

Hence the type I and type II censoring would, in this case, be equivalent on A.
(Note that classical analysis tends to treat the two types of censoring

differently.)
We now formally state, and justify, the principle that equivalent

censoring mechanisms convey the same information about e, for x € A.

9 g
CENSORING PRINCIPLE 1. If E 1 and E 2 are two experiments arising from
censoring mechanisms equivalent on A for an experiment E, then
g g
(4.3.7) EV(E ', gq(x)) = EV(E 2, g,(x)

for all x € A if X is discrete, and for {Pe} - a.e. X € A in general. 4s a

special case, if g-](g(x)) = x for all x € A, then (4.3.7) can be replaced by
(4.3.8) Ev(E9, g(x)) = Ev(E,x).

Censoring Principle 1 follows from the LP in the discrete case
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since, by definition, the probabilities of g](x) and gz(x) are equal (to
Pe(g;](gi(x)))) for all 6. In the general case it follows from the RLP by
setting Uy = {g;(x): x € A}, Uy = {go(x): x € A}, 9(gy(x)) = g,(x) and
c(g](x)) =1 for x € A.

The greatest practical use of Censoring Principle 1 is in the case
where a censoring mechanism, g, is equivalent to no censoring on A, as was the
case in Examples 24, 25, and 27 when no censoring happened to occur. The

censoring mechanism can then be completely ignored.

4.3.3 Random Censoring

To generalize the notion of censoring to include random censoring,
let » € A be a censoring variable with probability density v on A. (To
avoid technicalities, discreteness of A and X will be assumed until the end
of the section.) Suppose that X and A are independent (without which very
little progress can be made), and that
Y = g(X,2) €y

is observed. The actual experiment performed can thus be written
E9Y = (v, o, (F3°V)),
where the density of Y is

(4.3.9) f00y) = I flavR)
(1) g(x,1) =y}

EXAMPLE 29. Suppose X represents the time at which a patient in a cancer
survival study would suffer death due to cancer, and let A represent the

death time due to competing risks. (We will sidestep the issue of whether or
not X and A can be well-defined.) The actual observation for the patient will

be
(4.3.10) Y= (%) = g(Xa) = (mintad, 1 500D,

i.e., the actual time of death, Y], and an indicator, YZ, as to the cause of

death. Generalization to involve data from n patients and a variety of
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competing risks is straightforward, and all the subsequent theory will apply

equally well to such a generalization.

The LP, of course, implies that the likelihood function, determined
from (4.3.9) for the observed y, contains all the information about ¢ available
from the experiment. The difficulty in utilizing this likelihood function lies
in the presence of \ in the expression: typically, v will be unknown (and
complicated). If, however, y were judged to convey no information about e (see
Section 3.5 and Section 4.3.4) and fg’“(y) could be shown to factor into
separate terms involving ¢ and y, then the difficulty would disappear. This
would result in an enormous simplification of the analysis, and is another of
the great practical gains that can be realized through adoption of the LP.

The following definition gives the key characterization of censoring mechanisms

for which this program is possible.

DEFINITION. A censoring mechanism 9: X x A Y is noninformative at y €Y if
g-](y) is a product set, i.e., if

g y) = A

y By’ where AycxandByC A.

EXAMPLE 29 (continued). Here
2

[}
o

(y],w) x {y]} ify
Ny yd) =

o x Iyte)  ifyl=,

so that g is a noninformative censoring mechanism at all y € ¥.

EXAMPLE 27 (continued). Consider the situation in Example 27, but assume that
p is now a random variable (and, hence, replace g(X) by g(X,p)). Since
'y < Ly if y2 = 0
gy y?) =
{cy]: c> 1) x {|y]|} if yz =1,

g is a noninformative censoring mechanism at all y € ¥%.
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If g is noninformative at y, then (4.3.9) becomes (employing also

the independence of X and 1)

(4.3.1) V) = [ ] fIIL I v,

xeAy y

so that (for known v), the LP implies that all information concerning o from
the experiment is contained in

(4.3.12) n;(e) = xgAyfe(x).

If v is unknown but "noninformative" for 6 (see Sections 3.5 and 4.3.4), the
same conclusion follows from the NNPP in Section 3.5.5. These conclusions can

be summarized as follows.

CENSORING PRINCIPLE 2. If X and A are discrete, X and \ are independent, g is
noninformative at the observed y, and either v i8 knowm or it is unknown but

noninformative, then EW(EY*Y,y) depends only on z;(e) (from (4.3.12)).

Note that this principle does not say that censoring has no
effect on the analysis. Indeed, 1;(9) will often fail to be proportional to
1x(e) = fe(x), which would be used if no censoring occurred. Another point is
that the only censoring mechanisms which can guarantee that Ev(Eg’“,y) does not
depend on v (for v as in the principle) are noninformative censoring mechanisms.

This is established in the following theorem.

THEOREM 6. If g: X x A +%Y is not a noninformative censoring mechanism at Y,

then there exists {fe} on % euch that Ev(EZ*V,y) depends on v.
Proof. If g'](y) is not a product set, it follows that there exist two points
Aps Ap € A such that either

2 = (x: g(x,3y) =y and g(x,2,) # y},

or

9, = {x: g(x,ay) #y and g(x,2,) =y},

or both are nonempty. Consider v that are concentrated on {A],Az}. and define
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Q3 = {x: g(x,x]) = g(x,xz) =y},

Equation (4.3.9) can then be written

g,V
£ () = v(IP () + v(ay)P () + P (aq).
= v(aIP(ay) - P (2,)] + P (2, U a5).
Thus, as long as {f } is chosen so that [PG(Q])-Pe(QZ)] and Pe(QZ U 93) are

not proportional as functions of 6, the likelihood function will depend on

v(x]). |

Finally, we leave the discrete setting and develop a very general
version of Censoring Principle 2, based on the RLP. We will assume that A and
¥ are LCCB spaces, that v is a Borel probability measure, and that
g: X x A >y is a Borel function. The actual experiment of observing

Y = g(x,2) is 9V = (v, o, {Pg’“}), where

(4.3.13) Pg’“(c) = (Pexv) ({(x,2): g(x,2) € C}).

The definition of a noninformative censoring mechanism at y remains unchanged,

and leads to the following principle.

CENSORING PRINCIPLE 2'. Let Cc %Y be a Borel set such that g is a noninforma-
tive censoring mechanism at all y € C. Suppose 2 and v, are Borel probability
measures (for )A) which are mutually absolutely continuous on C* = U By

yeC

(where g-](y) = Ay x By)‘ Then, if either (i) vy and v, are knowm, or (ii)
they are unknown but noninformative (see Sections 3.5 and 4.3.4), it should be

the case that
g, g g,
(4.3.19)  EW(E Ly) = Ev(E 2y)  for (P, l-a.e. ye C.

The conclusion in Censoring Principle 2' is not quite as strong
as that in the original Censoring Principle 2, in that evidentiary equivalence
is only stated to hold among equivalence classes of v (on C). Of course, if
the possible v under consideration are known to be absolutely continuous with

respect to some measure u, then it can be stated that v is irrelevant (if it is
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noninformative). For instance, in Example 29 it may be reasonable to assume
that v is absolutely continuous with respect to Lebesgue measure, and is thus
ignorable (if noninformative).

It seems 1likely that Censoring Principle 2' is a general consequence
of the RLP. This is because one can define (see the RLP) U; = U, = C, ¢ to be
the identity map, and
(4.3.15) cly) = c((x,1)) = vz(dx)/v](dk),

and seek to show that (for any Borel subset, D, of C)

9:v2 99y
(4.3.16) Py (D)=£c(y)Pe (dy).
Since (4.3.16) is essentially (3.4.1) of the RLP (where 1/c has been replaced
by c for convenience in what follows), Censoring Principle 2' would be an
immediate consequence of the RLP (and the NNPP of Section 3.5, if the v; are
unknown but noninformative). And (4.3.16) seems to be a correct equation:
it can trivially be verified to hold in the discrete setting, for instance.
Unfortunately, severe measurability difficulties (due to the possible nasty
nature of g) prevented us from verifying (4.3.16), in general. Under
additional conditions, however, we were able to show that (4.3.16) does hold
for some positive c, which suffices, by the above argument, to establish
Censoring Principle 2' as a consequence of the RLP. Furthermore, though
somewhat technical, these additional conditions involve only the censoring
mechanism, g, and not the Pe or v. This makes general verification of the

irrelevance of any specific censoring mechanism possible.

THEOREM 7. Let g be a noninformative censoring mechanism at all y € C, and
suppose that there exist sequences {¢n} and {¢n} of measurable mappings

®p: X > % and y,: A > A, such that the functions gn(x,A) s_g(¢n(x),¢n(x))
are countably valued and the o-algebras, %, Fos and.&n, generated on % x A by

g(x,1), ¢n(x), and gn(x,x), respectively, satisfy the conditions

i) S VS F V “n1
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ii) n v & =4
m=1 n=m

Then for any two probability measures vy and v, on A, which are mutually

absolutely continuous on C,
93V2 99V]
(4.3.17) (f:h(y)P (dy) = {:h(y)C(y)P (dy)

for every bounded measurable function h on Yy and every probability measure P
on %. (Note that (4.3.16) follows trivially from (4.3.17). Hence, under the

above conditions, Censoring Principle 2' is a consequence of the RLP.)

Proof. We will prove the theorem for C =%. The modifications needed for
arbitrary C are obvious. For n > 1 let {yg}j>] be the countably many values
of 9’ the o-algebra £, is generated by the countable partition

P" = {Ag x Bg} of Z x A into the measurable rectangles (or product sets)

n n_ -1,n n_ -l n_ -1 .
Aj x Bj 9n (yj), where Aj ?n (qu) and Bj v (By?)’ here (as before) Ay
J _ J
and By are determined by the relation g ](y) = Ay x By. For (x,A) € X x A,
define
n ny n
vz(Bj)/v](Bj) if v](Bj) >0,
(4.3.18) En(x,)\) =
. ny_ n o
1 if v](Bj) vz(Bj) 0,
c(x,A) = Tlim sup En(x,x),
n->o
where j is determined by the relation g"(x,A) = yg.
A direct computation verifies that, for any probability measure P
on %,
_ va] vz(dA)
(4.3.]9) Cn = E [m 3" \ .&n].

Indeed, to show this it is sufficient to take any bounded measurable function,

h, onZ x %% and note that
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% {h(¢n(x),gn(x,l))en(x,A)P(dx)v](dk)

v,(B7)

2

, fnh(q:n(X).y?) = = P(dx)v,(BY)
Aj 15

e~ 8

i
= % {h(¢n(x),gn(x,k))P(dx)vZ(dA).

By (4.3.19) and Condition (i), En is a uniformly integrable martingale on

(Z x A, (Jn v £h) va]), for every P. Hence En converges to ¢ with

n>1?
va]-measure 1 for every P, and satisfies

- Px\)] -
(4.3.20) ¢, = E ez, v 2] for every n > 1.
Since we may take P to be concentrated on any single point xe X, we have

actually shown that En(x,A) converges to c(x,x) for every x € x and v]-almost

every A in A (where the exceptional set of v,-measure zero may depend on x).
1

It is obvious from the definition of En that En(x,x) depends on x and
» only through yg = gn(x,x), and therefore that En is g -measurable. It
follows that ¢ is measurable over nqnnlh for each m, and so (by Condition (ii))
¢ is measurable over & Since any 4-measurable function may be written as a
Borel-measurable function of g, there exists some positive function, c, ony
with
(4.3.21) c(x,2) = cog(x,n).

Now let h be bounded and measurable on %, let P be the probability

measure on %, and set

P

xvz
(4.3.22) Ry= E lheg|s, v 5,1

Again the martingale convergence theorem implies that En(x,x)‘converges to
heg(x,x) for val-almost every (x,1), since heg is &-measurable and

Conditions (i) and (ii) imply that #c Vv 5.V

(3n Vv 4.). By Lebesgue's
n=1 n=1

dominated convergence theorem, (4.3.20), and (4.3.19),
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[he dPg’v] = [ [heg cog P(dx)v](dA)
Y z A

lim [ fﬁnE P(dx)v](dA) (by DCT)
nso X A

1im f fﬁn-n P(dx)v](dx) (by (4.3.20))
e 2 A

lim f fﬁn P(dx)vz(dx) (by (4.3.19))
e 2 A

= [ [heg P(dx)v,(da) (by DCT)
Z 1

gsv
=/ 2,
Y

This verifies (4.3.17) and completes the proof. ||

Remark 1. In case it is possible to find {¢n} and {wn} so that 4, < &4y
Condition (i) in the theorem may be eliminated and Condition (ii) can be

simplified to Vv .&n = 4.
n=1

Remark 2. If @ and y_are themselves countably-valued, then obviously g_ is
q’n n n

also, so the theorem applies if Conditions (i) and (ii) are satisfied.

EXAMPLE 29 (continued). Letting <a> denote the closest integer to a (the

larger integer in case of a tie), define
on(x) = 27" <2"x> and va(2) = 27" 2.

It is straightforward to verify that Conditions (i) and (ii) in Theorem 7 are
satisfied, and hence that Censoring Principle 2' follows in complete

generality from the RLP (for this situation).

EXAMPLE 27 (continued). Let Pn = {Ag} be a sequence of partitions of the

J<d,

unit sphere (in R") into finitely many Borel sets such that P+l refines ®n and

1im max diam(A7) = 0.
N0 jgﬂn J
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Let {g?} be a collection of points such that gg € Ag, and define

127 if 4 < 2"x] < i+1 and x/|x| € A],

¢n(x) i

k2" if k<2 < ktl.

wn(o)

Again the Conditions (i) and (ii) of Theorem 7 are easily verified, so that

this censoring mechanism is also generally irrelevant.

4.3.4 Informative Censoring

It is, of course, not always the case that the censoring mechanism or
distribution can be ignored. There are very few instances of fixed censoring
wherein the mechanisms can be labeled informative, so we will concentrate in
this section on random censoring.

The most common reason for being unable to ignore the censoring
distribution, v, in random censoring is dependence of the random variable X
and the random censoring variable A. In Example 29, for instance, one may
have a non-cancer death which occurred because cancer substantially lowered
overall health. Indeed in competing risk theory, in general, dependence
between X and the censoring variables may be the rule rather than the exception.
Such dependence makes Censoring Principle 2 inapplicable, and indeed zy(e)
will typically depend upon v in such situations. (The LP is still valid,
of course.)

A second possible reason that the censoring distribution might be
informative is that the censoring mechanism, g, might fail to be noninformative.
As a very simple example, suppose the actual observation is

Y = g(X,A) = X+,
where X € £ = (0,») and A € A = (0,=). It is easy to check that g'](y) is not
a product set in z x A for any y, so that g clearly fails to be noninformative.
For such g, zy(e) will typically depend on v.
A third reason that v might not be ignorable is that v will often be

unknown, and there could be some "prior" relationship between v and 6. Again,
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the notation of Section 3.5 is convenient here. Thus let 6 stand for all
unknown aspects of the situation and write & = (£,n), where £ is of interest
and n is a nuisance variable (presumably containing unknown aspects of the
distribution, v, of A). For instance, if X ~ PE and 1 ~ v, are similar
competing risks, there might well be suspected relationships between £ and n
which prevent v from being ignored (even if X and A are independent and g is
noninformative). We will not repeat the discussion of Section 3.5 concerning
when and why n (and hence vn) can be ignored in such situations.

A final kind of informative censoring should be mentioned, even
though it is not censoring in the formal sense we have defined. This is
censoring in which censored data is simply not observed or recorded. Thus,
for the censoring mechanism described in (4.3.1) and (4.3.2), it could be the
case that an Xi > 10 is not observed or even known to have existed. Such a
situation is easily dealt with by recognizing that the relevant probability
distribution of the observed Xi is the conditional distribution, given that
Xi < 10. The censoring mechanism will usually enter into this conditional
distribution in a nonignorable fashion, however.

Interestingly enough, this omission of data due to censoring can
arise from the methods of reporting data (c.f. Dawid and Dickey (1977)). An
obvious example is that of a trade journal which only publishes results of
experiments which provide "significant" evidence according to some criteria.
The data of interest, for a given issue, would be all data from experiments on
that issue, but only that data leading to "significance" will become available;
the rest will be censored. This is a very complicated problem, and it is not
at all clear how to analyze the situation. The censoring of the journal

clearly can not be ignored, however.

4.4 SIGNIFICANCE TESTING

4.4.1 Conflict with the LP

Significance testing of a hypothesis (used here in the sense of

P-values, rather than a-level testing) is viewed by many as a crucial element
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of statistics, yet it provides a startling and practically serious example of
conflict with the LP. A significance test of the hypothesis HO’ that X has
distribution PO, proceeds by defining some statistic T(X), where large values
of T supposedly cast doubt on HO’ and then calculating, for the given observa-
tion x, the significance level (or P-value) of x,

(4.4.1) p = PO(T(X) > T(x)) = PO (dy)

{y:JT(y) >T(x)}
(i.e., the probability under Po of observing x or something more "extreme").

If this is small, then one supposedly doubts that H0 could be true. General
discussions of significance testing (including discussions of important
practical issues such as "real" versus "statistical" significance) can be

found in Edwards, Lindman, and Savage (1963), Hacking (1965), Morrison and
Henkel (1970), Edwards (1972), Cox and Hinkley (1974), Dempster (1974a,b),
Pratt (1976,1977), Cox (1977), Barnard (1980), Good (1981), Barnett (1982),
Berger (1985), Hall and Selinger (1986), and Berger and Delampady (1987).

A very common setting for significance testing is the parametric
framework of testing HO: 6 = 8y versus Hy: 0 # 8- Then the null distribution,
PO, is simply P00 in our usual notation (or feo(~) if densities exist). In
this parametric setting it is clear that reporting significance levels violates
the LP, since significance levels involve averaging over sample points other
than just the observed x (see (4.4.1)). The extremely serious practical
problems that can result are discussed in Section 4.4.2.

Significance testing is also frequently used when only a single
model P0 is being contemplated. Testing of fit to a specified model is a
common example. Since only one probability distribution is then involved,
there is no likelihood function; it is hence often argued that the LP cannot
apply to such a situation. Arguments to the contrary will be given in

Section 4.4.3.

4.4.2 Averaging Over "More Extreme" Observations

The logic behind including all data "more extreme" than the given

x, when calculating p, is not particularly convincing. Consider the following
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artificial example, related to an example in Cox (1958).

EXAMPLE 30. Suppose, under Po and P], respectively, that X has the
distributions given in the following table.
X 0 1 2 3 4
Po(x) .75 .14 | .04 | .037 | .033.
P](x) .70 | .25 | .04 | .005 | .005

If T(x) = x were used as the test statistic for a significance test of either
Po or P] (i.e., if large x were considered "extreme"), and if x = 2 were
observed, then the significance level against PO alone would be

Py = PO(XiZ) = .11,
while the significance level against P] alone would be

Py = Py(X > 2) = .05.

(We are not thinking here of testing P0 versus P]; the focus is on comparing
significance tests of each separate hypothesis.) Thus x = 2 would provide
"significant evidence against P] at the 5% level," but would not even provide
"significant evidence against PO at the 10% level."

The concern here, of course, is that were P0 and P] being
considered simultaneously as possible models, likelihood reasoning would argue
that they are equally supported by x = 2; their likelihood ratio is then equal
to one. When considered in isolation therefore, it is definitely strange that
x = 2 provides such different significance levels for Po and P].

Jeffreys (1961) clearly exposed the questionable logic behind
significance levels, stating

"...a hypothesis which may be true may be

rejected because it has not predicted

observable results which have not occurred."
In the example here, neither PO nor P] "predicts” that x=3 or x=4 will
occur, and indeed they do not occur, but P] would be rejected at the 5% level,
while P0 would not, because P] "predicts" these unobserved results even less

than PO'
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Questionable logic could perhaps be overlooked if it made little
difference in practice, but here the averaging over other observations will
virtually always have a profound effect. Consider the following example from

Edwards, Lindman, and Savage (1963).

EXAMPLE 30.1. Suppose X = (X,...,X,), where the X, are i.i.d. %(e,0%), o°
known. The usual test statistic for testing Hy: 6 = 6y versus Hy: e # 89 is

T(X) = /ﬁlY-eol/o,
where X is the sample mean. If t = T(x) is the observed test statistic, the
significance level is then

p=2(1-0(t)),
where ¢ is the standard normal c.d.f..

Consider, now, this testing scenario from a likelihood perspective.

Were H] given by H]: 8 = 0y, it would have been natural to use, as the compar-
ative evidence for the two hypotheses, the observed 1ikelihood ratio

L. =f )/, (x).
G eo(x G

Unfortunately, the actual H] consists of all o # 89> making it difficult to
define a true likelihood ratio, L, of H0 to H]. It seems clear, however, that

a lower bound on L is

L=f, (x)/sup  fg(x).
0 e#eo

The evidence against H0 is certainly no stronger than L.
An easy calculation shows that, in this example,
L = exp{- %~t2}.
The following table gives values of L for various t, and also gives the

significance levels associated with these t. (The Lg row is discussed later.)
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Table 1. Likelihood Ratio Bounds and Significance Levels

t 1.645 1.960 2.576 3.291
p .10 .05 .01 .001
L .258 .146 .036 .0M4
Lg .644 .409 123 .018

The surprise here is that L is much larger than p. When p is .05
for instance, L is .146, indicating that the data provides no more than 1 to 7
evidence against HO'

L itself can be argued to be misleadingly small because it is
based on maximizing the "likelihood of H]." More reasonable is to use, as
the "likelihood of H]", an average of fe(x) over all o # 69 This leads to
a wedighted Likelihood ratio

Lg = f. (x)/ f de,
g = o () {eieo} 4(x) g(6)do

where g is some density (or "weight function"). A Bayesian would choose g
to be the conditional prior density on H], in which case Lg would be the
Bayes facton.

Regardless of interpretation, one can gain insight into the
impact of such evidence measures by calculating lower bounds on Lg over
reasonable classes of g. For instance, in Berger and Sellke (1987) it is
shown that for any density g which is a nonincreasing function of |e-eol,

Lg is at least as large as Lg, given in the last row of Table 1. The
indication is thus that, when p = .05 say, the evidence against H0 is actually
no stronger than 1 to 2%3 (And if one tried "natural" functions g, one would

find that Lg is typically 1 or more when p=.05; see, e.g., Jeffreys (1961).)

The above example is quite disturbing. It indicates that the
classical statistician and the conditionalist will often reach very different
conclusions with the same data, precisely because one averages over all
"extreme" sample points while the other uses only the observed data. (Berger

and Sellke (1987) specifically show that this averaging is the source of the
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discrepancy.) Furthermore, the discrepancy between significance levels and
conditional measures of evidence (e.g., L, Lg or Lg, the posterior probability
of HO’ and even conditional frequentist measures -cf. Berger and Sellke
(1987)) has been shown to hold in a huge variety of significance testing
problems involving a "precise" hypothesis. (H0 need not be a point null for
the discrepancy to arise - see Berger and Sellke, 1987, and Berger and
Delampady, 1987 - but if H0 is, say, a one-sided hypothesis, then the
discrepancy may not arise - see Casella and Berger, 1987.) Note also that
this discrepancy is very related (but not identical) to "Jeffreys's Paradox"
or "Lindley's Paradox". These issues are explored, in depth, in Edwards,
Lindman, and Savage (1963), Berger and Sellke (1987) and Berger and
Delampady (1987). Other relevant works include Lindley (1957, 1977),
Jeffreys (1961), DeGroot (1973), Dempster (1974b), Dickey (1977), Smith and
Spiegelhalter (1980), Good (1981, 1984), Shafer (1982), Zellner (1984),
Berger (1985), Delampady and Berger (1987), and Delampady (1986a,b).

One defense of averaging over other observations (and at the same
time an attack on the LP) that is sometimes advanced is the claim that it is
necessary to consider what observations might haQe occurred. It is, however,
a misconception to believe that the LP fails to do this. Indeed, in determin-
ing the Tikelihood function (or family of distributions for X), it is crucial
to consider and compare the possible x that might be observed. Once this has
been done, however, and the data obtained, the LP states that only the observed

%,(8) is needed.

4.4.3 Testing A Single Null Model

When only P0 has been formulated, it has been argued that signif-
icance testing does not violate the LP because nothing resembling a Tikelihood
function exists. Although correct in a certain formal sense, there are sever-
al weaknesses to the argument.

Perhaps the most serious weakness follows from the observations

in the previous section: if averaging over "extreme" sample points is
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109.1 THE LIKELIHOOD PRINCIPLE

virtually always bad in testing a "precise" null when alternatives are given,
it seems incredibly optimistic to believe that such averaging will be reason-
able when alternatives are not given. The argument that "significance testing
is the only available statistical procedure" is hardly persuasive when it is
known that this available statistical procedure is bad for testing precise
hypotheses.

A second weakness of the argument that only P0 exists is that
implicit alternatives to P0 often are present. Indeed, alternatives must
enter, at least informally, into the choice of the test statistic T(x).

For instance, in Example 30 it seems justifiable to use T(x) =x to measure
"extreme" only if the alternatives that one has in mind are, say, alternatives
which are stochastically larger than P0 (so that a large x tends to support
the alternatives more than it tends to support PO') As another example of

the implicit presence of alternatives, consider chi-square testing of fit.

EXAMPLE 30.2. Consider a statistical experiment in which n independent and
identically distributed random quantities X], X2, vees Xn are observed from
a distribution F. It is desired to conduct a significance test of the
hypothesis HO: F= FO’ where FO is a specified distribution. A common test
procedure, when no alternatives are specified, is the chi-square test of fit.

Chi-Square Test Procedure: First, a partition {ai}?=0 of the real line is

selected. Then the sample frequencies of the n observations in the cells of
the partition are calculated. Let z =(z], cees zm)t denote these frequencies;

= ] 3 -
thus z; = number of X;'s in (ai_], ai]. Define

- _of
8, —F(a].) -F(a]._]) =p (a]._] <Xia1.),

0 =F (a) - Fo(a; 1) =P O X<a.)
i~ o'?i/ ~Fplayg i1 <2234

and
0.t
s eees em) .

Then the chi-square test procedure is to calculate the test statistic
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m (zi -ne?)2
t= 1 —g
i=1 ne;

1

and approximate the significance level by
p= P(x,i_] > t),

where x§_1 is a chi-square random variable with m-1 degrees of freedom.
The implied alternatives here arise from the fact that g has a

Muttinomial (n,8) distribution, so that basing the test on z is equivalent

to acknowledging the test to be that of HO: g==go versus H1: ] #90. (Use of

t can be argued to further imply that the alternatives, ] f@o, are roughly

ordered in plausibility according to n = (ei -e?)zle?, so that one is

i
really testing Ho: n=0 versus Hy: n> 0.) But this is a parametric problem

nm~m3
—

with specified alternatives (and hence a likelihood function) so that
LP-compatible testing methods can apply. Indeed, in Delampady and Berger
(1987) it is shown that the same type of difficulty for significance testing,
that was discussed in Section 4.4.2, exists here: the significance level is
typically much smaller than sensible conditional measures of the evidence

for HO’

The above argument, that there are implicit alternatives in
significance testing, can actually be given a quite general formal foundation.
It has previously been mentioned that the actual sample space Xwill be
discrete in practice. But then, as discussed in Section 3.6.1, even the
set {Pe} of afl distributions on X actually results in a definable 1ikelihood
function. Furthermore, a significance test of P0 can be identified with a
test of HO: 6=y versus H]: 8 #eo, where P60= PO. Thus the LP can apply,
and argues against the use of significance levels.

Although formally correct, we do not ascribe much practical
importance to this last argument, because the class of alf alternatives to

o0

is typically much too big to suggest a sensible analysis. In practice,
some consideration of the type of alternatives that are expected is necessary,

even in classical significance testing. In choosing a test statistic T(x),
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for instance, we earlier observed that it is often necessary to consider
alternatives when defining "extreme." It has been argued that it may be
easier to guess a reasonable T, reflecting intuitive judgements as to which
observations support HO and which support alternatives, than to attempt
explicit consideration of alternatives and construction of T by, say, likeli-
hood ratio comparisons of P0 with the alternatives. The argument that one

can do better by use of intuition, than by explicit consideration of important
relevant features of a problem (here, the alternatives), is difficult to
refute, but is an argument that we would feel very uncomfortable having as a
basis for our approach to science and understanding. Even more troubling is
the fact that significance testing allows one to "hide" this use of personal
intuition. Thus, while Pratt (1965) admits that consideration of alternatives
can be hard and a source of controversy in many situations dealt with by

significance testing, he argues that

"Computing a P-value runs the danger of

hiding this real uncertainty and legitimate

disagreement behind a screen of irrelevant

precision."

As a final point, it has been extensively argued (cf. Hacking

(1965)) that one can never really reject P0 until one has something better,
namely another model P] which is both "reasonable" and better supported by
the data. In Example 30, for instance, the observation x=2 is quite unlikely
to occur under PO’ but it is equally unlikely to occur under P]; thus if P0
and P] are known to be the only possibilities, then x =2 provides no evidence
against PO' Thus consideration of alternatives is imperative if one actually

seeks to reject PO.

4.4.4 Conclusions

What is to be concluded about significance testing? First of all,
it should be admitted that, as the significance level (or P-value) decreases,

the evidence against H0 will be increasing (assuming that T has been chosen
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appropriately). Indeed, in a few special situations (primarily one-sided
testing situations) the significance level can correspond to a reasonable
conditional (Bayesian) measure of the validity of HO (cf. Jeffreys (1961),
Pratt (1965), DeGroot (1973), Fraser and Mackay (1976), Dickey (1977),

Zellner (1982), and Casella and Berger (1987)). In general though, the
magnitude of a significance level need bear no relationship (from problem

to problem) to the actual amount of evidence against HO, and significance
levels in testing precise hypotheses are typically so misleadingly small

that their use for actually rejecting a hypothesis is strongly contraindicated

Although a given significance level can mean vastly different
things in different situations, it can be argued that, through frequent use
in various situations, insight into its true strength of evidence against H0
can be obtained. This is perhaps true: capable people can become very good
at doing tasks with grossly inadequate tools. This is not to say, however,
that better tools should be ignored or, more importantly, that inexperienced
people will do well with the inadequate tools.

One possibly valid use of significance testing is to provide an
alert that further investigation (in particular consideration of alternatives).
is needed. As Barnard (1981) says

"The question to be answered is whether
the feature (T(x)) presented is so
improbable on H0 as to justify the effort
involved in exercising our imagination to
produce an hypothesis that could account
for it."

There is no guarantee from a small significance level that P0

is wrong (i.e.,
that an alternative hypothesis can be found which is substantially more
supported by the data), but without a small significance level there may be
no need to look past PO. This use of significance testing can be argued to
be important even to Bayesians, as extensively discussed in Box (1980): for

a given model and prior, the marginal (or predictive) density of X can be
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110 THE LIKELIHOOD PRINCIPLE
used to conduct a significance test which could alert one to question the
model or prior.

Of course, even this use of significance testing as an alert
could be questioned, because of the matter of averaging over unobserved x.
It is hard to see what else could be done with P0 alone, however, and it is
sometimes argued that time constraints preclude consideration of alternatives.
This may occasionally be true, but is probably fairly rare. Even cursory
consideration of alternatives and a few rough likelihood ratio calculations
will tend to give substantially more insight than will a significance level,
and will usua11y not be much more difficult than sensibly choosing T and
calculating the significance level. (See also Dempster (1974b).)
Admittedly, such an approach will be somewhat imprecise, but what is the

advantage of "irrelevant precision"?

4.5 RANDOMIZATION ANALYSIS

4.5.1 Introduction

In classical finite population sampling (or survey sampling) and
randomization testing, the randomization in the experimental design (used to
select the sample or allocate treatments) is a dominant factor in the
construction of measures of evidence about 6. These measures are
pre-experimental in nature, and their use directly violates the LP and RLP.
(The outcome of the randomization is usually known, and hence averaging over
samples or treatment allocations that might have occurred is supposedly
jrrelevant.) Hence, belief in the LP would have a profound effect on one's
view of these areas of statistics.

Perhaps not surprisingly, it is in these areas, so drastically
affected by the LP, that some of the strongest intuitive arguments against
the LP can be raised. The issues involved are very complex, so much so that
all we can hope to do is skim the surface of the subject. Indeed, we will
essentially restrict ourselves to a defence of the LP in a few simple

examples, trying to establish, as plausible, the argument that anything
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sensible in randomization analysis is sensible precisely because it has a
sensible interpretation from a likelihood viewpoint.

Although our main emphasis will not be on criticizing
rand