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PREFACE 

This monograph began with research designed to provide a generali- 

zation of the Likelihood Principle (LP) to quite arbitrary statistical 

situations. The purpose of seeking such a generalization was to partially 

answer certain criticisms that had been levied against the LP, criticisms which 

seemed to prevent many statisticians from seriously considering the LP and its 

implications. The research effort seemed worthwhile because of the simplicity, 

central importance, and far reaching implications of the LP. 

Background reading for the research revealed a wider than 

expected range of published criticisms of the LP. In an attempt to be complete 

and address all such criticisms, the research paper expanded considerably. 

Eventually it seemed sensible to enlarge the paper to a monograph. This also 

allowed for discussion of conditioning ideas in general and for a review of the 

implications of the LP. It was decided, however, to stop short of a general 

review of conditional methods in statistics. In particular, the monograph does 

not discuss the many likelihood based statistical methodologies that have been 

developed, although references to these methodologies will be given. This 

limitation was, in part, because such an endeavor would be far too ambitious, 

and, in part, because we feel (and indeed argue in Chapter 5) that Bayesian 

implementation of the LP is the correct conditional methodology. 

The mathematical level of the monograph is, for the most part, 

kept at a nontechnical level. The main exception is the generalization of the 

LP in Section 3.4, which is (necessarily) presented at a measure-theoretic 

level, but can be skipped with no loss in continuity. Also, the monograph 

vn 
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viii PREFACE 

presupposes no familiarity with conditioning concepts. Indeed Chapter 2 

provides an elementary review of conditioning, with many examples. 

This second edition was produced under the rather severe constraint 

that the original manuscript, used for photo-offset printing, was inadvertantly 

destroyed; only the photos were kept. Thus changes could only be made by 

retyping entire pages or inserting new pages. A list of corrections that were 

too minor to justify the retyping of an entire page is given at the end of the 

monograph. Inserted pages received decimal page numbers: e.g. 74.1, 74.2. A 

list of additional references was added, and new discussions were kindly contri- 

buted by M. J. Bayarri and M. H. DeGroot, Bruce Hill, and Lucien Le Cam. 

Substantial changes or additions were made in Sections 3.1, 3.5, 

4.2.1, 4.4, and 4.5. The changes in Section 4.4 correct a glaring oversight in 

the first edition: the failure to emphasize the misleading conclusions that 

can result from violation of the Likelihood Principle in significance testing 

of a precise hypothesis. Another very weak part of the first edition was 

Section 3.5, which discussed prediction, design, and nuisance parameters. The 

new material incorporates recent substantive insights from the literature. 

Numerous other minor changes and literature updatings were made 

throughout the monograph. We did not attempt complete coverage of recent lit- 

erature, however. 

We are grateful to a number of people for valuable discussions on 

this subject and/or for comments and suggestions on original drafts or the 

first edition of the monograph. In particular, we would like to thank George 

Barnard, M. J. Bayarri, Mark Berliner, Lawrence Brown, George Casella, Morris 

DeGroot, J. L. Foulley, Leon Gleser, Prem Goel, Clyde Hardin, Bruce Hill, 

Jiunn Hwang, Rajeev Karandikar, Lucien Le Cam, Ker-Chau Li, Dennis Lindley, 

George McCabe, Georges Monette, John Pratt, Don Rubin, Herman Rubin, Myra 

Samuels, Steve Samuels, and Tom Sellke. We are especially grateful to M. J. 

Bayarri and M. H. DeGroot for an exceptionally complete and insightful set of 

corrections and comments on the first edition. We are also grateful to 

Shanti Gupta for the encouragement to turn the material into a monograph. 
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Thanks are also due to the Alfred P. Sloan Foundation, the National Science 

Foundation (Grants MCS-7801737, MCS-8101670A1, and DMS-8702620), and the 

Center for Stochatic Processes at the University of North Carolina for support 

of the research in the monograph. Finally, we are extremely grateful to 

Norma Lucas, Teena Chase, and Betty Gick for excellent typing of the manuscript. 

March, 1988 JAMES 0. BERGER 
Purdue University, West Lafayette 

ROBERT WOLPERT 
Duke University, Durham 
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Chapter 1, INTRODUCTION 

Among all prescriptions for statistical behavior, the Likelihood 

Principle (LP) stands out as the simplest and yet most farreaching. It essen- 

tially states that all evidence, which is obtained from an experiment, about an 

unknown quantity ?, is contained in the likelihood function of ? for the given 

data. The implications of this are profound, since most non-Bayesian approaches 

to statistics and indeed most standard statistical measures of evidence (such 

as coverage probability, error probabilities, significance level, frequentist 

risk, etc.) are then contraindicated. 

The LP was always implicit in the Bayesian approach to statistics, 

but its development as a separate statistical principle was due in large part 

to ideas of R. A. Fisher and G. Barnard (see Section 3.2 for references). It 

received major notice when Birnbaum (1962a) showed it to be a consequence of 

the more commonly trusted Sufficiency Principle (that a sufficient statistic 

summarizes the evidence from an experiment) and Conditional ity Principle (that 

experiments not actually performed should be irrelevant to conclusions). Since 

then the LP has been extensively debated by statisticians interested in founda- 

tions, but has been ignored by most statisticians. There are perhaps several 

reasons for this. First, the consequences of the LP seem so absurd to many 

classical statisticians that they feel it a waste of time to even study the 

issue. Second, a cursory investigation of the LP reveals certain oft-stated 

objections, foremost of which is the apparent dependence of the principle on 

assuming exact knowledge of the (parametric) model for the experiment (so that 

an exact likelihood function exists). Since the model is rarely true, (hasty) 

1 
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THE LIKELIHOOD PRINCIPLE 

rejection of the LP may result. Third, the LP does not say how one is to per- 

form a statistical analysis; it merely gives a principle to which any method of 

analysis should adhere. Indeed Bayesian analysis is often presented as the way 

to implement the LP (with which we essentially agree), a very unappealing 

prospect to many classical statisticians. 

The major purpose of this (mostly review) monograph is to address 

these concerns. A serious effort will be made, through examples and appeals to 

common sense, to argue that the LP is intuitively sensible, more so than the 

classical measures which it impunes. Also, a generalized version of the LP 

will be introduced, a version which removes the restriction of an exactly known 

likelihood function, and yet has essentially the same implications. (Other 

criticisms of the LP will also be discussed.) Finally, the question of imple- 

mentation of the LP will be considered, and it will be argued that Bayesian 

analysis (more precisely robust Bayesian analysis) is the most sensible and 

realistic method of implementation. A thorough discussion of this issue is, 

however, outside the scope of the monograph, so the main thesis will simply be 

that the LP is believable and that behavior in violation of it should be 

avoided to the extent possible. 

Acceptance of such a thesis radically alters the way one views 

statistics. Indeed, to many Bayesians, belief in the LP is the big difference 

between Bayesians and frequentists, not the desire to involve prior information. 

Thus Savage said (in the Discussion of Birnbaum (1962a)) 

"I, myself, came to take...Bayesian statistics... 

seriously only through recognition of the likeli- 

hood principle." 

Many Bayesians became Bayesians only because the LP left them little choice. 

Sufficient time has passed since the axiomatic development of 

Birnbaum to hope that any valid objections to the LP would by now have been 

found. Indeed, there are numerous articles in the literature presenting 

examples, counterexamples, arguments, and counterarguments for the LP. We will 
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INTRODUCTION 

attempt to discuss all major issues raised, and thus will necessarily cover 

much of the same ground as these other articles. The collection of relevant 

arguments in one place will hopefully make study of this crucial issue much 

easier. 

Clearly, we cannot claim impartiality in this monograph; indeed the 

monograph is essentially aimed at promoting the LP. This can best be done, how- 

ever, by purposely raising and answering all objections to it (of which we are 

aware), so a substantial accounting of the "other side" will be given. Also, 

although our criticism of classical modes of thought may seem rather severe at 

times, it would be wrong to conclude that we are completely rejecting classical 

statistics, as it is practiced. Most classical procedures work very well much 

of the time. Indeed, many classical procedures are exactly what an "objective 

conditional ist" would use, although for different reasons and with different 

interpretations. There are exceptions (e.g. significance testing and much of 

sequential analysis - see Chapter 4), where it can be argued that classical 

analyses often yield very misleading inferences because of their violation of 

the LP. 

Of course, classical statisticians do (in practice) condition all 

the time; whenever an experimental protocol is altered or a look at the data 

reveals the necessity to alter the hypothesized model, conditioning has taken 

place. (Conditioning followed by the use of unconditional frequentist evalua- 

tions is, however, highly suspect, and is the source of much of the hostility 

towards the LP.) Conditioning seems unavoidable in practice, and so it is a 

wonderful practical implication of the LP that such conditioning is not only 

legitimate, but is proper, providing a suitable conditional analysis is then 

performed. Clinical trials is just one area where yery desirable simplicity in 

experimentation and analysis results from adoption of the conditional viewpoint. 

Discussion of such practical implications is given in Chapter 4. 

The mathematics and theoretical statistics used in the monograph 

will, for the most part, be kept at an easy-to-read level. (The exception is 

Section 3.4, where the general LP is developed.) Also, examples will frequently 
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THE LIKELIHOOD PRINCIPLE 

be given in simple artificial settings, rather than realistically complicated 

statistical situations, again for ease of reading and because complicated sit- 

uations are often too involved to clearly reveal key issues. Advancement of a 

subject usually proceeds by applying to complicated situations truths discov- 

ered in simple settings. 

Throughout the monograph, X will denote the random quantity to be 

observed, X the sample space, ? (the observed data) a realization of X, and 

? (?) the probability distribution of X on X, where ??T is unknown. Although 

? will be called the parameter and T the parameter space, the family {??(?)> 

???} need not be a typical parametric family; ? could just denote some (possi- 

bly nonparametric) index. Also, ? will be understood to consist of all unk- 

nown features of the probability distribution. Often, therefore, only part of 

? will be of interest, the remainder being a nuisance "parameter." In discus- 

sing sequential and prediction problems it will sometimes be convenient to con- 

sider unobserved random variables Z, as well as the unknown ?; ? will then de- 

note a possible value of Z. To simplify the exposition in the monograph, how- 

ever, we will usually only consider the simpler case in which ? is absent. Note 

that for some statistical problems it is impossible to separate ? and {?O(?)? ? 

See Section 3.5 for discussion of such problems. 

When necessary,^ will denote the s-field of measurable events in X. 

If a density for X exists it will be denoted fQ(x), and we will presume the 

existence of a single dominating s-finite measure v(?) for (PQ{')9 T6T) such 

that PQ(B) = / fJx) v(dx) for each Be3. In all the examples ? will be taken ? B ? 

to be counting measure in the discrete case and Lebesgue measure in the contin- 

uous case, when X is a subset of Euclidean space. Usually we will write the 

reference measure simply as "dx" (implicitly taking Lebesgue measure for v); 

the formulas will require minor changes for cases (including those involving 

discrete distributions) in which other reference measures are more convenient. 
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Chapter 2. CONDITIONING 

The most commonly used measures of accuracy of evidence in 

statistics are pre-experimental. A particular procedure is decided upon for 

use, and the accuracy of the evidence from an experiment is identified with the 

long run behavior of the procedure, were the experiment repeatedly performed. 

This long run behavior is evaluated by averaging the performance of the proce- 

dure over the sample spaced. In contrast, the LP states that post-experimental 

reasoning should be used, wherein only the actual observation ? (and not the 

other observations in ? that could have occured) is relevant. There are a 

variety of intermediate positions which call for partial conditioning on ? and 

partial long run frequency interpretations. Partly for historical purposes, 

and partly to indicate that the case for at least some sort of conditioning is 

compelling, we discuss in this chapter various conditioning viewpoints. 

2.1 SIMPLE EXAMPLES 

The following simple examples reveal the necessity of at least sometimes 

thinking conditionally, and will be important later. 

EXAMPLE 1. Suppose X, and X2 
are independent and 

Pq?X? 
= ?-1) = 

?T(?. 
= ?+1) = 

\> 
i = 1,2. 

Here - <? < ? < ? is an unknown parameter to be estimated from X, and X2? 
It is 

easy to see that a 75% confidence set of smallest size for ? is 

!the 

point ^(X^) if 
X] f X2 

the point X-,-1 
if 

X] 
= 

X2- 
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THE LIKELIHOOD PRINCIPLE 

Thus, if repeatedly used in this problem, C(X..,X2) would contain ? with 

probability .75. 

Notice, however, that when x, f x2 it is absolutely certain that 

? = 
?(x-|+x2), while when x, = 

x2 it is equally uncertain whether ? = 
x-|-1 

or 

? = x-,+1 (assuming no prior knowledge about ?). Thus, from a post-experimental 

viewpoint, one would say that C(x.,x2) contains ? with "confidence" 100% when 

x, f x2, but only with "confidence" 50% when ?, = 
x2? Common sense certainly 

supports the post-experimental view here. It is technically correct to call 

C(XpX2) a 75% confidence set, but, if after seeing the data we know whether it 

is really a 100% or 50% set, reporting 75% seems rather silly. 

The above example focuses the issue somewhat: does it make sense 

to report a pre-experimental measure when it is known to be misleading after 

seeing the data? The next example also seems intuitively clear, yet is the key 

to all that follows. 

EXAMPLE 2. Suppose a substance to be analyzed can be sent either to a 

laboratory in New York or a laboratory in California. The two labs seem 

equally good, so a fair coin is flipped to choose between them, with "heads" 

denoting that the lab in New York will be chosen. The coin is flipped and 

comes up tails, so the California lab is used. After awhile, the experimental 

results come back and a conclusion must be reached. Should this conclusion 

take into account the fact that the coin eould have been heads, and hence that 

the experiment in New York might have been performed instead? 

This, of course, is a variant of the famous Cox example (Cox (1958)- 

see also Cornfield (1969)), which concerns being given (at random) either an 

accurate or an inaccurate measuring instrument (and knowing which was given). 

Should the conclusion reached by experimentation depend only on the instrument 

actually used, or should it take into account that the other instrument might 

have been obtained? 

In symbolic form, we can phrase this example as a "mixed experiment" 
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CONDITIONING 

in which with probabilities 2 (independent of ?) either experiment E, or 

experiment E2 (both pertaining to ?) will be performed. Should the analysis 

depend only on the experiment actually performed, or should the possibility of 

having done the other experiment be taken into account? 

The obvious intuitive answer to the questions in the above example 

is that only the experiment actually performed should matter. But this is 

counter to pre-experimental frequentist reasoning, which says that one should 

average over all possible outcomes (here, including the coin flip). One could 

argue that it is correct to condition on the coin flip, and then use the 

frequentist measures for the experiment actually performed, but the LP dis- 

allows this and is (surprisingly) derivable simply from conditioning on the 

coin flip plus sufficiency (see Chapter 3). 

EXAMPLE 3. For a testing example, suppose it is desired to test HQ: ? = -1 

versus Ha: ? = 1> based on ? ^ 7?(?,.25). The rejection region X > 0 gives a 
a ? 

test with error probabilities (type I and type II) of .0228. If ? = 0 is 

observed, it is then permissible to state that HQ is rejected, and that the 

error probability is a = .0228. Common sense, however, indicates that the 

data ? = 0 fails to discriminate at all between 
HQ 

and ? . Any sensible 

person would be equally uncertain as to the truth of HQ or ? (based just on 

the data ? = 0). Suppose on the other hand, that ? = 1 is observed. Then 

(pre-experimentally) one can still only reject at a = .0228, but ? = 1 is four 

standard deviations from ? = -1, so the evidence against HQ seems overwhelming. 

Clearly, the actual intuitive evidence conveyed by ? can be quite 

different from the pre-experimental evidence. This has led many frequenti sts 

to prefer the use of P-values to fixed error probabilities. The P-value 

(against HQ) would here be ? _,(X >_ ?), a measure of evidence against HQ 
with 

much more dependence on the actual observation, x, than mere rejection at 

a = .0228. (Even P-values can be criticized from a conditional viewpoint, 

however - see Section 4.4.) 
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THE LIKELIHOOD PRINCIPLE 

Note that there is nothing logically wrong with reporting error 

probabilities in Example 3; it just seems to be an inadequate reflection of the 

evidence conveyed by the data to report a = .0228 for both ? = 0 and ? = 1. 

Pratt (1977) (perhaps somewhat tongue-in-cheek) thus coins 

THE PRINCIPLE OF ADEQUACY. A concept of statistical evidence is (very) 

inadequate if it does not distinguish evidence of (very) different strengths. 

EXAMPLE 4a. Suppose X is 1, 2, or 3 and ? is 1 or 2, with Pe(x) given in the 

following table: 

1 

.009 

.001 

.001 

.989 

.99 

.01 

The test, which accepts PQ when ? = 3 and accepts P, otherwise, is a most 

powerful test with both error probabilities equal to .01. Hence, it would be 

valid to make the frequentist statement, upon observing ? = 1, "My test has 

rejected PQ and the error probability is .01." This seems very misleading, 

since the likelihood ratio is actually 9 to 1 in favor of P?, which is being 

rejected. 

EXAMPLE 4b. One could object in Example 4a, that the .01 level test is 

inappropriate, and that one should use the .001 level test, which rejects only 

when ? = 2. Consider, however, the following slightly changed version: 

1 

.005 

.0051 

.005 

.9849 

.99 

.01 

Again the test which rejects PQ when ? = 1 or 2 and accepts otherwise has error 

probabilities equal to .01, and now it indeed seems sensible to take the 

indicated actions (if we suppose an action must be taken). It still seems 
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CONDITIONING 

unreasonable, however, to report an error probability of .01 upon rejecting PQ 

when ? = 1, since the data provides very little evidence in favor of P,. 

EXAMPLE 5. For a decision theoretic example, consider the interesting Stein 

phenomenon, concerned with estimation of a p-variate normal mean (p >_ 3) based 

on ? ^7? (?,I) and under sum of squares error loss. The usual pre-experimental 

measure of the performance of an estimator 6 is the risk function (or expected 

loss) 

j, 
<?.-?.< R(e,6) = 

?? t (?.-d,(?))2. 

The classical estimator here is d (?) = ?, but James and Stein (1960) showed 

that 

6J"S(x) = (1 - 
*=|)? 

has R(e,6 
~ 

) < R(e,? ) = p for all ?. One can thus report 6 
" 

as always be- 

ing better than 6 from a pre-experimental viewpoint. However, if ? = 3 and 

? = (?,.??,.??) is observed, then 

<5J~S(x) = (0,-49.99,-49.99), 

J-S 
which is an absurd estimate of ?. Hence d 

~ 
can be terrible for certain x. 

J-S 
Of course the positive part version of 6 

" 
, 

6J"S+(x) - (1 - 
^)+x, 
S?? 

corrects this glaring problem, but the point is that a procedure which looks 

great pre-experimentally could be terrible for particular x, and it may not 

always be so obvious when this is the case. 

Confidence sets for ? can also be developed (see Casella and 

Hwang (1982)) which have larger probabilities of coverage than the classical 

confidence ellipsoids, are never larger in size, and for small |x| 

consist of the single point {0}. Indeed, these sets are of the simple form 
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10 THE LIKELIHOOD PRINCIPLE 

, {?: |e-6J-S+(x)|2 < ?*(1-a)} if |x| > e 

C(x) = 

f {0} if |?| < e, 

2 
where ? (I-a) is the ?-ath percentile of the chi-square distribution with ? 

degrees of freedom, and e is suitably small. Although this confidence proce- 

dure looks great pre-experimentally, one would look rather foolish to conclude 

when ? = 3 and ? = (?,.??,.??) that ? is the point {0} with confidence 95%. 

The above examples, though simple, indicate most of the intuitive 

reasons for conditioning. There are a wide variety of other such examples. 

The Uniform (?-a,?+3) distribution (a,3 known) provides a host of examples 

where conditional reasoning differs considerably from pre-experimental reason- 

ing (cf. Welch (1939) and Pratt (1961)). The Stein 2-stage procedure for 

2 
obtaining a confidence interval of fixed width for the mean of a 7?(?,s ) dis- 

2 
tribution is another example. A preliminary sample allows estimation of s , 

from which it is possible to determine the sample size needed for a second 

sample in order to guarantee an overall probability of coverage for a fixed 

width interval. But what if the second sample indicates that the preliminary 

2 
estimate of s was woefully low? Then one would really have much less real 

confidence in the proposed interval (cf. Lindley (1958) and Savage et. al. 

(1962)). Another example is regression on random covariates. It is common 

practice to perform the analysis conditionally on the observed values of the 

covariates, rather than giving confidence statements, etc., valid in an 

average sense over all covariates that could have been observed. Robinson 

(1975) also gives extremely compelling (though artificial) examples of the 

need to condition. Piccinato (1981) gives some interesting decision-theoretic 

examples. 

A final important example is that of robust estimation. A con- 

vincing case can be made that inference statements should be made conditionally 

on the residuals; if the data looks completely like normal data, use normal 

theory. Barnard (1981) says 
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CONDITIONING 11 

"We should recognise that 'robustness' of 

inference is a conditional property - some 

inferences from some samples are robust. 

But other inferences, or the same inferences 

from other samples, may depend strongly on 

distributional assumptions." 

Dempster (1975) contains very convincing discussion and a host of interesting 

examples concerning this issue. Related to conditional robustness is large 

sample inference, which should often be done conditionally on shape features 

of the likelihood function. Thus, in using asymptotic normal theory for the 

maximum likelihood estimator, ?, one should generally use ?(?)~ , the inverse 

of observed Fisher information, as the covari ance matrix, rather than ?(?)" , 

the inverse of expected Fisher information. For extensive discussion of 

these and related issues see Jeffreys (1961), Pratt (1965), Andersen (1970), 

Efron and Hinkley (1978), Barndorff-Nielsen (1980), Cox (1980), and Hinkley 

(1980a,1982). 

2.2 RELEVANT SUBSETS 

Fisher (cf. Fisher (1956a)) long advocated conditioning on what he 

called relevant subsets of X (also called "recognizable subsets", "reference 

sets", or "conditional experimental frames of reference"). There is a con- 

siderable literature on the subject, which tends to be more formal than the 

intuitive type of reasoning presented in the examples of Section 2.1. The 

basic idea is to find subsets of X (often determined by statistics) which, 

when conditioned upon, change the pre-experimental measure. In Example 1, for 

instance, 

? = {x: x1 
= 

x2> U {x: ?? t x2h 

and the coverage probabilities of C(X,,X2) 
conditioned on observing X in the 

"relevant" subsets {x: x, = 
x2> 

or {x: x-j t x2> 
are 1 and .5, respectively. 

In Example 2, the two outcomes of the coin flip determine two relevant subsets. 

In Examples 3, 4, and 5 it is not clear what subsets should be considered 
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12 THE LIKELIHOOD PRINCIPLE 

relevant, but many reasonable choices give conditional results quite different 

from the pre-experimental results. 

Formal theories of relevant subsets (cf. Buehler (1959)) proceed 

in a fashion analogous to the following. Suppose C(x) is a confidence procedure 

with confidence coefficient I-a for all ?, i.e., 

(2.2.1) PQ(C(X) contains ?) = l-a for all ?. 

Then ? is called a relevant subset of ? if, for some e > 0, either 

(2.2.2) Pe(C(X) contains ?|? ? ?) < (1-a) - e for all ? 

or 

(2.2.3) P0(C(X) contains ?|? ? ?) > (1-a) + e for all ?. 

When (2.2.2) or (2.2.3) holds and ? ? ? is observed, it is questionable whether 

(2.2.1) should be the measure of evidence reported. This formed the basis of 

Fisher's objection (Fisher (1956b)) to the Aspin-Welch (1949) solution to the 

Behrens-Fisher problem (see also Yates (1964) and Cornfield (1969)). Another 

example follows. (For more examples, see Cornfield (1969), Olshen (1977), and 

Fraser (1977).) 

EXAMPLE 6. (Brown (1967), with earlier related examples by Stein (1961) and 

2 Buehler and Fedderson (1963)). If X-,,...,? is a sample from a 7?(?,s ) 

2 
distribution, both ? and s unknown, the usual 100(?-a)% confidence interval for 

? is 

C(x,s) = (x-t n ?, x+t n ?), a/2 /?? a/2 i? 

where ? and s are the sample mean and standard deviation, respectively, and 

t 
y2 

is the appropriate critical value for the t-distribution with n-1 degrees 

of freedom. For ? = 2 and a = .5 we thus have 

? 
2(C(X,S) contains ?) = .5 for all ?,s , 

??s 

but Brown (1967) showed that 

? 
2(C(X,S) contains ? 

e9o 
|X|/S < 1 + Jl) > I for all ?,s2, 
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CONDITIONING 13 

and hence the set 

? = 
{(xr...,xn): |x|/s < 1 + /2} 

forms a relevant subset. 

There is a considerable literature concerning the establishment of 

conditions under which relevant subsets do or do not exist (cf. Buehler (1959), 

Wallace (1959), Stein (1961), Pierce (1973), Bondar (1977), Robinson (1976, 

1979a, 1979b), and Pedersen (1978)). Though interesting, a study of these 

issues would take us too far afield. (See Section 3.7.3 for some related mater- 

ial, however.) Also, much of the theory is still based on frequentist (though 

partly conditional) measures, and hence violates the LP. Of course, many 

researchers in the field study the issue solely to point out inadequacies in 

the frequentist viewpoint, and not to recommend specific conditional frequentist 

measures. Indeed, it is fairly clear that the existence of relevant subsets, 

such as in Example 6, is not necessarily a problem, since when viewed completely 

conditionally (say from a Bayesian viewpoint conditioned on the data (x,s)), the 

interval C(x,s) is very reasonable. Thus the existence of relevant subsets 

mainly points to a need to think carefully about conditioning. 

2.3 ANCILLARITY 

The most common type of partial conditioning advocated in 

statistics is conditioning on an ancillary statistic An ancillary statistic, 

as introduced by Fisher (see Fisher (1956a) for discussion and earlier refer- 

ences), is a statistic whose distribution is independent of ?. (For a 

definition when nuisance parameters are present, see Section 3.5.5.) Thus, in 

Example 1, S = 
|X-.-X21 

is an ancillary statistic which, when conditioned upon, 

gives "conditional confidence" for C(X) of 100% or 50% as s is 1 or 0, 

respectively. And, in Example 2, the outcome of the coin flip is an ancillary 

statistic The following is a more interesting example. 

EXAMPLE 7. Suppose X-j,...,X 
are i.i.d. Uniform (? - 

^-, 
? + 

-^ ). 
Then 

? = (U,V) = (min ?., max ?.) is a sufficient statistic, and S = V-U is an 
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14 THE LIKELIHOOD PRINCIPLE 

ancillary statistic (having a distribution clearly independent of ?). The 

conditional distribution of ? given S = s is uniform on the set 

?,. = {(u,v): v-u = s and ? - 
^ 

< u < ? + 
2 

- s}. 

Inference with respect to this conditional distribution is straightforward. 

For instance, a 100(l-a)% (conditional) confidence interval for ? is 

C(U,V) = 
|(U+V) ?l(l-a)(l-s), 

one of the solutions proposed by Welch (1939). This conditional interval is 

considerably more appealing than various "optimal" nonconditional intervals, 

as discussed in Pratt (1961). 

There are a number of difficulties in the definition and use of 

ancillary statistics (cf. Basu (1964) and Cox (1971)). Nevertheless, condi- 

tioning on ancillaries goes a long way towards providing better conditional 

procedures. A few references, from which others can be obtained, are Fisher 

(1956a), Anderson (1973), Barnard (1974), Cox and.Hinkley (1974), Cox (1975), 

Dawid (1975, 1981), Efron and Hinkley (1978), Barndorff-Nielsen (1978, 1980), 

Hinkley (1978, 1980), Seidenfeld (1979), Grambsch (1980), Amari (1982), 

Barnett (1982), and Buehler (1982). 

2.4 CONDITIONAL FREQUENTIST PROCEDURES 

An ambitious attempt to formalize conditioning within a frequentist 

framework was undertaken by Kiefer (1977). (See also Kiefer (1975, 1976), 

Brown (1977), Brownie and Kiefer (1977), and Berger (1984c, 1984d).) The 

formalization was in two distinct directions, which Kiefer called conditional 

confidence and estimated confidence. 

2.4.1 Conditional Confidence 

The basic idea of conditional confidence is to define a partition 

C&s?" 
s e S? of ? (the sets in the partition are the relevant subsets of ?), 

and then associate with each set in the partition the appropriate conditional 

frequency measure for the procedure considered. In Example 1, the partition 

would be into the sets X, = {x: x-, = 
x2> and x~ = {x: x, f x2>. 

In 
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CONDITIONING 15 

Example 2, the partition would be into the sets where heads and tails are 

observed, respectively. 

When dealing with a confidence procedure {C(X)}, the conditional 

frequency measure that would be reported, if ? ex were observed, is 

rs(e) 
= 

P0(C(X) 
contains ?|X ?Z$). 

EXAMPLE 7 (continued). Let the partition be {? : 0 <_ s <_ 1} (see Example 7). 

Then, for the procedure (C(U,V)}, 

rs(e) 
= 

Pe(C(U,V) 
contains e|(U,V) ? *$) 

= 1-a. 

In Examples 1, 2, and 7 it is relatively clear what to condition 

on. In Examples 3, 4, 5, and 6, however, there is no clear choice of a 

partition. In a situation such as Example 3, the following choice is attrac- 

tive. 

EXAMPLE 3 (continued). Let X = {-s,s} (i.e., the two points s and -s) for 

s > 0. (We will ignore ? = 0, since it has zero probability of occurring.) 

The "natural" measure of conditional confidence in a testing situation is the 

conditional error probability function, determined here by 

(2.4.1) rs(l) 
= 

rs(-l) 
= 

P^Rejectingl^) 

Pel(X=s) = 

P_1(X=s)+P_1(X=-s) 

- l/d+e48). 

One would thus -report the test outcome along with the conditional error 

probability (1+e 'x')~ . This conditional error probability has the appealing 

property of being close to 1/2 if |x| is near zero, while being very small if 

|x] is large. Thus it satisfies Pratt's "Principle of Adequacy." 

The reason (from a frequency viewpoint) for formally introducing 

a partition is to prevent such "abuses" as conditioning on "favorable" relevant 

subsets, but ignoring unfavorable ones and presenting the unconditional 

measure when ? is in an unfavorable relevant subset. 
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16 THE LIKELIHOOD PRINCIPLE 

2.4.2 Estimated Confidence 

An alternative approach to conditioning, which can be justified 

from a frequentist perspective (cf. Kiefer (1977) or Berger (1984c)), is to 

present a data dependent confidence function. If a confidence set procedure 

C(x) is to be used, for instance, one could report l-a(x) as the "confidence" 

in C(x) when ? is observed. Providing 

(2.4.2) ? ?-a(?)) < PJC(X) contains ?) for all ?, ? ? 

this "report" has the usual frequentist validity that, in repeated use, C(X) 

will contain ? with at least the average of the reported confidences. Thus, 

in Example 2, one could report l-a(x) = 1 or 2 as x, t x2 
or x, = 

x2, 

respectively. Estimated confidence (or, more generally, estimated risk) can 

be very useful in a number of situations where conditional confidence fails 

(see Kiefer (1977) or Berger (1984c)). 

2.5 CRITICISMS OF PARTIAL CONDITIONING 

The need to at least sometimes condition seems to be well 

recognized, as the brief review in this chapter has indicated. The approaches 

discussed in Sections 2.2, 2.3, and 2.4.1 consider only partial conditioning, 

however; one still does a frequency analysis, but with the conditional distri- 

bution of X on a subset. There are several major criticisms of such partial 

conditioning. (The estimated confidence approach in Section 2.4.2 has a quite 

different basis; criticism of it will be given at the end of this section.) 

First, the choice of a relevant subset or an ancillary statistic 

or a partition {z$: 
s ? S? can be very uncertain. Indeed, it seems fairly 

clear that it is hard to argue philosophically that one should condition on a 

certain set or partition, but not on a subset or subpartition. (After all, it 

seems somewhat strange to observe x, note that it is in, say, ? , and then for- 

get about ? and pretend only that r is known to have obtained.) Researchers 

working with ancillarity attempt to define "good" ancillary statistics to con- 

dition upon, but, as mentioned earlier, there appear to be no completely 

satisfactory definitions. Also, ancillary statistics do not exist in many 
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CONDITIONING 17 

situations where it seems important to condition, as the following simple 

example shows. 

EXAMPLE 8. Suppose T = [0, i), and 

/? with probability 1-? 

X = 
] 

\ 0 with probability ?. 

(An instrument measures ? exactly, but will erroneously give a zero reading 

with probability equal to ?.) Consider the confidence procedure C(x) = {x} 

(the point x). Here PjC(X) contains ?) = l-?. It is clear, however, that one 
? 

wants to condition on {?: ? > 0}, since C(x) = {?} for sure if ? > 0. But 

there is no ancillary statistic which provides such a conditioning. 

In situations such as Examples 3, 4, 5, and 6, the selection of a 

partition for a conditional confidence analysis seems quite arbitrary. Kiefer 

(1977) simply says that the choice of a partition must ultimately be left to 

the user, although he does give certain guidelines. The development of 

intuition or theory for the choice of a partition seems very hard, however 

(see also Kiefer (1976), Brown (1977), and Berger (1984c)). 

Even more disturbing are examples, such as Example 4(b), where it 

seems impossible to perform the indicated sensible test and report conditional 

error probabilities reflecting the true uncertainty when ? = 1 is observed. 

(A three points cannot be partitioned into two nondegenerate sets, and on a 

degenerate set the conditional error probability must be zero or one.) Any 

theory which cannot handle such a simple example is certainly suspect. 

The situation for estimated confidence theory is more ambiguous, 

because it has not been very extensively studied. In particular, the choice 

of a particular estimated confidence or risk is very difficult, in all but the 

simplest situations. And, in situations such as Examples 3 and 4(b), 

estimated confidence functions will have certain undesirable properties. In 

Example 3, for instance, any estimated error probability, a(x), which is 
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18 THE LIKELIHOOD PRINCIPLE 

decreasing in |x| and satisfies the frequentist validity criterion (similar to 

(2.4.2)) 

En a(X) > PjTest is in error) for all ?, 
? ? 

must have a(0) > 
j (since Pi (Test is in error) = 

2). 
It seems strange, 

however, to report an error larger than j (which could, intuitively, be 

obtained by simple guessing). For more extensive discussion of estimated 

confidence, see Berger (1984c). 

The final argument against partial conditioning is the already 

alluded to fact that the most clearcut and "obvious" form of conditioning 

(Example 2) implies (together with sufficiency) the LP, which states that 

complete conditioning (down to ? itself) is necessary. Since this would 

eliminate the possible application of frequency measures, new measures of 

evidence would clearly be called for. 

It should be mentioned that certain other forms of statistical 

inference are very conditional in nature, such as fiducial inference developed 

by Fisher (see Hacking (1965), Plackett (1966), Wilkinson (1977), Pedersen 

(1978), and Dawid and Stone (1982) for theory and criticisms), structural in- 

ference developed by Fraser (cf. Fraser (1968, 1972, 1979)), and pivotal in- 

ference developed by Barnard (cf. Barnard (1980, 1981) and Barnard and Sprott 

(1983)). (Barnett (1982) gives a good introduction to all of these approaches.) 

The similarities among these methods (and also "objective Bayesian" analysis and 

frequentist "invariance" analysis) are considerable, but the motivations can be 

quite different. These methods rarely result in unreasonable conclusions from 

a conditional viewpoint, and hence do have many useful implications for 

conditional analysis. Space precludes extensive discussion of these 

approaches. (Some discussion of structural and pivotal analysis will be given 

in Sections 3.6 and 3.7, in the course of answering a specific criticism of the 

LP.) Suffice it to say that they are based on "intuitive" principles which can 

be at odds with the LP (and Bayesian analysis), and hence leave us doubting 

their ultimate truth. 
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Chapter 3. THE LIKELIHOOD PRINCIPLE AND GENERALIZATIONS 

3.1 INTRODUCTION 

The LP deals with situations in which X has a density fQ(x) (with ? 

respect to some measure v) for all ee<8>. Of crucial importance is the likeli- 

hood function for ? given x, given by 

(3.1.1) ??(?) 
= 

fe(x), 

i.e., the density evaluated at the observed value X = ? and considered as a 

function of T. Often we will call l (?) the likelihood function for ? or sim- 

ply the likelihood function. The LP, which follows, is stated in a form suit- 

able for easy initial understanding; certain implicit qualifications are dis- 

cussed at the end of the section. 

THE LIKELIHOOD PRINCIPLE. All the information about ? obtainable from an ex- 

periment is contained in the likelihood function for ? given x. Two likelihood 

functions for ? (from the same or different experiments) contain the same infor- 

mation about ? if they are proportional to one another. 

It has been known since Fisher (1925, 1934) that the "random" like- 

lihood function ??(?) 
is a minimal sufficient statistic for ?, and hence con- 

tains all information about ? from a classical viewpoint. The LP goes consid- 

erably farther, however, maintaining that only i (?) for the actual observation 

X = ? is relevant. 

19 
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20 THE LIKELIHOOD PRINCIPLE 

EXAMPLE 9. Suppose Y-,Y2,... are i.i.d. Bernoulli (?) random variables. In 

experiment E,, a fixed sample size of 12 observations is decided upon, and the 

12 
sufficient statistic X- = ? Y. turns out to be x* = 9. In experiment E9, it 

1 
i=l 

? i c 

is decided to take observations until a total of 3 zeroes has been observed, 

at which point the sufficient statistic X? = JY. turns out to 9. The distri- 

bution of X. in E. is binomial with density 

fj(xa) 
= 

(J2)???(?-?) "Xl. 

which for x, = 9 yields the likelihood function 

l\(*) 
= 

(gV(l-e)3. 

The distribution of X2 in E2 is negative binomial with density 

fg(x2) 
= ( I h 2(?-?)3, 

which for x2 
= 9 yields the likelihood function 

f) 
= 

(?gVd-e)3. 

In this situation, the LP says that (i) for experiment E. alone, 

the information about ? is contained solely in ??(?); and (ii) since ?_(?) and 

ju(e) are proportional as functions of ?, the information about ? in experi- 

ments E, and E2 is identical. 

These conclusions are, of course, at odds with frequentist 

reasoning. The binomial and negative binomial distributions will tend to give 

different frequentist measures. For instance, a one-tailed significance test 

of HQ: ? = o" W1"11 91ve significance levels of a = .0730 and a = .0338 in the 
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THE LIKELIHOOD PRINCIPLE AND GENERALIZATIONS 21 

binomial and negative binomial cases, respectively, so, if significance at the 

a = .05 level was sought, one would either reject or not reject depending on 

the model. (See Lindley and Phillips (1976) for further discussion.) 

This example also evidences a consequence of the LP that will be 

discussed later, namely that the "stopping rule" is irrelevant when drawing 

inferences about ?. Here, it does not matter whether the stopping rule was to 

sample until the twelfth observation or until 3 zeroes were obtained; the data 

that 9 ones and 3 zeroes were obtained is all that should be relevant. 

It is interesting that even certain Bayesians would, at least for- 

mally, also espouse violation of the LP in this example. For instance, the 

noninformative (generalized) priors for ? that are recommended by Jeffreys 

(1961) are p?(?) 
? ?"*(1-?) % in the binomial case, and p2(?) 

? ?"*(1-?)" , 

in the negative binomial case. These will lead to different posterior distri- 

butions and hence (typically) different inferences, even when the likelihood 

functions are proportional. (See Hill (1974a) for further discussion.) 

EXAMPLE 10. Let X = {1,2,3} and ?= {0,1}, and consider experiments E, and E2 

which consist of observing X, and X2 with the above X and the same ?, but with 

probability densities as follows: 

w 

f}(xl) 

.90 

.09 

.05 

.055 

.05 

.855 

fg(x2) 

f^(x2) 

.26 

.026 

.73 

.803 

.01 

.171 

If, now, x, = 1 is observed, the LP states that the information 

about ? should depend on the experiment only through (fg?), f^l)) 
= (.9, .09). 

2 2 
Furthermore, since this is proportional to (.26, .026) = 

(fg(l), f^(l)), 
it 

should be true that x2 
= 1 provides the same information about ? as does x1 

= 1. 

Another way of stating the LP for testing simple hypotheses, as here, is that 

the experimental information about ? is contained in the likelihood ratio for 
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21.1 THE LIKELIHOOD PRINCIPLE 

the observed ?. Note that the likelihood ratios for the two experiments are 

also the same when 2 is observed, and also when 3 is observed. Hence, no 

matter which experiment is performed, the same conclusion about ? should be 

reached for the given observation. This example clearly indicates the start- 

ling nature of the LP. Experiments E. and E2 
are very different from a 

frequentist perspective. For instance, the test which accepts ? = 0 when the 

observation is 1 and decides ? = 1 otherwise is a most powerful test with error 

probabilities (of Type I and Type II, respectively) .10 and .09 for E., and .74 

and .026 for E2. Thus the classical frequentist would report drastically 

different information from the two experiments. (And the conditional frequen- 

tist is also likely to report E, and 
E2 differently; indeed, for 

E2 
it is hard 

to perform any sensible conditional frequentist analysis because of the three 

points and the widely differing error probabilities.) 

This example emphasizes a very important issue. It is clear that 

experiment E, is more likely to provide useful information about ?, as 

reflected by the overall better error probabilities. The LP in no sense 

contradicts this. The LP applies only to the information about ? that is 

available from knowledge of the experiment and the observed x. Even though E- 

has a much better chance of yielding good information, the LP states that the 

conclusion, once ? is at hand, should be the same, regardless of whether ? came 

from E* or E2- The conflict of the LP with frequentist justifications seems 

inescapable. (See also Birnbaum (1977).) 

Hill (1987a,b) discusses a number of important clarifications or 

qualifications of the LP. Several of these are discussed in depth later in the 

monograph, but it is perhaps pedagocically best to at least mention them here. 

The first has to do with the role of ?. As presented up until now, 

? represents only the unknown aspect of the probability distribution of X. For 

the bulk of the monograph we will confine attention to this case, it being the 
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THE LIKELIHOOD PRINCIPLE AND GENERALIZATIONS 21.2 

most familiar statistical situation. Often, however, there are unknowns which 

are relevant to a statistical problem but which do not directly affect the dis- 

tribution of X. One example is prediction, in which it is desired to predict 

an unknown random variable Z, after observing X. Other examples arise in 

design and sequential analysis problems, where as-yet-unobserved data can 

affect the decision to be made. Examples are given in Section 3.5. 

In general, therefore, the LP should be formulated in such a way 

that ? consists of all unknown variables and parameters that are relevant to 

the statistical problem. (Any attempt to precisely define "relevant to the 

statistical problem" would involve both decision theory and model formulation, 

and lead us too far astray.) The major difficulty with working in such gener- 

ality is that of defining what is then meant by a likelihood function for ? 

(cf. Bayarri, DeGroot, and Kadane (1987)). We have opted for discussing this 

general situation only in Section 3.5, though we believe that virtually all 

issues raised for the special case of ? being the model parameter also apply 

to appropriate formulations of the general situation. In any case, it is 

important to keep in mind the qualification that ? must contain all unknowns 

relevant to the problem for the LP to be valid in its simple form. 

A second qualification for the LP is that it only applies for a 

fully specified model {fQ}. If there is uncertainty in the model, and if one 
? 

desires to gain information about which model is correct, that uncertainty must 

be incorporated into the definition of ?. 

A third qualification is that, in applying the LP to two different 

experiments, it is imperative that ? be the same unknown quantity in each. 

Thus, in Example 9, we assumed that ? represented the same success probability 

in either the binomial or negative binomial experiment. In applying the LP to 

two different experiments, we also require that the choice of an experiment be 

noninformative (e.g. implemented by a chance mechanism not involving ?); 
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this might be violated if the experimenter chooses among possible experiments 

on the basis of prior beliefs. Informative experimental choices may be handled 

by the methods discussed in Section 4.2.7. 

Further elaboration and other qualifications will be introduced as 

we proceed. Understanding the limitations and the domain of applicability of 

the LP is almost as important as understanding its basis and implications. 

3.2 HISTORY OF THE LIKELIHOOD PRINCIPLE 

For a history of the concept of likelihood, see Edwards (1974). 

The name "likelihood" first appeared in Fisher (1921). Fisher made consider- 

able use of likelihood and conditioning concepts (cf. Fisher (1925, 1934, 

1956a)) and came close to espousing the LP in Fisher (1956a), but refrained 

from complete committment to the principle. Versions of the LP were developed 

and promoted by Barnard in a series of works (Barnard (1947a, 1947b, 1949)). 

Likelihood concepts were also employed by a number of other statisticians, 

cf. Bartlett (1936, 1953). 

The LP received major notice in 1962, due to Barnard, Jenkins, 

and Winsten (1962) and Birnbaum (1962a). Both papers (and the Discussions of 

them) contained numerous compelling examples in favor of the LP, and also 

provided axiomatic developments of the LP from the simpler (and more 

believable) concepts of sufficiency and conditional ity. Birnbaum's develop- 

ment is more convincing, and will be given in the next section. The work since 

then on the LP and its consequences is considerable, as can be seen from the 

references. Noteworthy general discussions can be found in Pratt (1965), Cox 

and Hinkley (1974), Dawid (1981), Barnett (1982), and especially Basu (1975). 

In fairness, it should be mentioned that Barnard came to support 

only a limited version of the LP and Birnbaum ultimately came close to 
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rejecting it. The reasons will be discussed in Sections 3.6.4 and 4.1, 

respectively. 

The above development is a brief history of the LP from a non- 

Bayesian perspective. The LP was always implicit in the Bayesian approach to 

statistics. This is because, if p(?) is a prior density for ?, then the 

posterior density is 

p(?|?) = 
p(???(?)/!??(?) 

(assuming m(x) = ?p? (?) > 0), which depends on the experiment only through 

??(?) (presuming that selection of p is independent of E and x). Since all 

Bayesian inference follows from the posterior, the LP is an immediate conse- 

quence of the Bayesian paradigm. Thus Jeffreys (1961) says 

"Consequently the whole of the information 

contained in the observation that is rele- 

vant to the posterior probabilities of 

different hypotheses is summed up in the 

values that they give to the likelihood." 

An important point here is that ?(?) is all that matters to a 

Bayesian, no matter what prior density p is used. It is tempting, therefore, 

to say that, if i (?) contains all the sample information about ? regardless 

of the known prior, then 
*?(?) should contain all the sample information even 

when the prior is unknown. 

The above relationship between the LP and Bayesian analysis should 

probably be qualified to some extent, in that it is possible to be a 

"frequentist Bayesian." One can believe that only frequentist measures of 

procedure performance have validity, and yet, because of various rationality 

or admissibility arguments, believe that the only reasonable procedures are 

Bayes procedures, and that the best method of choosing a procedure is through 

consideration of prior information and application of the Bayesian paradigm. 

The posterior distribution would provide a convenient mathematical device 

for determining the best procedure, from this viewpoint, but overall 
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24 THE LIKELIHOOD PRINCIPLE 

frequentist Bayes measures of performance, not posterior Bayes measures, would 

be the relevant measures of accuracy. The LP directly attacks this view, 

arguing that thinking "conditional Bayes," not "frequentist Bayes," is 

important. 

As somewhat of an aside here, there are two other reasons why 

Bayesians should be very interested in the LP. The first is that, in complica- 

ted real problems, Bayesians will often spend much of their time simply looking 

at likelihood functions and doing maximum likelihood analyses, due to calcula- 

tional complexities of a full Bayesian analysis. Emphasizing the importance of 

the observed likelihood function is thus to be encouraged. Finally, there is 

the very pragmatic reason that promoting the Bayesian position can often be 

most effectively done by first selling the LP, since the latter can be done 

without introducing the emotionally charged issue of prior distributions (see 

Berger (1984b)). 

3.3 BIRNBAUM'S DEVELOPMENT - THE DISCRETE CASE 

Birnbaum's (1962a) development of the LP from the intuitively 

simpler and more plausible concepts of sufficiency and conditional ity is 

formally correct only in the case of experiments with discrete densities (see 

Section 3.4.1). Since the discrete case is also the easiest to understand 

intuitively, we restrict ourselves in this section to a discrete sample space 

X. We carefully outline Birnbaum's argument, to allow easy dissection by those 

who find it hard to believe the conclusion. The mathematical style is kept 

fairly informal; rigor poses no problem because of the discreteness. 

3.3.1 Evidence, Conditionality, and Sufficiency 

By an experiment E, we herein mean the triple (?, ?, {fQ}), where 

the random variable X, taking values in% and having density fQ(x) for some ? 

in ?, is observed. (Because of the discreteness, the density can be assumed to 

exist, and we will take all subsets of ? to be measurable.) For simplicity of 

notation, ? and? will be suppressed in the description of E. Virtually all 

statistical methodologies require only the above information concerning an 
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experiment. (The "structural theory" of Fraser and the "pivotal theory" of 

Barnard deem additional information relating ?, ?, and the randomness to be 

important, however. This issue will be discussed in Sections 3.6.4 and 3.7.) 

The outcome of the experiment is the data X = x, and from E and ? 

we are to infer or conclude something about ? (or about something related to 

?). Following Birnbaum (1962a), we will call this inference, conclusion, or 

report the evidence about ? arising from E and x, and will denote this by 

Ev(E,x). We presuppose nothing about what this evidence is; it could (at this 

stage) be any standard measure of evidence, or something entirely new. (Since 

E is an argument, it could certainly be a frequentist measure.) Also, we do 

not preclude the possibility that Ev(E,x) depends on "other information," such 

as prior information about ?, or a loss function in a decision problem. The 

focus will be on the manner in which the "report" Ev(E,x) should depend on E and 

x. (Dawid (1977) prefers to talk about methods of inference based on E and x, 

and principles which these methods should satisfy. In a sense, by letting 

Ev(E,x) denote whatever conclusion one is going to report,.we are also taking 

this view, while keeping Birnbaum's notation.) As one final point, Ev(E,x) 

could be a collection of "evidences" about e, obviating the criticism that the 

LP is based on the assumption that a single measure of evidence exists. 

The Conditionality Principle essentially says that, if an experi- 

ment is selected by some random mechanism independent of ?, then only the 

experiment actually performed is relevant. (The selection mechanism is 

ancillary, so this is a version of conditioning on an ancillary statistic.) 

The general conditionality principle is not needed here. Indeed we need only 

the following considerably weaker principle, named by Basu (1975). 

WEAK CONDITIONALITY PRINCIPLE (WCP). Suppose there are tuo experiments 

1 2 
E-? = (X-ij T, {ff?}) and ?? 

= 
(Xp? T, {ff?})> where only the unknown parameter ? 

need be common to the two experiments. Consider the mixed experiment E*, 

whereby J = 1 or 2 is observed, each having probability p- (independent of T, 

?-,, or X2^ and experiment E, is then performed. Formally, ?* = (?*, T, {f?})> 
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26 THE LIKELIHOOD PRINCIPLE 

where ?* = 
(J,Xj) 

and 
f*((j,Xj)) 

= 
\ fJ(Xj). 

Then, 

Ev(E*, 
(j,Xj)) 

= 
Ev(Ej'Xj)' 

i.e., the evidence about ? from E* is just the evidence from the experiment 

actually performed. 

The WCP is nothing but a formalization of Example 2, and hence is 

essentially due to Cox (1958). It is hard to disbelieve the WCP, yet, as 

mentioned after Example 2, even the WCP alone has serious consequences. 

Turning finally to the familiar concept of sufficiency, we state 

the following weak version (named by Dawid (1977)). 

WEAK SUFFICIENCY PRINCIPLE (WSP). Consider an experiment E = (?, ?, ?^l), and 

suppose T(X) is a sufficient statistic for T. Then, if T(x,) = 
T(x2), 

EvU.Xj) 
= 

Ev(E,x2). 

The LP will be seen to follow directly from the WCP and WSP. A 

variety of alternate principles also lead to the LP (cf. Basu (1975), Dawid 

(1977), Barndoff-Nielsen (1978), Berger (1984a), Bhave (1984), and Evans, 

Fraser, and Monette (1985c, 1986)). The WCP and WSP are the most familiar, 

however. Another prominent principle is "Mathematical Equivalence," given in 

Birnbaum (1972). This principle is a weak version of the sufficiency principle, 

stating that if, in a given experiment E, f?(??) 
= 

^?(?9^ ^or a^ ?> ^en 

Ev(E,Xj) 
= 

Ev(E,x2). One could base the LP on mathematical equivalence, plus 

a minor generalization of the WCP. The weakening of sufficiency is carried to 

the ultimate in Evans, Fraser, and Monette (1986), which derives the LP solely 

from a generalized version of the conditionality principle. 

3.3.2 Axiomatic Development 

The formal statement of the LP is as follows. 

FORMAL LIKELIHOOD PRINCIPLE. Consider two experiments E, = (?,, ?, {ff?>) ond 

2 
Ep 

= 
(Xpj ?, {ff?})s where ? is the same quantity in each experiment. Suppose 

that for the particular realizations xt and x? from E, and E?, respectively, 
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*?*(?) 
= 

CV(?) 
?1 ?2 

1 2 
/or some constant c (i.e., M*?) = 

c^?(x?^ for a^1 ?^? y?zen 

Ev(Erx|) 
= 

Ev(E2,x*). 

LIKELIHOOD PRINCIPLE COROLLARY. If E = (?, ?, {fj) is an experiment, then ? 

??(?,?) should depend on E and x only through ? (?). 

THEOREM 1 (Birnbaum (1962a)). The Formal Likelihood Principle follows from the 

WCP and the SP. The converse is also true. 

Proof. If E, and 
E2 are the two experiments about ?, consider the mixed 

experiment E* as defined in the WCP. From the WCP we know that 

(3.3.1) 
Ev(E*,(jfXj)) 

= 
Ev?Ej.Xj). 

Next, thinking solely of E* with random outcome (J,X,h consider 

the statistic 

?(1ttfp 

if J = 2, X2 
= x* 

(J,Xj) otherwise. 

(Thus the two outcomes (l,x?) and (2,x?) result in the same value of ?.) ? is 

a sufficient statistic for ?. This is clear, since 

il 

if (j.xJ - t 
j 

0 otherwise, 

and 

Pg(X* 
- 

(l.xf)|T 
= 

(l.xf)) 
= 

1-?T(?* 
= 

(2,x|)|T 
- 

(l,xf)> 

- c/(l+c), 

all of which are independent of ?. The WSP thus implies that 

(3.3.2) Ev(E*,(l,xf)) 
= Ev<E*,(2,x*)). 
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28 THE LIKELIHOOD PRINCIPLE 

Combining (3.3.1) and (3.3.2) establishes the result. 

To prove that the LP implies the WCP, observe that, for E*, 

This is clearly proportional to fi(x,?), the likelihood function in E. when x. 
? J . J J 

is observed, so the LP implies that 

Ev(E*,(j,Xj)) 
= 

ME^Xj). 

To prove that the LP implies the WSP, it suffices to note that, if 

T(x-j) 
= 

T(x2) in an experiment for which ? is sufficient, then ?-, and 
x2 

have 

proportional likelihood functions. || 

Proof of the LP Corollary. For given x* ? X, define 

1 if X = x* 

0 if X f x*, 

and note that Y has distribution given by 

(3.3.3) fj(l) 
= 

fe(x*) 
= 

l-fJ(O). 

For the experiment E* of observing Y, it follows from the LP that 

Ev(E,x*) = Ev(E*,l). 

But E*, and hence Ev(E*,l), depend only on fJx*) = *?*(?) (using (3.3.3)). || D X 

The above results are worth dwelling upon for a moment. The LP is 

extremely radical from the viewpoint of classical statistics, as will be seen 

in Chapter 4. Yet to reject the LP, one must logically reject either the WCP 

or the WSP. But the WSP is, itself, a cornerstone of classical statistics, and 

there is nothing in statistics as "obvious" as the WCP (or Example 2). 

3.4 GENERALIZATIONS BEYOND THE DISCRETE CASE 

Basu (1975) and others have argued that the sample space ? in any 

physically realizable experiment must be finite, due to our inability to 

measure with infinite precision. This suggests that the Likelihood Principle 

for discrete experiments (as in Section 3.3) is all that one needs. We are 
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THE LIKELIHOOD PRINCIPLE AND GENERALIZATIONS 29 

philosophically in agreement with this. 

On the other hand, continuous and other more general probability 

distributions are enormously useful in simplifying statistical computations 

and in providing numerical approximations which are often quite accurate. It 

is possible for the likelihood function for a continuous model to differ 

strikingly from that of the discrete model it is intended to approximate, so 

U is not obvious that the validity of the LP in discrete problems extends to 

its validity in the approximating continuous problems. In any case, extension 

of the LP to more general situations can only strengthen its case. Such an 

extension is our task in the present section. 

As in Section 3.3, an experiment E = (?, ?, {PJ)will be understood 

to involve the observation of the random variable X, having probability distri- 

bution P. on ?, ? ? T. (It will not be necessary to assume the existence of 

a density.) There is, unavoidably, measure-theoretic mathematics in this 

section, but the section can be skipped, if desired, without any essential 

loss of continuity. 

The sample space ? will be assumed to be a locally-compact 

Hausdorff space whose topology admits a countable base (LCCB space, for short), 

and the PA will be assumed to be Borei measures. Of course, X often arises as 

an %-valued random variable on a probability space (?, 3, {?O}) equipped with 

a family of probability measures indexed by ? ? T. Such underlying structure 

will not be relevant in our analysis, however. 

3.4.1 Difficulties in the Nondiscrete Case 

In an experiment E = (?, ?, {P.}) for which there is an ? ? X 

satisfying ?O({?}) = 0 for every e ? T, it is difficult to assign any particu- ? 

lar meaning to nEv(E,x)". For example, Basu (1975) and Joshi (1976) have 

observed that a naive application of Birnbaum's (1962a) sufficiency principle 

would suggest for such an ? that Ev(E,x) = Ev(E,y) for every y e X, since the 

map ?: ? -? ? which takes ? onto y and leaves all other points (including y) 

fixed is sufficient for ?. This is particularly disturbing for continous 
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distributions, since then PQ({x})=0 for every ? e X and every ? e T; Birnbaum's 

sufficiency principle then suggests that all possible observations lend 

precisely the same evidence (and therefore none) about ?. 

The unique specification of a likelihood function causes similar 

problems. If there is no single s-finite measure ? on ? whose null sets 

coincide with those Borei sets ? for which PQ(N) = 0 for all ? ? T, then no ? 

likelihood function exists. This is the usual state of affairs in nonpara- 

metric problems (recall that T could be an arbitrary index set) and can even 

arise in simple parametric examples; for example, PQ(A) 
= 

j /*dx + 
j ??(?)> 

T = ? = [0,1], describes an experiment in which X= ? with probability j an(* 

is otherwise uniformly distributed over the unit interval; no s-finite measure 

? dominates {P }, and no likelihood function exists. (Incidentally, this seems 
? 

to be a source of confusion in certain "counterexamples" to the LP such as the 

second example in Section 2.5 of Birnbaum (1969).) 

Even in problems where there is a measure ? with the indicated 

properties, the Radon-Nikodym derivatives 

*?(?) 
= 

f0(x) 
= 

Pe(dx)/v(dx) 

are determined only up to sets of v-measure zero; these functions of ? could be 

specified in an entirely arbitrary manner for all ? in any set ? cz ? with 

v(N) = 0. One way to salvage a likelihood principle in the face of such 

ambiguity is to specify a particular version of PQ(dx)/v(dx) for each ?; for 
? 

example, in case a (v-almost everywhere) continuous density exists we could 

set ? = {open neighborhoods of ? ? ?] and put 

Ue) = inf sup (P ?U)/v(U)) 

V??x*?x 
UeV 

for ? in the support of ?, ??(?) 
= 0 otherwise. 

By restricting our attention to (v-almost everywhere) continuous 

densities, continuous sufficient statistics, etc. we could develop versions of 

the conditionality, sufficiency, and likelihood principles very similar to 

those in the discrete setting. 
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Instead we will develop versions of these principles applicable 

for all experiments, including those with discontinuous density functions and 

even those for which no likelihood function exists. The price we pay for such 

generality is that our conclusions will all be weakened by the qualification 

"for all ? ? X outside a fixed set ? with PQ(N) = 0 for all ?", which we shall 

abbreviate "for {Pa} a.e. x". It is important to note that ? will be unknown 
? 

to the statistician, and hence the only assurance that the actual observation 

? is not in ? is the faith that events of probability zero do not happen. This 

is, of course, a statement in the classical frequentist framework, but estab- 

lishing a version of the LP within this framework should, at least, be con- 

vincing to frequentists. 

3.4.2. Evidence, Conditionality, and Sufficiency 

As before, denote by Ev(E,x) the (undefined) evidential content of 

an observation ? in an experiment ? = (?, ?, {PA}). The following are the 

appropriate generalizations of the WCP and sufficiency principle for non- 

discrete experiments. 

WEAK CONDITIONALITY PRINCIPLE. Consider the mixture, E*, of two experiments 

El 
= 

(Xr ?> {??}) 
and E2 

= 
(X2* ?? {??})' defined as ?* = (?*, ?, {?*}), 

where X* = (J,X,), J = 1 or 2 (as E, is performed) with probability ? each 

(independent of ?), and 

P*(A) = 
\ pJ({Xi: (l,Xl) ? A}) + 

\ P^({x2: (2,x2) ? A}). 

Then, 

Ev(E*,(j,x.)) = Ev(E.,x.) for {P*} - a.e. (j,x.). 
J J J ? j 

If the sample spaces in E, and E2 are countable, we could delete 

"impossible" outcomes (i.e., x. for which P^(xJ = 0 for all ? ? ?) and dis- 
1 ? ? 

pense with the "{?*} - a.e." qualification above, thus recovering the discrete 
? 

WCP. 

A formal definition of sufficiency is as follows. Let 

E = (?, ?, {PQ}) be an experiment and ?: ? -+ j a measurable map from ? to 
? 
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another LCCB space j. The statistic ? determines a family {P } of Bore! 

measures on j* by 

pJ(A) 
= 

?T(?'1(?)), 

and hence an experiment ? = (?, t, {P_}). Unless ? is 1-1 we expect (in 

general) that E will tell us less about ? than E, since different outcomes 

x ? X with possibly different evidential import can be mapped onto the same 

T(x) ? j". The exceptional case is that in which ? is sufficient. 

DEFINITION. For the experiment E , suppose there exists a family {g. : t ? J"} 

of Borei probability measures on X satisfying 

P9(A)=/gt(A)pJ(dt)=/gT(x)(A)P6(dx) ?J A? 

for all Borei sets ha ?. Then ? is called "sufficient" (or sometimes 

"sufficient for ? "). 

Note that g. is not permitted to depend upon ?; otherwise g. = ? 

would always work. Any one-to-one measurable mapping ? is sufficient; just 

let g. be a point mass at T" (t) e X* 

The Sufficiency Principle makes precise the notion that T(x) in j 

tells as much about ? as ? in E; 

SUFFICIENCY PRINCIPLE (SP). If ?: X + ? is sufficient, then 

Ev(E,x) = Ev(ET,T(x)) for {P } - a.e. ? ? X. 

Again we may delete the impossible outcomes when ? is countable to 

remove the M{PA} 
- a.e." qualification and conclude that Ev(E,x) = Ev(E,y) 

? 

whenever a sufficient statistic ? satisfies T(x) = T(y), and so recover the 

discrete WSP of Section 3.3.1. 

3.4.3. The Relative Likelihood Principle 

Let E1 
= 

(Xr ?. {P]}) 
and 

E2 

and suppose (for motivational purposes) that each admits a likelihood function, 

Let E1 
= 

(X.J, ?. {P }) and 
E2 

= 
(X2, e, {P^}) 

be two experiments 
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i.e. a s-finite measure v. on the sample space %. and a family {f^(?)} of 
? ? ? 

integrable functions satisfying 

P?(A) 
= 

/fQ(x)v.(dx), Ac%.. 

The Likelihood Principle (were it to hold here) would assert that 

Ev(E-|,x.|) 
= 

Ev(E2,x2) 

1 2 
whenever Mx-i) = 

cfQ(xo) 
^or a^ ? ? T and some constant c = 

c(x..,x2) not 

1 2 
depending on ?, i.e. whenever the relative likelihood c = 

^(x-i)/^^) does 

not depend on ?. Our freedom to specify ^I(Xj) arbitrarily whenever 

v.({x.}) = 0 makes it clear that this principle needs reformulation before it is 

suitable for experiments with uncountable sample spaces. (However, at points 

?.| 
and 

x2 
which are atoms of v-, and 

v2, respectively, the LP is reasonable, and 

can be shown to follow from the WCP and SP as in Section 3.3.) 

To develop a suitable general principle, we generalize the concept 

that the relative likelihood of x?. and x2 is independent of ?. Basically, if 

a mapping exists between two subsets of ??* and X~ for which the Radon-Nikodym 

derivative of the induced measure with respect to the existing measure (on, say, 

Xyi is independent of ?, then we can establish an equivalence of evidence 

between the corresponding observations in the subsets. The reasons for 

generalizing the LP in this direction are: (i) It can be stated in great 

generality, without requiring models or densities; (ii) It will be shown to 

follow from the WCP and SP, as did the LP; and (iii) It, in turn, can be shown 

to imply (in substantial generality) the Stopping Rule Principle and Censoring 

Principle, besides having directly important implications of its own. The 

major limitation of the RLP (compared to the LP) is that it does not provide 

any such convenient summarization of evidence as the likelihood function (which 

need not exist in the general case). 

RELATIVE LIKELIHOOD PRINCIPLE (RLP). Let f: U-j 
+ 

U2 
be a Borei bimeasurable 

one-to-one mapping from U, c %. onto U2 
c x~t and suppose there exists a 

strictly positive function c o? Ui such that for all ? ? T? 

This content downloaded from 128.173.127.127 on Tue, 28 May 2013 20:57:09 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


34 THE LIKELIHOOD PRINCIPLE 

(3.4.1) Pq(A) 
= 

/ [l/c?x^?pjtdx^, AcU2. 

f"1(A) 

Then Ev(E1,x1) 
= 

Ev(E2, cpUj)) for {P]Q} 
- a.e. 

x] ? U]. 

Note that the RLP does not say anything for particular x,. Indeed, 

if x, has zero probability for all ?, then f could be defined arbitrarily at 

x, and still satisfy (3.4.1). Thus the RLP can only be interpreted in a 

pre-experimental sense: if f satisfies (3.4.1), evidentiary equivalence holds 

with probability one on U-j. Where f or U, come from is irrelevant. The 

following theorem shows that the RLP is indeed a generalization of the LP. 

THEOREM 2. For two experiments E] 
= 

(X^ ?, {Ph) and 
E2 

= 
(X2, ?, {?2}) with 

countable sample spaces devoid of outcomes impossible under all Q, the LP and 

the RLP are equivalent. 

Proof. Without loss of generality, we take the dominating measures v-. and v2 

to be counting measure on z, and?2, respectively, so the likelihood functions 

are f](x.) 
= 

P^({x.?}). First, assume the validity of the LP, and let 
?. ? ? ? 

P*(A) = 
/ Cl/c(x)]pJ(dx) 
f"1(A) 

for some f: U, -> IL and all Ac \] . Fix any x, ? U-. and set 
x2 

= 
f(??,), 

A = 
{x2>. 

Then 
f^(x2) 

= 
D/cU^Jf^Xj) 

for all ?, so the LP asserts that 

????-,,?^ 
= 

Ev(E2, f??^). 
1 2 

Conversely, assume the RLP holds, and suppose that ff?(x-j) 
= 

^?*?) 

for some x1 e Xy x2 ? %2, c > 0, and all ? ? T. Put U? 
= 

{x?,}, U2 
= 

{?2}, 

and define f: U-j 
-> 

U2 by f(?-|) 
= 

?2? (Note that we are free to choose Ujf U2, 

and f in any fashion compatible with the conditions in the RLP, but evidentiary 

equivalence need not hold on any null set.) Regard c as the constant value of 

a strictly positive function on IL. Then the RLP asserts that 

Ev(E1,x1) 
= 

Ev(E2, f(??)) for 
{P^} 

- a.e. x] ? U], 

i.e. that ??(?,,??) = 
Ev(E2,x2) (by hypothesis X, contains no point at which 
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THE LIKELIHOOD PRINCIPLE AND GENERALIZATIONS 35 

f (?,) vanishes for all ?, so the "{PQ} - a.e." qualification is 

unnecessary). || 

THEOREM 3. The WCP and the SP together imply the RLP. 

Proof. Let E, and E2 be two experiments, f a bimeasurable mapping from a Borei 

set U-| c^ 
onto LL c 

?^ 
and c: U-. -> (0,??) a measurable function satisfying 

Pf(A) 
= 

?? [l/c(x)]p](dx) 
f (A) 

for all Borei Ac IL,, all ? ? T. Let E* be the mixture of E, and 
E2, 

and 

define a mapping T: X* -+ ?* by 

(2,f(?1)) 
if i = 1 and 

?? ? U] 

?(?,??.) 
? 

(?,?^ 
else. 

This determines a new experiment E*T= (?, X*, ?pL?), where PMA) = P*(T" (A)). ? ? ? 

First we show that ? is sufficient. For each t = (i,x.) ? X* 

define a measure g. on ?* by 

gt(A) 

e? (A.) = e+(A) if i = 1 or ?, ? U5 

(cex (Aj) 
+ 

e? (A2))/(l+c) 
if i = 2, x2 ? \?v 

and 
x] 

= 
f"?(?2). 

Here c = c(x) and e ,e ,et 
denote the unit point masses at x-j 6 %-p x2 ? 22, 

t e X* respectively; A. denotes {x^ ?2^: (i ,xi ) ? A}. It is straightforward 

to verify that 

P*(A) = 
/gt(A)pJ(dt) 

for each Borei Ac ?*, so ? is sufficient. 

By the SP we can conclude that 

Ev(E*,(l,Xl)) 
= Ev(E*T,(2, ?{??))) 

and 

Ev(E*,(2,x2)) 
= 

Ev(E*T,(2,x2)) 

for {P'} - a.e. x, ? X^ 
and {P""} - a.e. x2 ? X^ 

In particular, for 
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36 HE LIKELIHOOD PRINCIPLE 

({Pq} 
- a.e.) XjG 

U, and 
X2 

= 
^(Xj) 

we have 

Ev(E*,(l,Xl)) 
= Ev(E*T, (2,x2)) 

= 
Ev(E*,(2,x2)). 

By the WCP we have 

??(?*,(1,??)) 
= 

Ev?E^) 
and Ev(E*,(2,x2)) 

= 
Ev(E2,x2), 

so we can conclude that 

EviE^Xj) 
= 

Ev(E2, ^(X;L)) 

for 
{Pj} 

- a.e. 
?? GUr || 

The RLP will be used in Chapter 4 to establish general versions of 

important consequences of the LP. Theorem 3 demonstrates that rejection of 

these consequences (and several are quite unpalatable from the frequentist 

viewpoint) implies rejection of the WCP or the SP. 

3.5 PREDICTION, DESIGN, NUISANCE PARAMETERS, AND THE LP 

3.5.1 Introduction 

The LP as stated above has the very important qualification that it 

does not apply if ? does not include all unknown quantities germane to the ex- 

periment or problem. For instance, in design or prediction problems the un- 

known future observation is obviously relevant, and yet is not necessarily a 

part of ? - the parameter defining the distribution of the observable X. A 

related difficulty is that, often, only a part of ? is really of interest, the 

remainder being a "nuisance" parameter. These issues are explored in this 

section. 

We begin by expanding the definition of ? to include unobserved and 

nuisance variables. Define 

? = (?;?) = (y,w;c,n), 

where ? = (y,w) is the value of an unobserved variable Z, with y being of in- 

terest and w being a nuisance variable, and where ? = (?,?) is the parameter 
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THE LIKELIHOOD PRINCIPLE AND GENERALIZATIONS 37 

that determines the distributions of both X and Z, with ? being of interest and 

? being a nuisance parameter. (We will purposefully remain vague on the defi- 

nition of "nuisance variable" and "nuisance parameter"; formal definitions could 

be attempted along decision-theoretic lines, but would take us too far afield.) 

To indicate that evidence about ? and y is desired from E we will write 

??? 
(E'X) 

for the evidence about ? and y from the observation of ? in an experiment E. 

Two difficulties arise in attempting to apply the LP in this more 

general context. The first is that this generalized ? is no longer just the 

parameter defining the distribution of X. Thus the definition in (3.1.1) of 

? (?) as the density of X given ? may no longer be a suitable definition. In- 

deed, if ? is conditionally independent of X given ?, then (by the definition 

of conditional independence) it can be shown that (3.1.1) becomes 

? (T) Sf (X) = f (X), ? ? ,a? ? 

which does not even involve z. The second difficulty is that the nuisance 

parameter, ?, will appear in this likelihood function even though it is not 

of interest. 

To resolve these difficulties and indicate the role of the LP, we 

will discuss alternative definitions of the likelihood function which bring out 

the role of important unobserved variables and suppress the role of nuisance 

parameters, and we will indicate under what circumstances these forms of the 

likelihood function may be substituted for the simple (3.1.1). 

3.5.2 Unobserved Variables: Prediction and Design 

The following example shows that a naive application of the LP can 

be misleading if future observations are of interest. 

EXAMPLE 11. We have available a sequence of observations X.. = 
(U.?, V..) 

(i = 1,2,...) where 
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38 THE LIKELIHOOD PRINCIPLE 

P(vi+1 
= ?|?. = 1) = 1/2, p(vi+1 

= o|v. = 1) = 1/2 

P(vi+1 
= i|v. = o) = o, p(y.+1 

= 0|V. = 0) = 1. 

(Define VQ 
= 1). When V. = 1, U.+1 will be independent of the previous U. 

with a 7?(?,1) distribution. When V. = 0, on the other hand, U.+, will be zero. 

(This would correspond to a situation in which a measuring instrument is used 

to obtain the important observation U., while V. tells whether the equipment 

will work the next time (V. = 1) or has irreparably broken (V. = 0)). 

Imagine that x,,...^ have been observed, and that v. = 1 for 

i = l,...,n-l. The likelihood function for ? is then given by 

n 1 
* U) = p f (u.) - a7?(u ,n l) density, x 

i=1 ? ? ? 

The LP thus says that the evidence about ? is contained in ? (?), and if we are 

stopping the experiment nothing else is needed. However, in deciding whether 

or not to take another observation, it is obvious that knowledge of ? is 

crucial. If ? = 1 it may be desirable to take another observation, but if 

? = 0 it would be a waste of time (since the measuring instrument is broken). 

This example is related to a limitation of sufficiency (cf. Bahadur (1954)). 

The apparent failure of the LP in'Example 11 is really the failure 

to include all unknowns in the specification of ?; only ? is included. For 

this problem the next observation, X - (and perhaps further observations), are 

also important unknowns. And the likelihood function for this future obser- 

vation and ? does depend on ? . Examples such as this have often been touted 

as counterexamples to the LP. There are at least two possible replies. 

The first possible response is to simply exclude problems involving 

such unobserved ? from consideration. This was essentially the tack we took 

earlier in the monograph, motivated by a desire for simplicity of exposition. 

This response is clearly not very satisfying. 
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THE LIKELIHOOD PRINCIPLE AND GENERALIZATIONS 39 

A second possible response is to redefine the likelihood function 

so as to incorporate Z. In the first edition of this monograph it was essen- 

tially suggested that one define the likelihood function for ? = (?,?) = 

(y, w; ?, ?) to be 

(3.5.1) ??(?) 
= 

f(c>Ti) 
(x,y,w); 

this is, of course, just the joint density of (X,Z) given the parameter 

? = (?,n), but here it is to be considered a function of the unknown ? = (?,?) 

when the observed value X = ? is inserted. Such redefinition of ??(?) indeed 

works, in the sense that the LP will still then apply and be derivable from 

appropriate versions of the Conditionality Principle and Sufficiency Principle. 

We have not carefully investigated this, however. (It should be emphasized 

that (3.5.1) is not the density of X, given ?, so that this likelihood function 

is quite different from (3.1.1). For Bayesians, the distinction is whether to 

include the unobserved variable ? as part of the model parameter or as part of 

the observation; we will argue in the next section that it makes no difference.) 

While (3.5.1) can be used to establish the LP in this more general 

context, it has certain practical limitations as a definition of likelihood. 

The most serious limitation is that it must be utilized very cautiously. 

Common techniques such as maximxm likelihood can often be disastrous if 

applied directly to this ? (q). For examples, see Bayarri, DeGroot and Kadane 

(1987); henceforth, BDK. 

A related objection to (3.5.1) is that its definition is, in a 

sense, quite arbitrary. Extensive discussion of this point can also be found 

in BDK, with many examples. It is a point with which we essentially agree but, 

following Berliner (1987), view as tangential to the LP. The LP leaps into 

action after ?, ?, ?, and ??(?,?) have been defined, and X = ? observed. The 

process of getting to this point is inherently vague and rather arbitrary; 

but that doesn't alter the fact that, having reached this point and assuming 

that the model is correct, all information about ? = (?,?) is contained in 

(3.5.1) for the given data. 
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40 THE LIKELIHOOD PRINCIPLE 

While (3.5.1) is thus formally satisfactory for use in the LP, the 

practical difficulties surrounding its use and definition suggest looking for 

an alternative "likelihood function." A very appealing possibility is present- 

ed in Butler (1987), discussion of which we defer to the next section. Among 

the many other references discussing likelihood for unobserved variables 

(typically in prediction) are Geisser (1971), Kalbfleisch (1971), Lauritzen 

(1974), Aitchison and Dunsmore (1975), Hinkley (1979), and Butler (1986). 

Design problems deserve special emphasis. Before the experiment is 

conducted, X itself is the unobserved variable, and should hence be identified 

with ? in the above formulation. (In sequential or multistage experiments, at 

each step or stage the previously taken observations are x, while the future 

observations are Z.) The LP does not forbid averaging over unobserved vari- 

ables, and so does not formally contraind?cate use of many classical design 

criteria. For instance, the LP does not say that it is wrong to choose the 

sample size in a testing problem by consideration of type I and type II error 

probabilities. (Of course, after the data have been taken, the LP would 

argue against use of these pre-experimental error probabilities as measures of 

evidence for or against the hypotheses.) 

While not disallowing the use of classical design criteria, the 

LP can have a substantial practical effect on design; a proponent of the LP 

(i.e. a conditionalist) would want to design an experiment so as to have a 

high probability of obtaining accurate conditional (post-experimental) conclu- 

sions, rather than mere pre-experimental frequentist assurances of accuracy. 

The difference in viewpoint can be significant in that the conditionalist can 

be more flexible in his approach to design, often simply sampling data until 

enough (conditional) evidence has been accumulated. By the Stopping Rule 

Principle (discussed in Section 4.2 and shown to be a consequence of the LP) it 

is quite valid for the conditionalist to employ such stopping rules of conven- 

ience. A frequentist analysis, on the other hand, requires that the probabili- 

ties of stopping for each possible reason be known at the outset, and that all 

these stopping probabilities be incorporated in the analysis. 

This content downloaded from 128.173.127.127 on Tue, 28 May 2013 20:57:09 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


THE LIKELIHOOD PRINCIPLE AND GENERALIZATIONS 41 

Similarly the LP gives little guidance in assessing the overall 

performance of a decision procedure d. Such an assessment might be desired in 

quality control and other situations where a particular procedure will be used 

repeatedly. Thus suppose one faces a sequence of problems ?. ^ ? , on each of 
? ?. 

which a certain procedure d will be used. Evaluation of the procedure d will 

typically involve some type of average over the sample space because future 

observations X. are unknown; as with design problems, however, this in no way 

contradicts the LP. (The LP does, of course, say that it is wrong to report 

such procedure performance assessments as the evidence about a particular ?. 

upon observing a particular x.). See Section 4.1 for further discussion. 

3.5.3 Nuisance Variables and Parameters 

When ? = (?,?) with ? a nuisance variable, the LP says that all 

evidence about ? is contained in the likelihood function ??(?); it seems 

reasonable to interpret this broadly enough to infer that ??(?) 
should also 

contain all evidence about the part ? of ?. This can be made formal through the 

NUISANCE VARIABLE LIKELIHOOD PRINCIPLE. Since evidence about ? depends on E 

and x only through & (?), ?? (?,?) also depends on E and x only through x ? 

? (?). More generally when ? = (y,w;?,n)j where y and ? are the important 

unobserved variables and unknown parameters while w and ? are nuisance vari- 

ables and parameters, ?? r (?,?) depends on E and X only through ? (?) 
y >s ? 

as defined in (3.5.1). 

With this amendment, the LP says that ?? (?,?) (or more generally 

Ev r(E,x)) involves E and ? only through ?(?) = ? (?,?) (or more generally 
y*s ? ? 

* (?) = 
?x(y5w;c,n)), 

but does not say what to do about ? (or (w,n)); the LP 

does not say how to interpret ??(?) 
so as to isolate the evidence about y and 

?. While this formally falls in the domain of "utilization of the likelihood 

function," a topic that we are avoiding,a brief discussion of certain methods 

of dealing with such nuisance quantities is desirable. 
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The first key observation is a formal ization of the suggestion in 

Butler (1987) for dealing with nuisance variables or parameters that have known 

distributions: 

MARGINALIZATION PRINCIPLE: If the distribution of an unobserved nuisance vari- 

able or parameter is given, form a marginal likelihood function from the joint 

density of X and the nuisance variable or parameter by simply integrating 

out the nuisance variable or parameter in this joint density. 

The first step in this marginalization process can always be done; 

w can be immediately eliminated (if present) because ??(?) 
= 

f( \(x,y,w) 

specifies its distribution. Thus ? (?) can be reduced to 

?*^>?,?) = 
/ f^,n)(x>y'w) 

dw? 

A further marginalization step can be taken when the distribution 

12 2 
of ? (or part of ?) is given. Thus if n = (n ,n ), and it is given that ? has 

2 ? 
density p(? |?,? ), the likelihood function can be further marginalized to 

(3.5.2) ^(?,?,?1) 
= J f(?,ri)(x^?w) 

p(?2|?,?1) dw dn2. 

EXAMPLE 11.1. Consider the random effects problem where 

9 9 9 
the e.. being i.i.d. 7?(?,s ) and the ?. being i.i.d. 7?(y,x ); here s , y, and 

2 
t are unknown. Suppose that interest centers on the "hyperparameters" 

2 1 9 9 
? = (?,t ). Then the parameters ? = s and ? = (?,, n2,..., ?,) are nuisance 

? 9 
parameters, and the distribution of ? is given. Indeed p(? |?) is 

2 t 
7?j(ij1,t l)9 where ? 

= (?,.,.,?) and ? is the identity matrix. A standard cal- 

culation (cf. Berger (1985)) then yields for (3.5.2) (note that (y,w) is not 

present here) 
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THE LIKELIHOOD PRINCIPLE AND GENERALIZATIONS 41.2 

^(?,?1) 
= )1*(?,t2,s2) 

? 2 
exp{- ? (?G?)2/[2(t2+ 2?)]} exp{-s2/(2o2)} 

i=l 
? J 

(t2**2^)1'2 a1""" 

J 9 ? 9 
where ?. = V ?../J and s = S S (?.. - ?.) . 

1 
j=l 

1J ij 
1J n 

The suggestion to use (3.5.2) as the likelihood was made in Butler 

(1987) to answer the criticisms in Bayarri, DeGroot, and Kadane (1987) concern- 

ing the arbitrariness and difficulty in use of the likelihood defined in 

(3.5.1); use of (3.5.2) seems to be quite successful in this regard. We 

support using (3.5.2) as the "practical" definition of likelihood, noting that 

it is fully consistent with our preferred (see Chapter 4) Bayesian approach to 

utilization of ?(?)? Most non-Bayesians would also probably approve of 

(3.5.2) as the definition of likelihood; failure to do so leaves one open to 

the serious criticisms in Bayarri, DeGroot, and Kadane (1987). It is also 

probably true that a version of the LP based on (3.5.2) could be shown to 

follow (with certain qualifications - cf. the comments at the end of the 

section) from versions of the Conditionality Principle and Sufficiency Princi- 

ple. We have not looked into the matter, however. 

Use of (3.5.2) does not completely solve the nuisance parameter 

problem, of course, because ?*(y,?,n ) still depends on the nuisance parameter 

n . There is, unfortunately, no "consensus" approach to elimination of ? . In 

the remainder of the section, a brief introduction to some of the proposed 

methods for elimination of ? will be given. 

The Bayesian approach to the problem is conceptually straightfor- 

ward. One simply determines p(? |?), the conditional prior density of ? given 

?, and calculates the reduced likelihood function 

(3.5.3) i\(y,i) 
= J ^(?,?,?1) p?p^?) dn1. 

The product of this and the marginal prior density, p(?), will be proportional 
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? 
to the posterior distribution of (y,K) given x, so that ? (y,?) clearly suffices 

for the Bayesian. A strong case can be made that even the non-Bayesian condi- 

tionalist should operate by using (3.5.3), with p(? |?) chosen to be some 

"noninformative" prior density for ? given ?. Presentation of this case would, 

unfortunately,take us too far afield. 

The most common non-Bayesian approach to elimination of n is 

through maximization: i.e., consideration of 

\(y,0 
= sup ?,^,?,p1). 

?* 

The dangers in use of ? have been well-documented and have resulted in a 

search for alternative methods (see Section 5.2 for references). 

Alternative non-Bayesian methods typically approach the problem of 

eliminating ? through ideas of partial or conditional likelihood. The idea of 

partial likelihood (cf. Kalbfleisch (1974), Sprott (1975), Cox (1975), Dawid 

(1975, 1980), Barndorff-Nielsen (1978, 1980), Hinkley (1980), and Kay (1985)) 

is to factor the likelihood as (ignoring, for simplicity, future observations 

? = (y,w) and the possibility that part of ? has a known distribution) 

(3.5.4) ??(?) 
= 

?Ju) *?(?,?), 

1 2 and then to work with ??(?) exclusively. This is successful when ? does not 

contain much information about ?, or when the information is very hard to 

extract because of high variation due to ?. It is particularly attractive in 

2 the special case (to which we return in Chapter 4) in which ? contains no 

information about ?, i.e. in which 

(3.5.5) ??(?) 
= 

i\U) *x(n). 

This arises when an ancillary statistic ? exists for ?, ancillary in the strong 

sense that 

yx) 
= 

9?(?|?) hn(T); 
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(3.5.5) is then immediate. (Other, broader, definitions of ancillarity also 

appear in the literature, but lead to expressions as in (3.5.4) rather than 

(3.5.5). Also, attempts have been made to find approximate decompositions of 

the form (3.5.5); cf. Hinde and Aitkin (1986).) 

EXAMPLE 12. Suppose E consists of observing 

X = 
((Y1.Z1),...,(Yn,Zn)), 

where the (?.,?.) are i.i.d. pairs having a common bivariate normal distribu- 

tion with unknown mean (uY,y7) and covariance matrix 

??? s12\ 

\s12 s22/ . 

2 
Of interest is the regression of Y on Z; thus interest centers on ? = (a,3,t ), 

where 

2 

? ? s12 2 ? (?12) ? a - 
?? 

- 
"V ? - 

t? 
t - 

s??(1 
- 

^/' 

2 
since ?(?.|?.) 

= a+??. and t is the conditional variance of Y. given !.. 

Letting ? = 
(??, ?^, an* s?25 s22^' ? = 

^s22' ??^' 
and 

? = (?,,...,? ), a standard calculation gives 

Vx>-^ exp{-72 1 ^-??^^-^?pi-?iri^V? t 2t 1=1 s0? 22 1 = 1 

= 
9?(?|?)??(?). 

Thus (3.5.5) is satisfied (and, indeed, ? is ancillary for ?). 

It seems natural, when (3.5.5) holds, to state that all evidence 

about ? available from E and ? is summarized in ??(?). Thus, in Example 12, 

it seems natural to base the regression analysis on g (x|T), the conditional 

distribution of the Y. given the observed z.. This is, indeed, virtually 

always done in regression; the ??? are treated as nonrandom, i.e., are 
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conditioned upon. 

Basing the analysis only upon ?(?) is not always justified. If 

2 
knowledge of ? would communicate information about ?, then ? (?) cannot, 

theoretically, be ignored. (For practical reasons, however, one might 

frequently ignore such information - see Section 4.5.4) The most natural 

way to rigorously state this is in terms of Bayesian analysis: if ? and ? 

are apriori independent, then ? (?) contains no information about ?. This is 

clear, since then (3.5.3) becomes (ignoring y) 

^(?) 
= J i\U) ^(n) ir2(n) dn ? 

r?U). 

The standard conditioning on the z. in Example 12 is thus rigorously 

justifiable only when yz and s22 are felt to be apriori independent of a, ?, 

2 
and t , a reasonable assumption in many situations. 

Although Bayesian reasoning provides the intuitive basis for 

stating that a nuisance parameter carries no information about ?, we will 

sidestep the issue and simply give an operational definition compatible with 

the LP. 

DEFINITION. Suppose E is such that (3.5.5) is satisfied. Let E be the 

"thought" experiment in which, in addition to ?, ? is observed. Then ? is a 

noninformative nuisance parameter if ?? (E , (x,n)) is independent of ?. 

NONINFORMATIVE NUISANCE PARAMETER PRINCIPLE (NNPP). If E is as in (3.5.5) and 

? is a noninformative nuisance parameter, then 

???(?,?) 
= 

???(?\(?,?)). 

The NNPP states the "obvious," that if one were to reach the 

identical conclusion for every ?, were ? known, then that same conclusion 

should be reached even if ? is unknown. This principle will be used in the 

discussion of random stopping rules and random censoring in Chapter 4. 
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As a final qualification, it should be noted that each of these 

methods for suppressing the role of nuisance parameters is only applicable when 

a decision or action is to be taken on the basis of evidence already recorded, 

and no further taking of evidence is contemplated. For example, the Likelihood 

Principle does not imply that the Bayesian's reduced likelihood function, 
D 

yy>?)> 
summarizes all evidence from an experiment E about a parameter of 

interest ? and an unobserved variable of interest y, if that evidence must 

later be combined with other evidence from further trials also governed by the 

same nuisance parameter ?. Future observations may offer new evidence about 

the joint distribution of ? and ?; by integrating away (or by maximizing away) 

the nuisance parameter ? we would lose the chance to use that new evidence to 

transform present evidence about ? into evidence about ?. Thus, in Example 11.1, 

2 2 
it would not suffice to carry along only ?*(?,t ,s ) if additional replications 

x.. (for i = ?,.,.,?) were to be obtained at a later time. Even if future 
? j D 

observations will not be taken, a Bayesian could not report ?XU) as a complete 

summary of the evidence to another Bayesian who might use a different condition- 

al prior p(? |?); despite the nuisance, the entire likelihood function 

?*(?,? ) must be reported in order to convey all information. 

3.6 CRITICISMS OF BIRNBAUM'S AXIOMATIC DEVELOPMENT 

Birnbaum's axiomatic development of the LP has been subjected to 

considerable scrutiny. Errors in Birnbaum's arguments did exist, as was men- 

tioned in Section 3.4.1 (see also Birnbaum (1972), Basu (1975), Joshi (1976), 

and Godambe (1979)), but these errors were correctable and did not affect the 

basic truth of the arguments. Also easily handled are certain criticisms of 

the LP arising from its misapplication or misinterpretation. Several such 

misapplications and misinterpretations have already been mentioned; for 

completeness we restate them here. 
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(i) The LP applies only when ? includes all unknowns relevant to 

the problem. For design, prediction, sequential analysis, meta-analysis, and 

in many scenarios, the important unknowns often include more than just ?, 

the unknown parameter of the probability model. But the LP can be reformu- 

lated to include such unknowns; see Section 3.5. 

(ii) Sometimes a frequentist measure of the performance of a pro- 

cedure - such as a sampling inspection plan or a diagnostic test - is specified, 

by contract or law, to be of primary interest. Then, of course, the LP (when 

stated for ? alone) does not apply. 

(iii) There can be ambiguities in the definition of the likelihood 

function. The problem can usually be resolved, however, by the approaches 

discussed in Sections 3.4 and 3.5. 

(iv) There can be situations in which the choice of experiment 

conveys information about T. For instance, one might judge that the experimen- 

ter never would have chosen the given experiment unless he suspected that, say, 

? was small. The LP will still then apply, in the sense that the experimental 

evidence is still contained in ? (?); it is just that one will then have addi- 

tional evidence provided by the choice of experiment. (In a sense, the choice 

of experiment should be treated as additional data.) 

(v) There are periodically attempts to prove the LP wrong by ar- 

guing, in a given example, that a particular likelihood-based method (e.g., 

maximum likelihood estimation) gives a bad result. But the LP prescribes no 

particular method for utilization of ? (?). This issue is extensively discussed 

in Chapter 5. 

(vi) The LP does not apply to the information conveyed about dif- 

ferent parameters from different experiments. It may be tempting to say that, 

if E, is binomial (?,?,) and E2 is binomial (?,?2) and 10 successes (or ones) 

are observed in each of the experiments, then since the likelihood functions 
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for the two situations are the same (as functions), one should reach the same 

conclusions about T-. and 
?2? But the LP does not say this; it applies only 

when e, and 
?2 are the same parameter, i.e., are physically or conceptually 

the same quantity. 

There have been a number of criticisms directed at the explicit and 

implicit principles used in Birnbaum's development of the LP. We address these 

criticisms in this and the following sections. 

3.6.1 The Model Assumption 

The most frequently expressed criticism of the LP is that it is 

supposedly very dependent on assuming a particular parametric model with a 

density for X; since models are almost never known exactly, it is felt that 

the LP is only rarely applicable. It is, of course, easy to criticize almost 

any statistical theory for being model dependent, but let us examine the 

issue seriously anyway. 

The first point to note is that, even if there are various 

possible models under consideration, the LP still says that the information 

in the data, for any possible model, is contained in the likelihood function 

for that model. The evidence conveyed by the data certainly changes as 

different models are considered, but the likelihood functions should still be 

considered the vehicles of this evidence. 

To be more formal about this, we need only recall that ? need not 

be restricted to being a typical parameter, and indeed can represent various 

models. The situation of discrete X is easiest to see: thus, if 

X = fx-iiXo????}? we could simply let ? = (?-,,?,,,...) denote a point on the 

infinite dimensional simplex 

T = ??: 0 <_ ?. <_ 1 and le. 
= 1}, 

and define 

W 
? 

? 

Then {PI is the class of all probability distributions on ?, and the LP 
? 

applies to this completely nonparametric setup, as well as to any situation 
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where a restricted class of models (corresponding to some subset of ?) is 

considered. Of course, we will usually only be interested in some function 

?(?), but if all the evidence about ? is contained in the likelihood function, 

then the same should be true of ?(?). The argument in Section 3.4 in favor of 

considering only discrete situations (in foundations) thus indicates that the 

LP always applies. 

Even in continuous situations, there is no need to tie the LP 

to restrictive parametric models. For instance, consider the following example. 

EXAMPLE 13. Suppose X,,...,X are i.i.d. observations from some distribution, 

known to have a density (with respect to a given measure v), but otherwise 

unknown. Let T be the set of all such densities, so that the density of 

X = 
(Xr...,Xn) 

is 

? 
f (?) = p ?(?,). ? 

1 = 1 
? 

For instance, this would be the situation if the x. were known to have a 

distribution with a continuous density with respect to Lebesgue measure on a 

Euclidean space. Thus a likelihood function does exist in such nonparametric 

situations, and the LP (more properly the heuristic LP discussed in Section 

3.4.1) would apply. "Robustness" problems typically fall into the setting 

where a subset of T (say, all densities close to some prescribed parametric 

family of densities) is under consideration. Again, the LP will usually apply. 

It can be argued, of course, that one may be dealing with a 

general non-dominated family {P } or, alternatively, that the LP does not 
? 

really apply to the nondiscrete case, but there is still the RLP to contend 

with. Again, ? could just be used to index the distribution, so the RLP will 

essentially always be applicable, yet it is inconsistent with frequentist 

reasoning and will be seen to yield strong conclusions such as the Stopping 

Rule and Censoring Principles. In conclusion, therefore, although the LP is 

usually stated in terms of a particular parametric model with densities, it 

(or its generalizations) are essentially always applicable. (Implementing the 
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LP can, of course, be much more difficult in nonparametric situations, as will 

be discussed in Chapter 5.) 

3.6.2 The Evidence Assumption 

A less common criticism of Birnbaum's development is the question- 

ing of the existence or meaning of Ev(E,x). As noted in Section 3.3.1, however, 

this can have essentially any interpretation (initially) and need not consist 

of any single measure, so it is hard to see the force of this objection. 

3.6.3 The Weak Conditionality Principle 

A possible point of criticism is the Weak Conditionality Principle. 

Indeed, a committed frequentist might well reject this principal, saying it is 

based on the erroneous belief that one can obtain evidence (in the intuitive 

sense) about a particular ? from a particular experiment (cf., Neyman (1957, 

1977)). Instead, the argument goes, one can only state the performance of a 

procedure that will be used repeatedly, and this should (or at least could) 

involve averaging over both E-, and E2. In a sense, this position is logically 

viable. Its scientific desirability is very questionable, however, as Example 

2 in Section 2.1 illustrates. This issue will be discussed further in Section 

4.1. 

Durbin (1970) raises the point that if the Weak Conditionality 

Principle is allowed to apply only to conditioning variables which depend 

solely on a minimal sufficient statistic, then the LP does not follow. (This 

is because, in the proof of Theorem 1, the conditioning statistic, J, is not 

part of the minimal sufficient statistic when the two likelihood functions are 

proportional. Sufficiency says "discard J," after which it is clearly 

impossible to condition on J.) No plausible reason has been advanced for so 

restricting the Weak Conditionality Principle, however, and the idea seems 

unreasonable as a reexamination of Example 2 shows. 

EXAMPLE 2 (continued). Let x~ denote the outcome of the California experiment, 

and suppose that there was some possible outcome xN 
of the New York experiment 
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for which ? (?) would have been proportional to ? (?). Then, in the mixed 
XC XN 

experiment E*, the outcomes x~ and 
x^ would be identified by a minimal suffi- 

cient statistic, precluding application of the restricted WCP. If, however, 

there was no xN, then conditioning on the California experiment would be 

allowed. Thus, by Durbin's argument, whether or not onechooses tocondition on 

the actually performed California experiment with observation x~ would depend 

on the existence, or lack thereof, of an observation x^, 
in the unperformed 

New York experiment, having a likelihood function proportional to that of Xp. 

Such dependence of conditioning on the incidental structure of an unperformed 

experiment would be rather bizarre. 

Other rejoinders to Durbin's criticism can be found in Birnbaum 

(1970) and Savage (1970). Savage invokes a "continuity" argument, showing 

that following Durbin's restricted WCP can involve drawing substantially 

different conclusions when a problem is changed in an insignificant way (such 

as slightly perturbing the likelihood function of x^ above). 

3.6.4. The Sufficiency Principle 

Surprisingly, the most common and serious axiomatic criticisms of 

the LP are those directed at the Sufficiency Principle. This may seem strange, 

sufficiency being such a central part of classical statistics, but issues can 

be raised. 

The first issue is a valid limitation of the SP: if one faces a 

decision in which the consequences (or loss) depend on x, and not just on the 

action taken and unknown ?? then the SP need not be valid. Such situations 

are relatively rare, however, and could be handled with a reformulation of the 

LP to the effect that Ev(E,x) should depend on ??(?) and ?. 

A second issue, raised by Kalbfleisch (1974, 1975), is that the LP 

does not follow from the WCP and SP if sufficiency is not allowed to apply to 

simple mixture experiments. The problems with such a restriction of sufficiency 

are that (i) It seems artificial, there being no intuitive reason to restrict 

sufficiency to certain types of experiments; (ii) It is difficult and perhaps 
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impossible to clearly distinguish between mixture and non-mixture experiments 

(cf. the discussion in Kalbfleisch (1975)); (iii) Mixture experiments can of- 

ten be shown to be equivalent to non-mixture experiments (cf. Birnbaum (1962a)), 

making the distinction seem unreasonable; and (iv) In almost any situation, 

behavior in violation of sufficiency can be shown to be inferior (see Section 

3.7). Evans, Fraser, and Monette (1986) contains further discussion. 

The most serious criticism of the SP comes from ideas of Barnard 

(cf. Barnard, Jenkins, and Winsten (1962), Barnard (1980, 1981), Barnard 

and Godambe (1982), and the discussions in Birnbaum (1962a), Basu (1975), and 

Wilkinson (1977)) and Fraser (cf. Fraser (1963, 1968, 1972, and 1979)). They 

question the "sufficiency" of representing the experimental structure solely 

in terms of probability distributions on the sample space indexed by the 

unknown T; Dawid (1977) called this the Distribution Principle (DP). The 

criticism of the DP (and hence the SP) is that there may be important infor- 

mation lost concerning the relationship between ?, ?, and the "randomness" in 

the problem. (An important observation is that, while relevant to the LP, 

this criticism is not relevant to certain of the most controversial relatives 

of the LP, such as the Stopping Rule Principle; cf. Dawid (1986).) 

This criticism turns out to be quite difficult to answer, striking 

at the core of virtually all approaches to statistics. One response is to 

attempt an axiomatic development of the LP which incorporates "structural" 

information. Such a development can be found in Berger (1984a), but is some- 

thing of a failure, containing a suspect axiom from the above viewpoint. Also 

in Berger (1984a), therefore, the issue is addressed from the viewpoint of 

coherency and admissibility; it is shown that incorporating "structural" in- 

formation in violation of sufficiency results in inferior behavior. These 

arguments are familiar, but because of the importance of the issue and the 

bearing these arguments have on any proposed violation of the LP, they are 

reviewed in Section 3.7. (Evans, Fraser, and Monette (1986) also contains 

relevant discussion.) Incidentally, the need to resort to coherency and 

admissibility bears out I. J. Good's discussion of Birnbaum (1962a), that 
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derivation of the LP via the WCP and SP is mainly a ^oolologlaal contribution 

to statistics, since Bayesian coherency axiomatics would give the LP directly. 

While agreeing, we feel that the sociological contribution is very substan- 

tial; many people will (for whatever reasons) accept the WCP and SP, yet 

resist the LP. 

In the remainder of this section, we briefly outline the objection 

to the SP that is raised in the theories of Pivotal Inference (cf. Barnard 

(1980, 1982) and Barnard and Sprott (1983)) and Structural Inference (cf. 

Fraser (1968, 1972, 1979)). The key idea is that it may be known that 

X s h(e,u>), 

where ? is an unknown random quantity taking values in O according to a known 

distribution Q, and h is a known function from T ? O + ?. (Often in 

Structural and Pivotal inference, Q is known only to belong to some class 2 . 

For simplicity, we assume Q is known.) This is actually more or less the 

"structural" formulation of the problem. The formulation in Pivotal Inference 

is based on "pivotais" ? = g(X,e) having known distributions. Typically g 

will be an appropriate inverse function of h, so the two approaches are very 

related. We will, for the most part, consider the structural formulation, 

although comments about differences for the pivotal model will be made. The 

structural model is sometimes called a functional model (cf. Bunke (1975) and 

Dawid and Stone (1982)), but we will stick with Fraser's original term. The 

following example, from Fraser (1968) (and related to an example in Maul don 

(1955)), illustrates the key issue. 

EXAMPLE 14. Suppose X = 
(???2), 

? = 
(s?,t,?), 

and ?? is bivariate normal 

with mean zero and covariance matrix 

ts1 

* = 
? ts, (?f2) 

This could arise from either of the following two ?tuicturuL? models: 
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(i) ? = 
(?-|>?2) 

is bivariate normal, mean zero and identity covariance matrix, 

and 

(3.6.1) X = 11(69(1)) = (s-??-?, t?-?+f??); 

(ii) ? is the same but 

(3.6.2) X = ??*(?,?) = 
(t'??+f'?2, s-^??.), 

? 2 
where 

s2 
= /t +? , t' = 

a^t/?^ 
and F1 = 

s]F/s2? 
In Pivotal Inference, one 

would write (3.6.1) and (3.6.2) as 

(3.6.1)' ? = 
(?-??2) 

= 
(X-j/s^, (?2~t?^/s^)/f), 

(3.6.2)' ? = 
(?15?2) 

= 
(\/?? (?,-t'?^s^/f'), 

and 
?-j 

and 
?2 

would be the pivotais with known distribution upon which the 

inference would be based. In pursuing this example later we will assume that 
1 ? 

independent observations X ,...,X from the model are taken, giving the 

p -? t i 
"sufficient" statistic S = 

\ (? G??1), which has a Wishart (n, \) distribu- 
iti 

tion. 

In the above type of situation, which we will call a P-S (for 

Pivotal-Structural) situation, an experiment is specified by 

E = (?, ?, h, ?, Q). As in Example 14, one could have a single probability- 

modeled experiment, E = (?, ?, {?O})> arising from more than one P-S experiment. ? 

In such situations there is a definite loss of structure in reduction to a 

probability model. The question that will be addressed in the next section is 

whether this structure contains any useful information. Of course, the point 

is moot unless P-S theory actually recommends differing actions or conclusions 

for differing P-S models which have the same probability model. An example 

where this is the case for Pivotal theory can be found in the discussion by 

Barnard in Berger (1984a). A possible example for Structural theory is 

Example 14. 

EXAMPLE 14 (continued). A part of Structural Inference is the construction of 

"structural distributions" for ?. These can presumably be used, in the same 
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manner as posterior or fiducial distributions, to make inferences or probability 

statements about ?. The structural densities, based on S, for ? = (s,, t, ?) 

are given for the two models (3.6.1) and (3.6.2), respectively, by (see 

Fraser (1968)) 

0.6.3) ye|s) 
= 

ysjys^"1, 

and 

(3.6.4) w2(e|s) 
= 

ysjysMxVVV1. 

(These happen to correspond to the posterior distributions with respect to the 

right invariant Haar measures on the lower and upper triangular group decompo- 

sitions of }.) Examples will be given in the next section which show that use 

of these differing structural distributions can lead to differing conclusions. 

3.7 VIOLATION OF THE LIKELIHOOD PRINCIPLE: INADMISSIBILITY AND INCOHERENCY 

3.7.1 Introduction 

The alternative to justification of the LP from "first principles" 

is to show that behavior in violation of the LP is inferior. The only convinc- 

ing method of demonstrating such inferiority is to show that such behavior can 

be improved upon in repeated use. We thus turn to measures of long run per- 

formance of statistical procedures or methods. We will not argue that 

measures of long run performance have an important practical role in 

statistics (as frequentists would argue), but we will argue that they have the 

important theoretical role of providing a test for proposed methodologies: it 

cannot be right (philosophically) to recommend repeated use of a method if the 

method has "bad" long run properties. Both of the main approaches to long run 

evaluation, decision theory and betting coherency, will be discussed. We will 

further argue that the decisi on-theoretic approach is the more satisfactory 

of the two (even for "inference" problems), although either approach strongly 

contraindi cates violation of the LP. 

A violation of the LP will occur (in the discrete case) when there 

are two experiments E1 
and 

E2, 
with xj e ?, and ?? e ?~ satisfying (for some 
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positive constant c) 

(3.7.1) fj(xj) 
= c 

fj(x?) 
for ail ?, 

and for which 

(3.7.2) Ev(Erxj) t Ev(E2,x?). 

Consider now the mixed experiment E*, in which J = 1 or 2, with probability j 

each, is observed (independent of all elements of the E.), and experiment E, is 

then performend. According to the WCP, 

Ev(EMj.Xj)) 
= 

EvtEj.Xj), 

which confined with (3.7.2) yields the conclusion 

(3.7.3) Ev(E*,(l,xp) f Ev(E*,(2,x?)). 

It will be behavior according to (3.7.3) that is shown to be inferior in 

repeated use. 

In the nondiscrete case, we can consider violation of the RLP (see 

Section 3.4.1). Thus suppose that, in the situation of the RLP, there exists a 

set Ac U-j, with PQ(A) 
> 0 for all e, and such that 

(3.7.4) Ev?E^) t Ev(E2, f(??)). 

Again considering the mixed experiment E* and applying the WCP, one obtains 

that, for x, ? A, 

(3.7.5) EvtEMl.x^) f Ev(E*,(2, f(??))), 

behavior which will be shown to also have bad long run properties. 

The experiment E* will preserve all "structural" features of E-, and 

E2> 
so the only objection that could be raised concerning the above line of 

reasoning is the use of the WCP. Although some frequenti sts will reject the 

WCP (and are then exempt from the conclusions of this section) most will find 

such rejection difficult. Virtually all other theories accept the WCP, and 

are hence subject to evaluation through E*. Among the theories which seem to 

accept the WCP, and yet sometimes advocate violation of the LP, are (the 

already discussed) Pivotal Inference and Structural Inference, Fiducial 
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Inference, Plausibility Inference (see Barndorff-Nielsen (1976)), and certain 

noninformative prior Bayesian theories (see Example 9 in Section 3.1). It 

should be noted that it is actually rather rare for these theories to conflict 

with the LP. Indeed the conflict would not be worth making an issue of, were it 

not for the purported refutations of the LP that seem to arise from these 

theories. The "refutations" are always of the form - "following theory A 

conflicts with the LP, so the LP must be wrong." We will argue (via long run 

evaluation) that the reverse is true. 

3.7.2 Decision Theoretic Evaluation 

The deci s ion-theoretic approach supposes that the result of the 

statistical investigation is to take an action a ? G (which could conceivably 

be the action to take a particular "inference"), the consequence of which, for 

given data ? and when ? obtains, is the loss L(a,e). It is also supposed that 

the statistical method being evaluated provides an action to take for each 

possible x, thus defining a statistical procedure <$(?)?? X + G. (For the 

most part we will stick to nonrandomized procedures for simplicity.) As usual 

in frequentist decision theory, we define the frequentist risk and the Bayes 

risk (with respect to a prior distribution p on ?) as, respectively, 

R(e,6) = 
EQL(?(X),e), 

and r(ir,?) = E7TR(e,?). 

Following Hill (1974b) and Berger (1984a), and in a similar manner 

to many betting scenarios, we consider the following game. 

1 2 
EVALUATION GAME. Player 1 proposes use of 6 and Player 2 proposes 6 . A 

master of ceremonies will choose a sequence ? = 
(?????,...) ? C (a class of 

relevant sequences), and for each ?? the experiment E will be independently 

performed yielding an observation X. (from the distribution ? ). Player j 
i 

will use d (x.) s paying to the other player his "loss" L(?J(x.),?.). After ? 

plays, Player 2 will have won 

Sn 
= 

j [Li?1^.)^.) 
- 

L(62(Xi),9i)]. 
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If, for any ? ? C, 

(3.7.6) ? (lim inf 
^Sn 

> 0) = 1, 
? ?-*? 

2 1 
then 6 will be called C-better than d . 

Although there are a number of reasonable choices for c in the 

Evaluation Game, a particularly attractive choice is 

C^, 
= {?: there exists a compact set Kc? for which ?. ? ? for every i}. 

This choice is attractive because reality is bounded, but the bound is often 

unknown (and, hence, we entertain unbounded models). With such a c, the 

Evaluation Game seems to be a fair way of testing the performance of a proce- 

dure. If 6 is certain to lose an arbitrarily large amount in comparison with 

2 1 
d , it would certainly seem unwise to call d fundamentally sound. The follow- 

ing theorem is useful in dealing with C^,. 

THEOREM 4. Suppose R(e,62) < R(9,?]) for all T, that [R(6,?1)-R(e,?2)] 

is continuous in Q, and that the random variables 

zi 
= 

[L(61(xi),ei)-L(62(xi),e.)] 

have uniformly bounded variances (which is trivially satisfied if L is 

2 1 
bounded). Then d is Cr-better than 6 in the Evaluation Game. 

Proof. Define 

?(?.) = 
E0 (?.) = 

R(ei,61)-R(ei,62). 

By the strong law of large numbers, 

? 
1 
? ? [?.-?(?,)] -+ 0 almost surely, n i=l ? ? 

so that, for any ?, 

(3.7.7) ? (lim inf 
^ Sp 

> 0) = ? (lim inf ? J ?(?.) > 0). 
<i n-x? ? ?-?? i = l 

But since the ?. lie in some compact set and ?(?) is continuous and 
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positive, 

inf 
f??^ 

> 0. 
?<oo 

The conclusion is immediate from (3.7.7). || 

2 1 
The condition "R(e,? ) < R(e,? ) for all ?" in Theorem 4 implies 

that d is inadmissible in a frequentist deci s i on-theoretic sense. This is 

really the key condition in the failure of d in the Evaluation Game. Indeed 

we can, in a loose sense, equate such failure with inadmissibility. The 

exact relationship depends on the choice of c in the Evaluation Game, so we 

will sometimes use the term "inadmissibility" to encompass the whole idea. 

Adopting a deci s i on-theoretic viewpoint for evaluation can be 

criticized, especially for inference problems in which losses (if they exist 

at all) are vague or hard to formulate. This is not the place to argue the 

case for a decision-theoretic outlook, and indeed a justification of decision 

theory is not needed for our purpose here. Our goal is to judge the claim in 

P-S analysis (and other approaches) that the LP is invalid, because it ignores 

important features of the experiment. We will essentially try to argue that, 

in any decision problem, repeated violation of the LP will result in long run 

loss. Most statisticians would probably have qualms about trying to argue 

that, even if the LP should be followed in any decision problem, it need not be 

followed in inference problems. Essentially such an argument would be of the 

variety - "I know I'm right, but will not allow any quantifiable evaluation 

of my methods." 

We will avoid the "unfair" possibility of taking an inference 

procedure and evaluating it with respect to a particular loss function. It is 

somewhat more fair to evaluate it with respect to a very wide range of loss 

functions, and inferior performance for a wide range of reasonable losses 

should be a serious concern. More commonly, however, we will consider 

particular losses as given, and see where the following of P-S (or other) 

reasoning might lead us. Criticizing P-S reasoning (in particular, possible 
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violation of the LP) in decision settings for which it was never intended is, 

of course, an uncertain undertaking, especially since it is not clear what 

P-S reasoning in decision contexts would be. Of relevance here is the 

following comment of Hill (1974b): 

"But no. matter what is meant by inference, 

if it is to be of any value, then somehow 

it must be used, or acted upon, and this 

does indeed lead back to the decision- 

theoretic framework. I suspect that for 

some 'inference' is used as a shield to 

discovery that their actions are incoherent." 

As an example of a reasonable "inference" loss, imagine that a 

given "confidence" set C is to be used, and that the desired inference is a 

measure, d(?), of the "chance" or "confidence" with which we wish to assert 

that C contains ?. No matter what interpretation is attached to d(?), it 

seems reasonable to measure its performance via a loss function which reflects 

whether or not d does a good job of indicating the presence of ? in C. One 

such loss function is 

(3.7.8) L(6(x),e) = 
(??(?)-d(?))2, 

essentially the quadratic scoring function of deFinetti (1962). (Any other 

proper scoring function would also be reasonable - cf. Lindley (1982).) Note 

that for any "posterior" distribution, p(?|?), for ?, the optimal choice of 

d(?) in (3.7.8) is 

(3.7.9) dp(?) = 
?p(???)?(:(?) 

= ?p(???)(? ? C), 

i.e., the posterior probability of C. Thus, to test the inferences 

provided by Structural Inference in Example 14, it seems reasonable to use 

the structural distributions provided by (3.6.3) and (3.6.4) to determine 

p-i p2 
d (s) and d (s) via (3.7.9), and then test the implied procedure in the 

Evaluation Game for the mixed experiment E* (see Section 3.7.1). We will 
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return to this example later. 

The simplest situation, in which violation of the LP (or RLP) 

results in failing the Evaluation Game for E*, is when L is strictly convex 

in "a" for all ?. (For some other situations, see Berger (1984a).) Consider 

first the discrete case in Section 3.7.1. A violation of the LP (see (3.7.3)) 

would imply use of a d in E* for which 

(3.7.10) d?((1 ,xp) t o]((2,x?)). 

Consider, however, the procedure 

^6^(1,??)+??117d1((2,??)) 
for 

(3.7.11) 
?2((j,Xj)) 

= 

?. = 
x^ 

or 
x? 

d ((j,x.)) otherwise, 

where c is from (3.7.1). Using the strict convexity of L, one obtains that 

(3.7.12) 
LU2((j,x.j)),e) 

< 
-f?- iVUl.xphe) 

+ 
"TFTT Ua1((2,x?)),9). 

An easy calculation, using (3.7.1), then shows that 

(3.7.13) R(q,6])-R(q>62) = 
-^f1 fJ(x])A(e), 

where d(?) is the difference between the right and left hand sides of (3.7.12). 

Under the additional easily satisfiable conditions of Theorem 4, it is 

immediate that d fails the Evaluation Game for all ? ? CL?. (This is all, of 

course, a form of the Rao-Blackwell Theorem.) 

EXAMPLE 9 (continued - see Section 3.1). Suppose it is desired to estimate ? 

2 
under the loss L = (e-a) (or any other strictly convex loss), and that d-, 

would be recommended for E-, and d2 for 
E2, where d?,(9) f d2(9); thus a 

violation of the LP will have occurred. (Neither Pivotal nor Structural 

inference would necessarily recommend different actions here, but the 

Jeffreys noninformative prior Bayes theory and also Akaike (1982) would seem to 

so recommend.) The situation meshes exactly with the discrete setting discussed 
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above, and so if one (following the WCP) used 

(3.7.14) 61((j,xj)) 
= 

6j(Xj) 

for the mixed experiment E*, (3.7.13) would hold. It follows from Theorem 4 

that d fails the Evaluation Game for ? ? C^ Note that d would not fail the 

Evaluation Game for any ? which converged to zero or one. The failure of d for 

any ? e C^, 
or even more generally for any ? which lies within a compact subset 

of T some positive fraction of the time, strikes us, however, as strong enough 

evidence to rule out using d . 

The non-discrete version of the above argument for convex loss 

would assume (see the discussion around (3.7.4)) that, in violation of the 

RLP for E*, 

(3.7.15) d^?,?,)) ^((2, f(??)), 
for 

?-, ? A. 

The analog of (3.7.11) is now 

(3.7.16) S2((J,Xj)) 
= 

E^UJ.Xj?JIKj.Xj)], 

the conditional expectation of d given T, where ? is the sufficient 

statistic (in E*) 

?(2, 

f(??)) 
if j = 1 and 

x] ? U] 

(j,x.) otherwise. 

The appropriate versions of (3.7.12) and (3.7.13) can easily be established 

and under reasonable conditions, failure of d in the Evaluation Game follows. 

EXAMPLE 14 (continued). Suppose it is desired to estimate $ (which is 

equivalent to e) under the strictly convex loss 

(3.7.17) L(?,J) = trU?'Vlog det(?^"1)-2. 

1 2 
(The loss L(?4) 

= 
tr(?$ -I) would work similarly - see James and Stein 

(1961) and Selliah (1964).) If one treats yels) 
and ir2(e|s) 

in (3.6.3) and 

(3.6.4) as posteriors and calculates the optimal estimators with respect to 
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(3.7.17), one obtains 

x-1 

(3.7.18) 6}(s) 
= s 

/(n+1)'1 0 \ /(n-1)"1 0 ? 

l( }l Ms> -4 A sS- 
\ 0 (n-1)"1/ \ 0 (n+1)"1/ 

where s = s.s* = 
SySy, 

s. and s? being lower and upper triangular, respectively. 

If these estimators would be used in E-j and 
E2, 

the WCP would lead to using the 

estimator d ((j,s)) = ?.(s) in the mixed experiment E*. 

To establish failure of d in the Evaluation Game, let 

A = {s: ?,(s) f <$2(s)} and note that A has probability one for all ?. This 

situation satisfies the conditions of the RLP with U?. and 
U2 being the entire 

sample space, c(?) ? 1, and f being the identity map (since the probability 

space is identical for E, and EJ, and also satisfies (3.7.15). The estimator 

2 
d in (3.7.16) is simply 

*2((j,s)) =^d?((1,5)) +1d2((2,5)) 

? 
Jys)+ \ ys), 

and, from the strict convexity of the loss, it follows easily that (for E*) 

7 1 
R(q96 ) < R(e,? ) for all ?. 

Furthermore, the conditions of Theorem 4 can easily be verified in this 

2 1 
situation, and so the conclusion of the theorem applies: d is better than d 

in the Evaluation Game for all bounded sequences ?. 

Of course, this same analysis would hold for any estimators that 

differ for E-j and 
E2, 

not just for 
d^ and 

d2 
in (3.7.18). Thus violating the 

RLP by using different estimators in the two cases seems definitely contra- 

indicated. 

The same kind of conclusion follows in the "inference" situation of 

giving the "confidence" to be attached to a set C, using a loss such as (3.7.8). 

If 
ye|s) 

and 
t?2(?|s) are used as posteriors to produce probabilities that ? 

is in C (via (3.7.9)) and these probabilities differ (as will usually be the 
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case), an analysis virtually identical to that above shows that the violation 

of the RLP results in an inference for E* which fails the Evaluation Game for 

all bounded ?. Again, one could object to evaluating inferences via (3.7.8), 

but use of any reasonable measure of the performance of inferences would lead 

to the same conclusion. 

3.7.3 Betting Evaluation 

Studying coherence in betting has a long tradition in statistics, 

especially Bayesian statistics. The typical scenario deals with evaluation 

of methods (usually inference methods) which produce, for each x, either a 

probability distribution for ?, say qx(e) (which could be a posterior distribu- 

tion, a fiducial distribution, a structural distribution, etc.), or a system of 

confidence statements {C(x), d(?)} with the interpretation that ? is felt to be 

in C(x) with probability d(?). For simplicity, we will restrict ourselves to 

the confidence statement framework; any {q (?)} can be at least partially 

evaluated through confidence statements by choosing {C(x)} and letting d(?) be 

the probability (with respect to q ) that ? is in C(x). 

The assumption is then made (more on this later) that, since d(?) is 

thought to be the probability that ? is in C(x), the proposer of {C(x), d(?)} 

should be equally willing to accept either the bet that ? is in C(x), at odds of 

(1-d(?)) to d(?), or the bet that ? is not in C(x), at odds of d(?) to 

(1-d(?)). An evaluations game, as in Section 3.7.2, is then proposed, in 

which the master of ceremonies again generates ?. and X., Player 1 stands ready 

to accept bets on {C(x), d(?)}, and Player 2 bets s(x) at odds determined by 

d(?). Here, s(x) = 0 means no bet is offered; s(x) > 0 means that an amount 

s(x) is bet that ? ? C(x); and s(x) < 0 means that the amount |s(x)| is bet 

that ? $ C(x). (As discussed in Robinson (1979a), restricting s(x) to satisfy 

|s(x)| <_ 1 is also sensible.) The winnings of Player 2 at the ith play are 

Wi 
= 

CIc(x1)(ei,-6(xi,]s(xi)? 

1 
n 

and of interest is again the limiting behavior of - 
? W... I ft for some e > 0, 
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(3.7.19) ? (Um inf 1 
J 

W. > e) = 1 
'? ?-?? i=l 

for all sequences ? = (?, ,.?2,...), 
then (C(x), d (?)} will be called incoherent, 

or alternatively s(x) will be said to be a super relevant betting strategy. If 

it is merely the case that (3.7.19) holds for any ? ? CL, with e = 0, then 

{C(x), d(?)} will be called weakly incoherent or s(x) will be said to be weakly 

relevant. (These concepts can be found in different, but closely related, forms 

in such works as Buehler (1959, 1976), Wallace (1959), Freedman and Purves 

(1969), Cornfield (1969), Pierce (1973), Bondar (1977), Heath and Sudderth 

(1978), Robinson (1979a, 1979b), Levi (1980), and Lane and Sudderth (1983).) 

If {C(x), d(?)} is incoherent or weakly incoherent, then Player 1 

will for sure lose money in the appropriate evaluations game, which certainly 

casts doubt on the validity of the probabilities d(?). A number of objections 

to the scenario can, and have, been raised, however, and careful examination 

of these objections is worthwhile. 

Objection 1. Player 1 will have no incentive to bet unless he perceives the 

odds as slightly favorable. This turns out to be no problem if incoherence is 

present, since the odds can be adjusted by e/2 in Player l's favor, and 

Player 2 will still win. If only weak incoherence is present, it is still 

often possible to adjust the odds by a function g(x) so that Player 1 perceives 

that the game is in his favor, yet will lose in the long run, but this is not 

clearly always the case. 

Objection 2. Weak incoherence has been deemed not very meaningful, since a 

sequence ? = 
(e-j,e2,...) could be chosen so that Player 1 is not a sure loser. 

However, the fact that Player 1 is a sure loser for any ? ? Cc seems quite 

serious. 

Objection 3. Of course, frequentists who quote a confidence level d for 

{C(x)> remove themselves from the game, since they do not claim that d is the 

probability that ? is in C(x), and hence would find the betting scenario 

totally irrelevant. 
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Objection 4. The game is unfair to Player 1, since Player 2 gets to choose 

when, how much, and which way to bet. Various proposals have been made to 

"even things up." The possibility mentioned in Objection 1 is one such, but 

doesn't change the conclusions much. A more radical possibility, suggested 

by Fraser (1977), is to allow Player 1 to decline bets. This can have a 

drastic effect, but strikes us as too radical, in that it gives Player 1 

license to state completely silly d(?) for some x. It is after all {d(?)} 

that is being tested, and testing should be allowed for all x. 

Objection 5. The most serious objection we perceive to the betting game is 

that ?d(?)} is generally not selected for use in the game, but rather to 

communicate information about ?. It may be that there is no better choice of 

{d(?)> for communicating the desired information. Consider the following 

example, which can be found in Buehler (1971), and is essentially successive 

modifications by Buehler and H. Rubin of an earlier example of D. Blackwell. 

EXAMPLE 15. Suppose % and T are the integers, and that 
??(?=?+1) 

= 

?O(?=?-1) = ??. We are to evaluate the confidence we attach to the sets 

C(x) = {x+1} (the point (x+1)), and a natural choice is d(?) = 
j (since ? is 

either x-1 or x+1, and in the absence of fairly strong prior information about 

?, either choice seems equally plausible). This choice can be beaten in the 

betting game, however, by betting that ? is not in C(x) with probability g(x), 

where 0 < g(x) < 1 is an increasing function. (Allowing Player 2 to have a 

randomized betting strategy does not seem unreasonable.) Indeed, the expected 

gain per bet of one unit, for any fixed e, is j [g(e+l)-g(e-l)j > 0, from 

which it is easy to check that d(?) = 
j ls weakly incoherent. (A continuous 

version of this example, mentioned in Robinson (1979a), has ? ^7?(?,1), 

T = IR1, C(x) = (-co, ?), and d(?) = 
^.) 

In this and other examples where {d(?)} loses in betting, one can 

ask the crucial question - Is there a better d that could be used? The 

question has no clear answer, because the purpose of d is not clearly defined. 

One possible justification for d(?) = -? in the above example is that it is the 
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unique limiting probability of C(x) for sequences of what could be called 

increasingly vague prior distributions. (A more formal Bayesian justification 

along these lines would be a robust Bayesian justification, to the effect that 

the class of possible priors is so large that the range of possible posterior 

probabilities for C(x) will include 1/2 for all x.) An alternative justifica- 

tion can be found by retreating to decision theory, and attempting to quantify 

how well d(?) performs using a loss such as (3.7.8). One can then ask if 

there is a better d in terms, say, of the decision-theoretic Evaluation Game 

for bounded ?. The answer in the case of Example 15 is - no! A standard 

limiting Bayes argument can be used to show that d(?) = 
2-15 decision - 

theoretically admissible for this loss, from which it follows that, for any 

other d*, a bounded (indeed constant) sequence <3 can be found such that d is 

better than d* in the Evaluation Game. 

The Evaluation Game (or decision-theoretic inadmissibility) with 

respect to losses such as (3.7.8) can be related to incoherency, and seems to 

be a criterion somewhere between weak incoherency and incoherency (cf. 

Robinson (1979a)). This supports the feeling that it may be a more valid 

criterion than the betting criterion. This is not to say that the betting 

scenarios are not important. Buehler, in discussion of Fraser (1977), makes 

the important point that, at the very least, betting scenarios show when 

quantities such as d(?) "behave differently from ordinary probabilities." And 

as Hill (1974b) says 

"...the desire for coherence...is not 

primarily because he fears being made 

a sure loser by an intelligent opponent 

who chooses a judicious sequence of 

gambles...but rather because he feels 

that incoherence is symptomatic of some- 

thing basically unsound in his attitudes." 

To show that violation of the LP (or RLP) leads to some form of 

incoherence, it is again necessary to consider the setup in Section 3.7.1. 
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Taking the discrete case first, suppose a fixed set Cc 0 is assigned 

"confidence" a-, in E?. when ?? is observed, but "confidence" a2(^ aj in E2 

when x' is observed. If the WCP is followed for the mixed experiment E*, the 

confidence function d employed satisfies 

d((1,?')) = 
?] t a2 

= 
d((2,??)), 

the appropriate version of (3.7.3). Consider now the betting strategy (see the 

beginning of the section for interpretation) 

) if x- ^ ?.! or x? 

s((j,x?)) = \ c.a. if j = k and x. = 
x] 

or 
x? 

-c(l-a.) if j i k and x. = 
x^ or 

x?, 

where c, = 1, c2 
= c (from (3.7.1)), and k = 1 or 2 as a, < a? or a-, > 

a2, 

respectively. If this strategy is used with odds corresponding to a. when 
j 

(j,xl) is observed, the expected gain can be easily calculated to be 

If fn (x?) is bounded away from zero for all bounded sequences ?, it follows 

easily that d is weakly incoherent. 

In the nondiscrete case, one replaces a. above by a.(x.) (the 
j j j 

"confidence" in C if x. is observed in E.), and assumes that, for some 
j j 

Ac?, with p](A) > 0 for all ?, ? ? 

a-jUj) t ?2(f(?1)) 
for 

X-j ? A. 

The corresponding confidence function in the mixed experiment E* is 

<5((j,x?)) = a.(??), which again violates the RLP. Consider, now, the betting j j j 

strategy 

/ 0 if 
(j.Xj) 4 A* 

s((j.Xj)) 
= ! cj(xj)?j(xj) 

if 
J=k((J,Xj)) 

and 
(j.Xj) 

? A* 

( -Cj(Xj)(l-?j(Xj)) 
if 

JA((j,Xj)) 
and 

(j,Xj) 
? A*, 

where 
^(x^) 

? 1, c2(x2) 
= 

c(cp~ (x2)) (see (3.4.1)), 
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A* = 
?(1,??): x1 ? ?} ? ?(2,f(?1)): x] ? A}, 

and 

1 if j = l and a,(?,) < 
a2(f(?,)) 

or 

j=2 and a,(f~ (x9))< a9(xJ 

k((j,Xj)) 
- ' 1*222 

2 otherwise. 

The expected gain for this betting strategy can easily be calculated to be 

\\ la^x^^Mx^JlpJidx^. M 

Weak incoherency will again follow under reasonable conditions. 

For general theorems on coherence, consult Heath and Sudderth 

(1978) and Lane and Sudderth (1983) and the references therein. These theorems 

indicate that, unless d for E* is compatible with some posterior distribution, 

incoherency will result. A coherent d will not violate the LP (or RLP), and so 

incoherence of violation of the LP is quite general. Again, however, this may 

not be as convincing as the decision-theoretic refutation of violation of the 

LP which was discussed in Section 3.7.2. 
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Chapter 4, CONSEQUENCES AND CRITICISMS OF THE LIKELIHOOD 

PRINCIPLE AND RELATIVE LIKELIHOOD PRINCIPLE 

Most people who reject the LP do so because it has consequences 

they do not like. Of course any theory deserves to be rejected if its conse- 

quences are erroneous, but great care must be taken in making sure that the 

consequences really are wrong and not just in opposition to the intuition 

currently dominant in the field. In this section we discuss some of the more 

surprising consequences of the LP and RLP, and investigate the conflicts with 

prevalent statistical intuition. It will come as no surprise that we feel 

that the conflicts are always resolved in favor of the LP and RLP. 

4.1 INCOMPATIBILITY WITH FREQUENTIST CONCEPTS 

4.1.1 Introduction 

The philosophical incompatibility of the LP and the frequentist 

viewpoint is clear, since the LP deals only with the observed x, while frequen- 

tist analyses involve averages over possible observations. It cannot be said, 

however, that any particular frequentist procedure conflicts with the LP, 

since the procedure could happen to correspond to a sensible conditional 

procedure. Such a correspondence does, in fact, occur in many statistical situ- 

ations. For instance, much of frequentist normal distribution theory inference 

provides the same numerical measures of "confidence" as does noninformative 

prior conditional Bayesian theory (because of the symmetries or group structure 

of the problem), although the interpretations of these measures are different. 

(A cynic might argue that frequentist statistics has survived precisely because 

of such lucky correspondences.) Nevertheless, enough direct conflicts have been 

65 
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(and will be) seen to justify viewing the LP as revolutionary from a 

frequentist perspective. 

We have already alluded to the fact that a frequentist can 

logically dismiss the LP, essentially by rejecting the WCP and concluding that 

the concept of learning or drawing conclusions about ?, for a particular 

experiment, is meaningless. Thus Neyman (c.f. Neyman (1957, 1967, 1977)) 

espouses the viewpoint that only the performance of a procedure in repeated use 

is relevant, and that it is a mistake to think in terms of learning about 

particular ?. Though logically viable, this viewpoint is scientifically 

unappealing. Experiments are done precisely to obtain "evidence" about 

unknown ?, and investigators will not take kindly to being told that this is 

meaningless. Thus Birnbaum (1977) argues that Neyman-Pearson conclusions are 

virtually always used in an "evidentiary" fashion, rather than as measures of 

procedure performance in repeated use. Savage put this very succinctly when 

talking about confidence sets in Savage et. al. (1962): 

"The only use I know for a confidence 

interval is to have confidence in it." 

Supposing then that we are going to use a frequency measure as a 

measure of evidence about ?, what classical justifications for such behavior 

can be advanced? There are at least the following four: 

(i) Frequency measures are "objective", having a well defined physical 

interpretation, and science demands objective statistical measures. 

(ii) The use of frequency measures (and procedures based on them) is 

reasonably sound and safe for nonspecialists. 

(iii) One needs "repeatable" experiments in science, i.e., any evidence 

gathered about ? should also be likely to be found if the experiment is 

repeated; this will supposedly be true if frequency measures of evidence are 

used. 

(iv) The following principle should be followed: 

CONFIDENCE PRINCIPLE. Any statistician who uses a methodology in which he makes 
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?tatement? on. ?tvm?> conc?jU?ton? w?Xh ???,??^??? acauuicy, ?kouZd be guaAant<Le.d 

that ?n the. long mm WX? actuat accjuJiacy ???? be. at IzaAt that pJiom?s>2.d. 

We will briefly examine these four justifications. 

4.1.2 Objectivity 

It should be observed, first of all, that the LP is entirely objec- 

tive, stating only that the evidence about ? is contained in the likelihood 

function. Also, the likelihood function has as much physical reality as any 

frequency measure calculated for a presumed model. It would thus be logically 

sound to pass on to the next issue. We dally, however, because of the problem 

of using the likelihood function. Indeed, since in Chapter 5 we will argue for 

Bayesian use of the likelihood function, issues of objectivity will become relevant. 

The Bayesian answers to criticisms of objectivity are either (i) 

objectivity is a myth, or (ii) only through "noninformative" prior Bayesian 

analysis can objectivity be really attained. As an example of the first 

argument, Box (1980) states: 

"In the past, the need for probabilities 

expressing prior belief has often been thought 

of, not as a necessity for all scientific 

inference, but rather as a feature peculiar to 

Bayesian inference. This seems to come from 

the curious idea that an outright assumption 

does not count as a prior belief... I believe 

that it is impossible logically to distinguish 

between model assumptions and the prior 

distribution of the parameters." 

A general review of this objectivity issue is given in Berger and Berry (1987). 

(See also Berger (1985).) The only portion of frequentist theory formally 

exempt from the argument is (completely) nonparametric analysis, and, even 

then, the choice of a particular procedure to use can be argued to be a 

highly subjective input. 
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If the model can be claimed to have some objective status, there 

is still argument (ii) (above) to contend with. The idea behind this argument 

is that one can lay claim to objectivity only by purposely striving for it, 

through use of what is deemed to be an "objective prior." Substantial 

support for this position can be found in Jeffreys (1961), Box and Tiao (1973), 

Zellner (1971), Rosenkranz (1977), Bernardo (1979), Berger (1980,1984e), and 

Jaynes (1981, 1982). Regardless of the validity of argument (ii), it is a 

fact that use of noninformative priors is objective, purposely not involving 

subjective prior opinions, and is consistent with the LP. The measures of 

evidence used are, of course, probabilistic statements about the unknown ? 

itself (through the formal posterior distribution of ?) and hence may be 

deemed less "real", but a very strong case can be made that "evidence" about 

uncertain quantities should only be quantified probabilistically (cf. 

deFinetti (1972, 1974)). There are also other likelihood based methods which 

can be classified as objective, as will be seen in Chapter 5. Hence, even if 

deemed obtainable and desirable, objectivity is not a reason to reject the LP 

in favor of frequency measures. 

4.1.3 Procedures for Nonspecialists 

We accept the argument that it is important to develop reasonably 

simple statistical procedures which can be safely used by nonspecialists. 

However, it is not at all clear that this need be done from a frequency 

viewpoint. First, frequency methods often attain formal simplicity by 

obscuring difficult issues, such as the choice of error probabilities in a 

test or the choice of a partition in a conditional confidence procedure 

(see Section 2.5). Second, relatively simple procedures and methods of 

evaluation consistent with the LP can be developed (w/o the introduction of 

subjective priors) as the books of Jeffreys (1961), Box and Tiao (1973), and 

Zellner (1971) indicate. We are continually surprised at the ease with which 

the use of noninformative priors, as in these books, gives excellent 

(conditional) procedures. Indeed, as mentioned earlier, many reasonable 
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frequentist procedures are, at least approximately, noninformative prior Bayes 

procedures, and "frequency confidence" then often coincides with "posterior 

confidence." When this correspondence does not occur, such as in unconditional 

frequentist approaches to the examples in Section 2.1, the frequentist approach 

is definitely suspect. Further discussion and references can be found in 

Berger (1980). Note that we are not maintaining that the use of noninformative 

priors solves all problems and is foolproof, but only that, if procedures 

which are simple to use and interpret are deemed necessary, then there are 

good conditional alternatives to frequentist development of procedures. We 

have also slighted the subjective Bayes solution to the problem, which will, 

however, be discussed in Chapter 5. 

In this situation, where a procedure is developed for use by 

nonspecialists, the performance of the procedure in repeated use is certainly 

relevant (see Section 3.5.4), though not necessarily of primary importance. 

Good frequency performance can even be of interest to the strict conditionalist, 

as the following example indicates. 

EXAMPLE 16. Suppose a confidence procedure C(x) is to be used (i.e., when 

X = ? is observed it will be stated that ? ? C(x)), having frequentist 

coverage probability 

?(?) = P?(C(X) contains ?) >_ 1-a. 
? 

A conditional Bayesian (for simplicity) would, for a prior distribution p on T, 

be interested in having good posterior probability that ? is in C(x), i.e., 

would want 

?(?) = ?p(???)(? ? C(x)) 

to be large, where tt(?|?) is the posterior probability distribution of ? 

given x. But, letting m denote the marginal distribution of X (i.e., 

m(.) = ?p? (?)) and Io(y) denote the usual indicator function on a set B, it 

is clear that 
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Emx(x) = ??(???)(? e c(x)) 

= EJoint distbn. 
(?'?)[?e(?)(?)] 

= ?p? ?C(X) contains ?) ? 

> 1-a. 

Since this relationship holds regardless of p, a conditionalist could feel 

that ?(?) is "likely" to be large if C(x) is used and a is small, and hence be 

willing to use C(x) when unable to carry out a trustworthy Bayesian analysis. 

See Pratt (1965) and Berger (1984b) for more general development and specific 

examples. 

It is important to emphasize that the primary goal in situations 

such as Example 16 should still be good conditional performance, and that the 

frequentist measure does not guarantee this. Conceivably, ?(?) could be very 

small for some ? (and all m), which is certainly relevant since such ? could be 

observed. Thus our view is that procedures should usually be developed from a 

conditional viewpoint, and their frequency properties perhaps investigated to 

ensure robustness. Of course the already existing classical procedures which 

have good conditional properties are fine. Other discussions of this point can 

be found in Godambe and Thompson (1977), Godambe (1982a,b), and Berger (1984e). 

4.1.4 Repeatability 

There is certainly truth to the observation that, if a scientific 

experiment claims to have obtained strong evidence about ?, then many 

scientists expect future similar experiments to also provide strong evidence. 

The frequency measures, based on imagining repetitions of the experiment, 

seem ideally suited to achieve this. There is a serious concern here, however, 

as the following example indicates. 

EXAMPLE 17. Suppose X has the two point distribution given by PJX = 0) = .99 

and P.(X = ?) = .01. (Either ? will be measured exactly, or no observation ? 

will be recorded.) If now ? = 5 is observed, it should certainly be concluded 
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that ? = 5 exactly (very strong "evidence"), but repetitions of the experiment 

are very unlikely to reproduce the result. 

It could perhaps be argued that science should not believe "lucky" 

observations, as in the previous example, and hence should not think 

conditionally on the data. This seems too severe a straightjacket, however. 

One can always be skeptical of lucky observations and seek possible alternative 

reasons for them, but their conditional evidential interpretation should be 

allowed. Such conditional interpretations can, of course, also be verified or 

disproved by future investigations. 

4.1.5 The Confidence Principle 

The Confidence Principle was implicit in much of Neyman's early 

development of the frequentist viewpoint (cf. Neyman (1967) and also Neyman 

(1957, 1977) and Berger (1984c)), and was stated explicitly by Birnbaum (cf. 

Giere (1977) and Birnbaum (1968, 1970, 1977)), who ultimately came to reject 

the LP because of its conflict with the Confidence Principle. Other discussions 

of this or related principles can be found in Cox and Hinkley (1974) (which 

distinguishes between strong and weak versions, the weak version allowing 

conditioning on relevant subsets), Kiefer (1977b), Le Cam (1977), and Barnard 

and Godambe (1982). Critical discussion can be found in Jeffreys (1961), 

Hacking (1965), Edwards (1972), deFinetti (1972, 1974), Pratt (1977), and 

Jaynes (1981, 1982). The following mathematical formulation of the 

Confidence Principle will be useful in the discussion, and is related to the 

Evaluation Game in Section 3.7.2. 

THE FORMAL CONFIDENCE PRINCIPLE. A procedure 6 is to be used for a sequence of 

problems consisting of observing X. ^ P_ . A criterion, L(e.,?(x.))? measures 1 ?? 11 

the performance of 6 in each problem (small L being good). One should report, 

as the "confidence" in use of d, 

(4.1.1) R(?) = sup limi l L(e.,?(x.)), 

jj rn- 
n 1-1 

? ? 
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assuming the limit exists with probability one. (It can usually be shown that 

R(a) = sup R(8,6), where R(e,?) = E L(e,6(X)).) 
? 

EXAMPLE 18. Suppose d is a confidence procedure, so that d(? ) c @ will be the 

confidence set when ?. is observed. The natural measure of the performance of 

?(??.) 
is 

?(?.,d(?.)) = 
1-1^.)^.), 

since this measures, whether or not d(?. ) does contain ?.. The risk of d is 

R(e,?) = E L(e,?(X)) = 
l-Pq(6(X) contains ?), 

and it is easy to show, for this problem, that 

R(?) = sup R(e??) = 1-inf ?O(d(?) contains ?). 
? ? 

? 

Hence the "report," according to the Confidence Principle, should be one minus 

the minimum coverage probability of <s. 

Although the Confidence Principle is formulated above only in terms 

of repetitive use of d for problems of the same form (but possibly differing 

?.), it can easily be generalized to include use of d for different types of 

problems. Such a generalization adds little conceptually, however. The appeal 

of the Confidence Principle is undeniable. By following it, the actual average 

performance of d in repeated use will be at least as good as the reported 

performance R(?). There are several problems in following the Confidence 

Principle, however. 

The first difficulty is that, in virtually all statistical investi- 

gations, extensive assumptions concerning the model, etc., are made. Thus a 

person claiming to err no more than 5% of the time because he follows the 

Confidence Principle, is really saying he errs no more than 5% of the time if 

all the model assumptions he makes are correct. This removes some of the 

lustre from the principle. 

A second serious issue is the need to have a valid bound, R(?), on 

the performance of d. This is an often unappreciated aspect of the frequen- 

tist position. Indeed, the frequentist position is often viewed as requiring 
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only the reporting of the function R(e,?). Without the bound, R(?), however, 

no guarantee of long run performance, in actual use of d on different problems, 

can be given. 

EXAMPLE 19. Consider simple versus simple hypothesis testing, and suppose one 

always uses the most powerful test of level a = .01. One can make the 

frequentist statement that only 1% of true null hypotheses will be rejected 

(i.e., R(e.?) = .01 for ? equal to the null), but this says nothing about how 

often one errs when rejecting. For instance, if the test has power of .01 

(admittedly terrible power, but useful for making the point) and the null and 

alternative hypotheses occur equally often in repetitive use of the test, then 

half of all rejections will be in error. Thus one can not make meaningful 

statements about actual error incurred in repetitive use, without an appropriate 

bound on R(et?) for all e. 

The problem with needing R(s) is, of course, that it could be a 

useless bound (or could even be infinite). Indeed, whenever R(e,?) is highly 

variable as a function of q, the reporting of R(e) is likely to be excessively 

conservative. The conditional frequentist approaches discussed in Section 2.4 

have considerable promise in overcoming this difficulty, however, and can be 

given interpretations compatible with the Confidence Principle. 

Ultimately, the only clear objection to the Confidence Principle is 

that it conflicts with the LP. This was indicated in the examples and discus- 

sion in Chapter 2, and will be seen in later examples also. Most condition- 

alists view the Confidence Principle, while attractive, as an unattainable 

goal. (Note, however, that a Bayesian conditionalist follows the Confidence 

Principle to the extent that his statements of accuracy will be correct, in 

the long run average sense, if his prior assumptions are correct; one could, 

indeed, argue that it is the Bayesian who is honestly trying to follow the 

Confidence Principle by clearly stating the beliefs and assumptions his 

assessments are based on.) In choosing between the LP and the Confidence 

Principle, it is important to recall the simple axiomatic basis of the LP, and 
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to realize that no such basis has been found for the Confidence Principle. 

Indeed, the long run performance view is deemed rather peculiar by most 

uninitiated people (cf., the discussions in the early papers of Neyman in 

Neyman (1967)). 

4.2 THE IRRELEVANCE OF STOPPING RULES 

4.2.1 Introduction 

One of the most important applications of the LP and RLP is the 

Stopping Rule Principle (SRP). Stated informally, the SRP is simply that the 

reason for stopping experimentation (the stopping rule) should be irrelevant to 

evidentiary conclusions about ?. The theoretical and practical implications of 

the SRP to such fields as sequential analysis and clinical trials are 

enormous, and will be partially discussed in Sections 4.2.3 and 4.2.4. The 

SRP itself will be discussed at two levels: in Section 4.2.2 it will be 

presented in a relatively simple sequential setting, in which it will be shown 

to follow solely from the LP, while in Section 4.2.6 a very general version 

will be developed from the RLP. Section 4.2.7 discusses situations in which 

the SRP is not applicable, and Section 4.2.5 points out an interesting conflict 

between frequentist admissibility and the frequentist belief in the importance 

of considering stopping rules. 

The Stopping Rule Principle was first espoused by Barnard 

(1947a, 1949), whose motivation at the time was essentially a reluctance to 

allow an experimenter's intentions to affect conclusions drawn from data. 

(More will be said of this shortly.) The principle was shown to be a conse- 

quence of the LP in Birnbaum (1962a), and Barnard, Jenkins and Winsten (1962), 

and argued to hold in essentially complete generality by Pratt (1965). Other 

good discussions of the principle can be found in Anscombe (1963), Cornfield 

(1966), Bartholomew (1967), Basu (1975), Berger (1980), and in many Bayesian 

works such as Edwards, Lindman, and Savage (1963). 
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Before formally introducing stopping rules and the stopping rule 

principle, it is useful to illustrate certain of the ideas through a simple 

example. The following example, from Berger and Berry (1987), demonstrates 

the possible extreme dependence of frequentist measures upon the intentions 

of the experimenter concerning stopping the experiment. The example clearly 

questions the sensibility of such extreme dependence. (Berger and Berry, 

1987, also contains other simple examples, on both sides of the issue.) 

EXAMPLE 19.1. A scientist enters the statistician's office with 100 observa- 

tions, assumed to be independent and from a ?(?,1) distribution. The scientist 

wants to test HQ: ? = 0 versus H-j : ? f 0. The current average is x"n 
= 0.2, so 

the standardized test statistic is ? = 
S?\*n 

- 0| 
= 2. A careless classical 

statistician might simply conclude that there is significant evidence against 

Hq at the 0.05 level. But a more careful one will ask the scientist, "Why did 

you cease experimentation after 100 observations?" If the scientist replies, 

"I just decided to take a batch of 100 observations," there would seem to be no 

problem, and very few classical statisticians would pursue the issue. But 

there is another important question that should be asked (from the classical 

perspective), namely: "What would you have done had the first 100 observations 

not yielded significance?" 

To see the reasons for this question, suppose the scientist 

replies: "I would then have taken another batch of 100 observations." This 

reply does not completely specify a stopping rule, but the scientist might 

agree that he was implicitly considering a procedure of the form: 

(a) take 100 observations; 

(b) if 
/100|x-jqq|> 

k then stop and reject Hq?, 

(c) if A001x"?.QQ|< k then take another 100 observations and reject if 

/Z?DT|x200|> k. 

For this procedure to have level a = 0.05,k must be chosen to be 2.18 

(Pocock, 1977). Since the actual data had /???|?100| 
=2 <2.18, the scientist 

could not actually conclude significance, and hence would have to take the 
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next 100 observations. 

This strikes many people as peculiar. The interpretation of the 

results of an experiment depends not only on the data obtained and the way it 

was obtained, but also upon thought* of the experimenter concerning plans for 

the future. 

Of course, this can be carried further. Suppose the puzzled 

scientist leaves and gets the next 100 observations, and brings them back. 

Consider two cases. If 
/200|?"200| =2.1 <2.18 then the results are not 

significant. But they would have been significant had the scientist not 

paused halfway through the study to calculate z! (It would certainly be 

tempting not to disclose this interim calculation, and essentially impossible 

to determine whether or not the scientist had made an interim calculation!) 

On the other hand, suppose /200|xpooI 
= 2*2 > 2?18? so now significance has 

been obtained. But wait! Again the statistician asks what the scientist 

would have done had the results not been significant. Suppose the 

scientist says, "If my grant renewal were to be approved, I would then take 

another 100 observations; if the grant renewal were rejected, I would have 

no more funds and would have to stop the experiment in any case." The 

advice of the classical statistician must then be: "We cannot make a 

conclusion until we find out the outcome of your grant renewal; if it is 

not renewed, you can claim significant evidence against HQ, while if it is 

renewed you cannot claim significance and must take another 100 observations." 

The up-to-now honest scientist has had enough, and he sends in a request to 

have the grant renewal denied, vowing never again to tell the statistician 

what he would have done under alternative scenarios. 

Note that we are not faulting the classical statistician here for 

ascertaining and incorporating the stopping rule in the analysis. If one in- 

sists on utilization of frequentist measures, such involvement of the stopping 

rule (even if it exists only in the imagination of the experimenter) is manda- 

tory. The need here for involvement of the stopping rule clearly calls the 

basic frequentist premise into question, however. 
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4.2.2 The (Discrete) Stopping Rule Principle 

So as not to obscure the essential nature of the SRP, the discus- 

sion in this section will be restricted to the following fairly simple 

situation. Suppose ?t is a sequential experiment consisting of (i) a 

sequence of independent observations X,, X^,..., which will be observed one 

at a time and which have common density fQ(x); and (ii) a non-randomized 
? 

stopping rule, t, which can be represented by a sequence of sets, 

Am<=?m 
= ZKCX...XZ (the m-fold Cartesian product of %), 

having the property that 

(4.2.1) if ? = 
(x]?---?xm) ? Am> sampling stops; 

m c 
"^ * ? Am* sampling continues. 

Since the observations will be observed sequentially, it is clearly unnecessary 

to have A contain points whose first j coordinates were in A. for any j < m; 

thus we henceforth assume that 

Am n 
Aj 

x *m~J = 0 for J < m? 

The stopping time, N, corresponding to t is that (random) m for which ?m ? Am; 

the realization of ? will be denoted by n. As usual, only proper stopping 

rules will be considered, i.e., those which have ? finite with probability one 

for all e. The probability density of the random experimental outcome 

XN = 
(Xr...,XN) 

is then 

(4.2.2) f?(x") 
- 

IAn(xn)i!ife(x1). 

EXAMPLE 20. Suppose the X.. are^(e,l). 

1 
t 

0 if m t k 

Case 1. Consider the stopping rule, t , defined by 

?i- 

Xk if m = k. 
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1 
The experiment ?t is thus the fixed sample size experiment which always 

observes precisely k observations. 

Case 2. Consider the stopping rule, t , defined by 

(4.2.3) A2 = {xm?%m: |xj 
> Km"*}. 

where ? is the mean of (x,,...,x ) and ? is a fixed positive constant. (By 

using the Law of the Iterated Logarithm, t can be shown to be a proper stopping 

rule.) This stopping rule is rather peculiar, in that it says to stop sampling 

when the sample mean is ? standard deviations from zero. 

EXAMPLE 21. Suppose the 
Xi 

are Bernoulli (?). 

1 
Case 1. Let ?t be the fixed sample size experiment which takes k observa- 

tions, where k <_ 2. 

2 
Case 2. Let t be defined by 

A2 = {1}, A2 = {(0,0),(0,1)}, A? = 0 for j > 2 

2 
(i.e., stop if X, = 1, and otherwise stop after observing X?), and let ?t be 

the corresponding sequential experiment. 

STOPPING RULE PRINCIPLE (SRP) : In a sequential experiment ?t, with observed 

final data x , Ev(E ,? ) should not depend on the stopping rule t. 

The SRP would imply, in Example 20, that if the observation in 

Case 2 happened to have ? = k, then the evidentiary content of the data would 

be the same as if the data had arisen from the fixed sample size experiment in 

Case 1. A similar conclusion would hold in Example 21 if ? = k occurred. 

When ? is discrete, the SRP is an immediate consequence of the. LP. 
? 

This is immediate from (4.2.2) in that il ?(?) is proportional to p fQ(x.L 
xn i=l 

? ? 

which does not depend on the stopping rule. For derivation of the SRP in 

general (from the RLP) see Section 4.2.6. 
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4.2.3 Positive Implications 

A recurring problem in classical statistics is that of optional 

stopping. Ideally (from a classical viewpoint) an experimenter chooses his 

stopping rule before experimentation, and then follows it exactly. Actual 

practice is, however, acknowledged to be quite different. Experiments may end 

because the data looks convincing enough, because money runs out, or because 

the experimenter has a dinner date. Indeed, little or no thought may have been 

given to the stopping rule prior to experimentation, in which case, upon stop- 

ping for whatever reason, the data is often treated as having arisen from a 

fixed sample size design. Optional stopping may often be harmless (such as 

when the experimenter quits to have dinner), but stopping "when the data looks 

good" can be a serious error when combined with frequentist measures of 

evidence. For instance, if one used the stopping rule in Case 2 of Example 20, 

but analyzed the data as if a fixed sample had been taken, one could guarantee 

arbitrarily strong frequentist "significance" against HQ: 
? = 0 by merely 

choosing large enough K. 

Optional stopping poses a significant problem for classical 

statistics, even when the experimenters are extremely scrupulous. Honest 

frequenti sts face the problem of getting extremely convincing data too soon 

(i.e., before their stopping rule says to stop), and then facing the dilemma 

of honestly finishing the experiment, even though a waste of time or dangerous 

to subjects, or of stopping the experiment with the prematurely convincing 

evidence and then not being able to give frequency measures of evidence. One 

could argue that experiments should be designed to allow for early stopping in 

response to clear evidence (and, indeed, many such stopping rules have been 

created, as in the theory of "repeated significance testing"), but there will 

often be unforeseen eventualities that crop up in sequential experimentation, 

leaving a strict frequentist in an embarassing position. 

Contrast this enormous dilemma with the startling simplicity 

resulting from use of the SRP. The SRP says that it just doesn't matter; stop 

for whatever reasons, which (conditional on the data) do not depend on ? (see 
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Section 4.2.7), and use an appropriate conditional analysis based on ? ?(?) 
? ^ 

(or, alternatively, p fn(x.)). The reason for stopping is simply not relevant. 
i=l ? ? 

As Edwards, Lindman, and Savage (1963) say 

"The irrelevance of stopping rules to 

statistical inference restores a simpli- 

city and freedom to experimental design... 

Many experimenters would like to feel free 

to collect data until they have either 

conclusively proved their point, conclusively 

disproved it, or run out of time, money, or 

patience." 

Anscombe (1963) simply makes the blunt statement "Sequential analysis is a 

hoax." These comments should be qualified, of course, to the extent that 

design will depend on the stopping rule. In other words, choosing between two 

sequential designs obviously involves consideration of stopping rules. Indeed, 

the most difficult part of (theoretical) sequential (decision) analysis is that 

of deciding, at a given stage, whether to stop sampling or to take another 

observation (i.e., choosing the stopping rule). Much of the work done in 

classical sequential analysis has addressed this problem, and is hence of 

considerable relevance. 

The other desirable implication of the SRP is that analysis of an 

experiment can be done objectively, in the sense that it is no longer necessary 

to know the experimenter's intentions towards stopping. It seems very strange 

that a frequentist could not analyze a given set of data, such as (x,,...,x ) 

in Example 20,if the stopping rule is not given. If the experimenter forgot to 

record the stopping rule and then died, it is unappealing to have to guess his 

stopping rule in order to conduct the analysis. As mentioned earlier, it was 

apparently this feeling, that data should be able to speak for itself, that led 

Barnard to first support the Stopping Rule Principle. 
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The above idea is actually a general consequence of the LP, and is 

useful to apply in areas other than optional stopping. Consider the following 

example. 

EXAMPLE 22. An experiment was conducted with two treatment groups (T, and T?) 

and a control group (C), the outcomes for each experimental unit being simply 

success (S) or failure (F). The data was 

12 

12 

In analyzing the results, the experimenter noted that, in comparing T, with C, 

a standard analysis under the null hypothesis of no treatment effect was not 

significant at level a = .1 (one-tailed), but that if the patients in T2 and C 

were pooled, then T, was significantly better at the a = .02 level. The 

experimenter went on to say that T, was really the treatment of interest and 

that T? was thought to have no effect but was just included for thoroughness, 

and hence that pooling T2 and C is acceptable. 

To the criticial appraiser, this creates doubts concerning 

hypothesis selection and confirmation from the same set of data. On the other 

hand, maybe the experimenter really was planning to pool Tp and C all along 

(and was sure T? was no worse than C), an especially plausible possibility 

considering that only 10 patients were given T?. In any case, it is discon- 

certing that to analyze the problem from a frequentist perspective we have to 

know what the experimenter's intentions were. Trying to analyze hard data 

by guessing what the experimenter was thinking before doing the experiment 

seems rather strange. (Of course, a Bayesian won't necessarily be able to 

avoid such considerations, since the experimenter's statements may well affect 

prior probability judgements. The uncertainty will be up front in the prior 

where it belongs, however, with the data speaking for itself through the 

likelihood function.) 
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4.2.4 Criticisms 

The rosy statements in the previous section concerning the SRP can 

be viewed as hopelessly misguided by frequentists, since frequency measures are 

so dependent on stopping rules. Consider Examples 20 and 21, for instance. 

EXAMPLE 21 (continued). In the fixed sample size experiment, X. would be an 

unbiased estimator of ? for either k = 1 or 2. If one were to ignore the 

2 
stopping rule, t , in Case 2, however, and still use the sample mean as the 

estimator, a "problem" of bias arises. Indeed, the sample mean, 5L, has 

e?"?? 
? 

Vxi=1)Wxf1] 
+ 

Vxi=0^c*2lxr?i 

= ? + 
? ?(1-?), 

which is biased upwards. Thus if a conditionalist stated he would be using 

2 
5L, regardless of the stopping rule, the experimenter could use t and "make ? 

appear larger than it really is" (if desired). 

EXAMPLE 20 (continued). This example has been extensively discussed, in terms 

of its relationship to the SRP and the LP. Armitage (1961) published (to our 

knowledge) the first such discussion. Basu (1975) gives a particularly 

thorough examination of a version of the example. For definiteness in highlight- 

ing the "paradox," let us assume that a 95% "confidence interval" for ? is 

desired, and that an "objective" conditionalist states that, if a fixed sample 

of size ? were taken, he would use the interval 

(4.2.4) Cn(in) 
= 

(??-(1.96)?^,?? 
+ (1.96)n^). 

Of course, he would not interpret confidence in the frequency sense, but 

instead would (probably) use a posterior Bayesian viewpoint with the noninform- 

ative prior density p(?) = 1, which leads to a 7?(xn,n~2) posterior distribution 

for ? (also, the usual fiducial distribution and the likelihood function for 

?). 

Suppose now that the experimenter has an interest in seeing that 

? = 0 is not in the confidence interval. He could then use the stopping rule 
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in (4.2.3) for some ? > 1.96. The conditionalist, being bound to ignore the 

stopping rule, will still use (4.2.4) as his confidence interval, but this can 

never contain zero. Hence the frequentist probability of coverage of (4.2.4), 

namely 

2 

?(?) = 
Pq (Cn(Xn) 

contains ?), 

is such that r(0) =0 and (by continuity) ?(?) is near zero for small ?. The 

experimenter has thus succeeded in getting the conditionalist to perceive that 

? t 0, and has done so honestly. 

Examples 20 and 21 are typical of how the SRP (or the LP) seems to 

allow the experimenter to mislead a conditionalist. The "misleading", however, 

is solely from a frequentist viewpoint, and will not be of concern to a 

conditionalist. Before discussing why, two comments about Example 20 should 

be gotten out of the way. 

(i) Use of a stopping rule, such as that in (4.2.3), can be chancy for an 

experimenter if ? = 0 is a real possibility, since then ? is likely to 

be extremely large. (This has no real bearing on the arguments here, 

however.) 

(ii) A Bayesian conditionalist might not completely ignore a stopping rule 

such as that in (4.2.3), if he suspects it is being used because the 

experimenter thinks ? might be zero. The Bayesian might then assign some 

positive prior probability, \, to ? being equal to zero, in recognition 

of the experimenter's possible knowledge. (The stopping rule is affect- 

ing only the prior, however, not "what the data says.") A Bayesian 

analysis in this situation is strikingly different than that in the 

"noninformative" case. Indeed, as a particular example, if the ? f 0 are 

given prior density (1-x) times a 7?(0,p ) density, then the posterior 

probability that ? = 0, given the observation ? = Kn 2, is 

p(0|?? 
= Kn"*) = [l^x^-D?Hnp2)-^^2^^2)]-1. 
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2 
For some specific numbers, suppose that p = 10, ? = 3, and ? = 10,000. Then, 

p(0|?? 
= 3n'2) = [??^-??^dd)]"1. ? 

For moderate ?, this says that ? = 0 is quite plausible when ? is large, even 

though ? is three standard deviations from 0. (This is essentially 

"Jeffrey's" or "Lindley's" Paradox.) 

Finally, let us return to Examples 20 and 21 and see if the 

conditional perspective might not after all be more intuitively appealing. 

The use of a biased estimator in Example 21 is really not that troubling, since 

bias has long been a suspect criterion (especially when compared to, say, the 

plausibility of the Weak Conditionality Principle). We will concentrate on 

the more disturbing Example 20, therefore. 

EXAMPLE 20 (continued). First of all, the likelihood function for ? (when we 

stop at time n) is proportional to a 7?(x ,n"2) density. This clearly indicates 

that any particular value of ? near ? is more plausible than a value far from 

? . The interval in (4.2.4) is a reasonable choice from this viewpoint, 

although other conditionalists might vary the constant 1.96 or shift somewhat 

towards a suspected prior mean. 

Contrast this with the rather unreasonable way in which a frequen- 

tist must behave to obtain, say, coverage probability of at least .95 for all 

? when ? is large. It can be shown that a frequentist should stick to 

connected intervals (to minimize size for a given coverage probability) and 

that, when (say) xn 
is slightly bigger than Kn"* and ? is fairly large (which 

will typically be the case for large ? and the stopping rule (4.2.3)), these 

intervals must usually include both zero and ? . Hence, in order to ensure the 

desired coverage probability at zero when ? is large, a frequentist will modify 

(4.2.4) by replacing a small portion of this interval of "likely" ?, such as 

(xn 
+ 

(1.96-en)n""2, ?^ 
+ (l.96)n"^), with a big interval, [0, xn-(l .96)n"*), 

of unlikely ?. This seems unreasonable. The conditionalist knows that an ? 

satisfying xn 
> Kn"2 (with ? very large) could have arisen from ? = 0, but 
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values near x are so much more likely to be the true ? that he "bets" on 

these. It should be reemphasized that the conditional analysis is predicated 

on ? = 0 having no special plausibility; if it does, the Bayesian conclusions 

(see (ii) above) will be quite different. 

The above attempts are probably unlikely to satisfy a frequentist's 

violated intuition, if the frequentist is not practiced in thinking condition- 

ally. As Savage said in Savage et. al. (1962) 

"I learned the stopping rule principle 

from Professor Barnard, in conversation 

in the summer of 1952. Frankly, I then 

thought it a scandal that anyone in the 

profession could advance an idea so 

patently wrong, even as today I can scarcely 

believe that some people resist an idea so 

patently right." 

Of some force may be the argument that, if one's intuition gives contradictory 

insights, it should be trusted in simple situations, such as Example 2, rather 

than in extremely complex situations such as Example 20. The next section 

also lends support to the case for ignoring the stopping rule. 

4.2.5 Stopping Rules and Inadmissibility 

In Section 3.7 it was argued that behavior in violation of the LP, 

but consistent with the WCP, tends to be decision-theoretically inadmissible. 

We rephrase the conclusion, in this section, to show that behavior dependent 

on the stopping rule will often be inadmissible. 

on Suppose we have possible observations ?-,,??,..., as in Secti 

1 2 
4.2.2, and are considering two possible stopping rules, t and t , with 

12 12 
respective stopping sets {Am) 

and {Am>. 
The stopping rules, t and t , are 

presumed to have the possibility of yielding common data, ??; i.e., there is 

1 2 
presumed to be some n* and Ac An* ? An* such that A has positive probability 

12 
? ? 

in both ?t and ?t for all ?. Examples 20 and 21 are of this type, since the 
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2 
] 2 

sets A. have positive probability for all ? (under both ?t and ?t ), so that 

2 
A = 

Ak 
works. 

Suppose that we face a decision problem concerning ?, consisting of 

choice of an action a ? G under a loss function L(a,e) which is strictly 

convex in"a" for each ?. (More general loss functions can often be handled 
1 2 

also.) Proposed for use in ?t and ?t , respectively, are decision rules 

d,()(?) and d2(??). If, now, the stopping rule is felt to make a difference, d^ 

and d? should differ for at least some of the possible common observations. 

Thus we suppose that there is some A* c A for which 

(4.2.5) d?(??*) ? d2(??*) 
for xn* ? A*. 

Consider, next, the mixed experiment, E*, consisting of observing 

1 J 
J = 1 or 2 with probability ~- each and then performing ?t . This is a well 

NJ 
defined sequential experiment with random observation (J, ? ), N, being the 

J 
stopping time for ?t . If the WCP is followedfor E* and (4.2.5) holds, then 

the decision rule, d, used for E* should satisfy 

d((1.$?*>) f d((2,??*)) for xn*<E A*, 

(Alternatively, this inequality should hold on some A* if it is felt that the 

stopping rule actually used - i.e., the value of j - really is relevant to 

the decision.) But, the estimator 

/ \ d(?,$?*)) 
+ 

\ d((2,??*)) if ? = ?* and xn e A* 

**((j>;*n)) = 

\ ?((j,?n)) otherwise 

satisfies (because of the strict convexity of L) 

(4.2.6) L(?*((j,xn*)),e) < 
\ ?(d((1,??*)),?) + 

\ ?(d((2,??*)),?). 

1 2 
? 

Hence, letting ?*, ?O, and E. stand for expectation in experiments ?*, ?t , and 

?t , respectively, the frequentist risk (in E*) of d* satisfies 
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N1 
R(e,?*) = E*L(?*((J,X J)),e) 

? 
\ eJl(?*((1,X ])),?) + 

\ ?2?(d*((2,? 2)),?) 

< 1 
eJl(6((1,X ])),?) +1e2L(6((2,X 2)),?) 

= E*L(5((J,X ?)),?) 

= R(e,?). 

(The inequality above is strict because of (4.2.6), the fact that A* has 
1 2 

positive probability for all ? in ?t and ?t , and providing R(e,?) is finite.) 

This establishes the inadmissibility of allowing the stopping rule to affect 

the decision making. 

EXAMPLE 21 (continued). Suppose that the goal is to estimate ? under squared 

error loss, and that, because of the bias in use of X^ for the stopping rule 

t , an estimator d0(? ) would be used (in ?t ) such that d0(? ) is not equal 

to x for at least one possible observation, say, ? = 1, ?, = 1. Let ?t be 

the fixed sample size experiment of size k = 1, and suppose that d,(?,) = ?. 

would be used for this experiment. However, the experimenter chooses between 

1 2 

performing ?t and ?t on the basis of a fair coin flip (J = 1 or 2). This is 

exactly the situation discussed above, and if the experimenter follows his 

"instincts" and uses different estimates (depending on J or the actual 

stopping rule employed)when x, = 1 is observed, he will be behaving in an 

inadmissible fashion. 

The development above is just a special case of that in Section 

3.7, which in turn is basically just a version of the Rao-Blackwell theorem. 

/ n* 
(Here, J is not part of the sufficient statistic for ? in E* when ? ? A*, 

and decision rules should be based only on the sufficient statistic.) The 

reason for explicitly giving the development in the sequential framework is 

to clearly exhibit the conflict between the frequentist desire for 

admissibility and the intuitive notion that the stopping rule used should 

matter. 
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with 

4.2.6 The General Stopping Rule Principle 

The SRP can be generalized to an essentially arbitrary sequence of 

experiments, and shown (in this generality) to follow from the RLP. Thus 

suppose we have available a sequence E,,E2,... 
of experiments (replacing the 

i.i.d. observations, X,,X2,..., 
of Section 4.2.2) consisting of observing X. 

on?.. We can consider, for each m, the composite experiment 
** m 

Em = (Xm, ?, {P"M consisting of observing Xm = (?,,...,??) on ?"1 = p ?, 
^ ? 'vim ? = 1 j 

probability distribution P"\ (If the experiments are independent, P? will 

simply by the product measure of the individual distributions onZ?.) 
j 

We consider sequential procedures in which we decide, after 

performing experiments E-,,...,? , whether or not to perform E ,. As usual, 

we can allow this decision to depend upon the outcome of an auxilliary chance 

mechanism, leading to the following general notion of a stopping rule. 

DEFINITION. A stopping rule is a sequence ^ 
= (t?,t,,...) in which t? ? [0,1] 

is a constant and t : X ?* [0,1] a measurable function on X for m >^ 1. 

The intention is that t (?m) represent the conditional probability 

of stopping after only m observations, given that we have taken m observations 

and have observed xm = (x,,...,xm). The nonrandomized stopping rules discussed 
*v> ? m 

in Section 4.2.2 are the special case where the t can only assume the values r m J 

0 and 1. When convenient, we shall regard xQ 
as a function on the one-point 

set ? = {0}, the "sample space" for the null experiment ? = (? , ?, {?,?})? ? 

with ?? the point mass at X 's only point for all ?. 

Now define X* = {(m,xm): m ? N, ?m ? Xm). For 

$m 
= 

(xi>---?xm) ? 2m and 0 < j < m, let ?m,j 
= 

(xr...,x,) ? r3 denote the 

initial segment; of course ? 
= 0 ? X no matter what ^m ? Xm might be. For 

each stopping rule,^,determi ne a family {P|} 
of measures on ?* by setting 

m-1 
m>J\w (vm\om/^m\ 

P?(m,A) 
= 

^ j^?I-tj?x^))^^)?^^) 
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for each m and Borei set Acf, With this definition, tq is the probability 

of performing E , i.e. of taking no data at all. After observing xm, t (xm) is ?/ m ^ 

the conditional probability of taking no more observations. 

If P?(2*) = 1 for all ?, then the procedure is certain to stop 
? 

eventually and ^ is called proper; otherwise t is improper and, for at least 

one ?, there is a positive probability (1-P?(%*)) that the sequential procedure ? 

would require sampling an infinite number of times. For a proper stopping 

rule, t, we can consider the sequential experiment 

E* = ((N,XN), ?, {?l})9 

where ? denotes the (random) stopping time. (It is notationally convenient to 

include ? as part of the observation although it could, of course, be 

? 
recovered from ?X .) 

The Stopping Rule Principle for this general setting is 

formalized in the following theorem, and is shown to follow from the RLP. 

THEOREM 5 (The Stopping Rule Principle). From the RLP, it follows that, for 

any (proper) stopping rule t, 

Ev(EUn,xn)) = Ev(En,xn) 

for {P?}-a.e. (n,x ), i.e. the evidence concerning ? in EX is identical with 

that for the fixed sample size experiment ? (with the observed r\), so that 

t is irrelevant. 

Proof. Pick ? ? IN and let U, c ?* be the set of points (n,xn) with $n ? *? 

? ?-? ? ? 
satisfying 0 < t (? ) p (1-t.(? ,J)), and let c: U, ?*? (0,?) be the indicated 

n * 
j=o 

J * ' 

product. Map U1 
onto U2 

= 
{?n ? Xn: (n,xn) ? ??> by setting f(?,^?) 

= 
?n. 

Then f is one-to-one and bimeasurable, and 

P>) 
= / [l/cty)K(d?). 

f"1(A) 

The assertion of the theorem now follows from the RLP. || 
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Notice that T was not required to be a subset of some Euclidean 

space, nor was {P^} required to be a dominated family; thus even in situations 

where no version of the usual LP can apply, the SRP is valid (provided, of 

course, that the WCP and SP, and hence the RLP, are accepted). This was 

observed in Pratt (1965). 

4.2.7 Informative Stopping Rules 

Even the definition of a stopping rule given in the last section 

may seem somewhat narrow when compared with the vast possibilities for 

informal stopping discussed in Section 4.2.3. Stopping rules which appear to 

be more general can be created by introducing an auxilliary variable Y 

(possibly random), and allowing t , the conditional probability of stopping at 

stage m, to depend on the value of Y, as well as on j?cm. This actually adds 

very little generality, however, since the values of Y at each stage could 

simply be incorporated into the data X.. The following example illustrates 

the importance of sometimes doing this. 

EXAMPLE 23. Suppose X,,X2,... are independent Bernoulli (?) random variables, 

with ? - .49 or ? = .51. The observations, however, arrive randomly. Indeed, 

if ? = .49, the observations arrive as a Poisson process with mean rate of 1 

per second, while if ? = .51, the observations will arrive as a Poisson 

process with mean rate of 1 per hour. The "stopping rule" that will be used 

is to stop the experiment at the first observation that arrives after 1 minute 

has elapsed. One can here introduce Y = time, and write down the stopping 

rule in terms of Y and the X.. 

It is intuitively clear that this stopping rule cannot be ignored 

since, if one ends up with 60 observations, knowing whether the experiment ran 

for 1 minute or 2 j days is crucial knowledge. Incorporating Y into the data 

resolves all ambiguities, however. Thus, simply define Y. as the (random) 

time at which the i?observation arrives, and consider the experiment to 

consist of observing (?,,?,), (?2>?2),... 
. The stopping rule will be given 

by 

This content downloaded from 128.173.127.127 on Tue, 28 May 2013 20:57:09 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


CONSEQUENCES AND CRITICISMS OF THE LP AND RLP 89 

Tm(l(xTyl).(xm?^))) 

o if ym < ? 
m 

i 
ify?>i. 

and is of the form discussed in Section 4.2.6 (or even Section 4.2.2). The 

importance of the number of observations arriving during the time span of 

the experiment will be reflected in the portion of the likelihood function 

due to the y.. 

Slightly more generality might be needed than afforded by simply 

observing the auxilliary variables at the observation times (as in Example 23) 

and including them as part of the observations, but the idea is clear: 

consider all available observational information as part of the data X.. (Of 

course, some auxilliary information may be considered too informal to include 

as part of the data, and yet may have some effect on stopping, but such 

information should only be ignored if it seems relatively unimportant, in 

which case its effect on stopping can probably also be ignored.) 

Even within the above more general perspective on stopping rules, 

a difficulty might still arise. This difficulty is that the stopping rule 

might be unknown or partially unknown, in that cessation of the sequential 

experiment could depend on unobservable random quantities whose probability 

distributions are not completely known. Following the convention of Section 

3.5 and letting ? denote all unknown quantities, we could thus write a general 

stopping rule in terms of xm(xm,e). (Actually, by including a uniform random 

variable in ?, it would be possible to have the t assume only the values 

zero or one.) The general density on ?* (densities, and discreteness if 

necessary, being assumed to retain compatibility with Section 3.5) would then 

be 

f*((n,xn)) - 
[Vil-x^x^^e?Jh^^^?f^x"), 

where f"? is the density corresponding to ?". Again following Section 3.5, one 
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could write ? = (?,n), where ? is of interest and ? is a nuisance variable. 

If, for the observed (n,xn), x.(xn,J,e) does not depend on ? for j < n, and 

if ? is a noninformative nuisance parameter (see Section 3.5) for the fixed 

sample size experiments involving observation of Xn, then the LP and NNPP 

(see Section 3.5) imply that t is irrelevant. Such a t is called 

noninformative; otherwise t is said to be informative and the SRP will not 

apply. (Raiffa and Schlaifer (1961) introduced these terms.) 

We do not pursue the matter further because informative stopping 

rules occur only rarely in practice (providing all observational information 

is incorporated into the X., as in Example 23). There exists a certain amount 

of disagreement concerning this point, but the disagreement seems to be 

primarily due to the misconception that an informative stopping rule is one 

for which ? carries information about ?. This is not the definition of an 

informative stopping rule. ^Jery often ? will carry information about ?, but 

to be informative a stopping rule must carry information about ? additional to 

? 
that available in X , and this last will be rare in practice. 

4.3 THE IRRELEVANCE OF CENSORING MECHANISMS 

4.3.1 Introduction 

Another great simplification that application of the LP (or RLP) 

makes possible is in the handling of censoring. Data is often observed in 

censored form, and the mechanisms causing the censoring can be quite involved. 

In most such cases, the LP (or RLP) will imply that only the result of the 

censoring, and not the censoring mechanism or distribution, is relevant to 

conclusions about e. 

Section 4.3.2 considers the situation of fixed (nonrandom) 

censoring, and establishes a version of the irrelevance of censoring 

mechanisms called Censoring Principle 1. One of the implications of Censoring 

Principle 1 is that the evidential import of an uncensored observation, from 

an experiment in which censoring was possible, is the same as the identical 

observation from an uncensored version of the experiment. 
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Section 4.3.3 considers random censoring, and establishes 

conditions under which the distribution of the censoring random variable is 

irrelevant. The main condition is on the censoring mechanism itself, and 

leads to the concept of a noninformative censoring mechanism. This concept 

is surprisingly simple and powerful. It is not the case, however, that all 

sensible censoring mechanisms are noninformati ve, although many common ones 

are. This issue is discussed in Section 4.3.4. 

The Censoring Principle, as it applies to uncensored observations 

in nonrandom censoring, seems to be due to John Pratt (see Pratt (1961, 1965), 

his discussion in Birnbaum (1962a), and the discussion in Savage et. al. 

(1962)). The general Censoring Principles developed here and the concept of a 

noninformative censoring mechanism appear to be new, however. Before 

proceeding with these general developments, it is worthwhile to present an 

illuminating (and entertaining) example from Pratt's discussion of Birnbaum 

(1962a). The example makes a simple version of the Censoring Principle seem 

intuitively obvious. 

o 
EXAMPLE 24 (Pratt). A sample of 25 observations was taken from a 7?(?,s ) 

population, and inference about the population mean was desired. All observa- 

tions were found to lie between 72 and 99, and a standard normal analysis was 

performed by a frequentist statistician. The statistician reported the 

analysis to the experimenter, but, curious about the observed 99, asked the 

experimenter how high his measuring instrument (assumed to be perfectly 

accurate) read. The experimenter said that the instrument only read to 100, 

but that, if he had observed a reading of 100, he would have switched to 

another instrument which had a range of 100 to 1000. The statistician was 

happy with this response, and satisfied with a job well done. 

The next day the experimenter called about something else, and 

mentioned that he had just checked the high range instrument and found that it 

was broken. The statistician asked if the experimenter would have had the 

instrument repaired before completing the previous experiment, to which the 
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experimenter said no. The statistician then said that what were really being 

observed were observations, X., from the truncated distribution with the 

usual normal density for x. < 100 but the point mass 

? o(100) = 
/ -K? exp{- ~V (x-e)2}dx 

?,s 100 (2p)~2's 2s 

at ?. = 100. This, said the statistician, calls for a different analysis; for 

instance, the usual 100(l-a)% confidence interval for ? in the normal situation 

would no longer have probability of coverage of at least I-a in the truncated 

situation. The experimenter reacted to this with outrage, saying that he 

observed precisely what he would have observed had the high range instrument 

been working (all observations were less than 100)., and that the condition of 

an instrument never used in the experiment hardly seemed relevant to the 

information about ? obtained from the experiment. The frequentist statistician 

merely shook his head at the naivete of experimenters. 

4.3.2 Fixed Censoring and Equivalent Censoring Mechanisms 

Consider an experiment ? = (?, ?, {Pq}). Fixed censoring occurs when, 
? 

instead of X, one observes Y = g(X), where g is a known function from ? into 

y. Thus the experiment really performed is E9 = (?, e, {P.og }). (As ? 

usual, if Ac^ g"](A) = {x ? X: g(x) ? A},) 

EXAMPLE 25. Suppose X = 
(?^.,.,? ), where the X. represent the times of 

death due to cancer of patients in a cancer survival experiment. Suppose, 

however, that the experiment will last only ten years, so that the real data 

will, for the i? patient, be 

(4.3.1) Y. = 
(yJ.yJ) 

? 
(min?X^lO}, Ifo^ttf)) 

(i.e., the truncated survival time and an indicator as to whether the 

observation is or is not truncated). Thus 

(4.3.2) Y = g(X) = 
(Yr...,Yn). 

This is an example of what is commonly called type I censoring. Example 24 is 
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also of this type. 

EXAMPLE 26. Suppose that X = 
(X].Xn), 

but that the n-r largest of the X. 

will be truncated at the r^- largest. Thus let 

(4.3.3) Y. = 
(?,?) 

, 
??{?G?(G)}, ?[_.? j?^)). 

where 
X/^ <_ X/2% <....<_ X/p\ 

are the order statistics for X. Again 

(4.3.4) Y = g(X) = 
(?G...,??). 

This is an example of what is commonly called type II censoring. 

EXAMPLE 27. Suppose X = Rn, y 
= ? ? {0,1}, and for some fixed ? > 0, 

?(X,0) 

if |X| < ? 

(pX/|X|,l) if |X| > p. 

Then E9 represents the experiment in which the radius of X is truncated at p, 

but the direction, X/|X|, of X is faithfully reported. This is not a 

standard "type" of censoring, but fits easily within our framework. 

Our goal in this section is to indicate that the only effect a 

censoring mechanism should have on a conclusion is to convey knowledge concern- 

ing the actual location of ? in X. This may seem intuitively obvious, but 

Example 24 is a prime illustration of how this is not the case classically. 

We formalize this notion in the following definition. 

DEFINITION. Let ? = (?, ?, {P_}) be a given uncensored experiment, and 
? 

consider two fixed censoring mechanisms g, and g2? These mechanisms will be 

said to be equivalent on Ac X if, for all ? ? A, 

(4.3.6) g^tg^x)) 
= 

92?(92(?))? 

As a special case, a single fixed censoring mechanism, q, will be said to be 

equivalent to no censoring on A e X if g" (g(x)) = x for all x ? A. 
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The idea in the above definition is that, for censoring mechanism 

g., one observes Y. = g.(X) and that the only information communicated by the 

censored data, y., is that ? was in gT (y^). If (4.3.6) is satisfied, then 

g., and 
g2 

will always convey the same information (for ? ? A). And a g which 

is equivalent to no censoring (for ? ? A) conveys exactly the same information 

that ? does. In Example 24, it is clear that the censoring mechanism is 

equivalent to no censoring on A = {x: x. < 100, i = 1,...,25}; in Example 25, 

g is equivalent to no censoring on A = {x: x. < 10, i = ?,.,.,?}; and, in 

Example 27, g is equivalent to no censoring on A = {x: J ? j < p}. As an 

example of possible equivalence of two different censoring mechanisms, consider 

the following combination of Examples 25 and 26. 

EXAMPLE 28. Suppose X = (X,,...,X ), where the X. can assume only positive 

integer values. Let g?. be as in (4.3.1) and (4.3.2), g2 be as in (4.3.3) and 

(4.3.4), and A = {?: ?/ ? = 10}. It is easy to check that, for ? ? A, 

9;?1(g1(x)) 
= 

g^^W) 
= iz ? A: z. = ?. if x. < 10}. 

Hence the type I and type II censoring would, in this case, be equivalent on A. 

(Note that classical analysis tends to treat the two types of censoring 

differently.) 

We now formally state, and justify, the principle that equivalent 

censoring mechanisms convey the same information about ?, for ? ? A. 

91 92 
CENSORING PRINCIPLE 1. If E and E are two experiments arising from 

censoring mechanisms equivalent on A for an experiment E, then 

(4.3.7) Ev(E9\ 9l(x)) 
= Ev(E92, g2(x)) 

for all x ? A if X is discrete, and for {P } - a.e. x ? A in general. As a 

special case, if g" (g(x)) = x for all x ? A, then (4.3.7) can be replaced by 

(4.3.8) Ev(E9, g(x)) = Ev(E.x). 

Censoring Principle 1 follows from the LP in the discrete case 
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since, by definition, the probabilities of g-.(x) and g2(x) are equal (to 

pQ(94 (g<(x)))) for all ?. In the general case it follows from the RLP by 

setting U] 
= 

{g^x): 
? ? A}, U2 

= 
{g2(x): 

? ? A}, cp(g-,(x)) 
= 

g2(x) 
and 

c(g-j(x)) 
= 1 for ? e A. 

The greatest practical use of Censoring Principle 1 is in the case 

where a censoring mechanism, g, is equivalent to no censoring on A, as was the 

case in Examples 24, 25, and 27 when no censoring happened to occur. The 

censoring mechanism can then be completely ignored. 

4.3.3 Random Censoring 

To generalize the notion of censoring to include random censoring, 

let ? ? ? be a censoring variable with probability density ? on ?. (To 

avoid technicalities, discreteness of ? and X will be assumed until the end 

of the section.) Suppose that X and ? are independent (without which very 

little progress can be made), and that 

y = g(x,A) ey 

is observed. The actual experiment performed can thus be written 

Eg,v = (Y> 9t {fg,v})> 

where the density of Y is 

(4.3.9) f9'v(y) = 
I fe(x)v(A) 

. 

?(?,?): g(x,x) = y} 

EXAMPLE 29. Suppose X represents the time at which a patient in a cancer 

survival study would suffer death due to cancer, and let ? represent the 

death time due to competing risks. (We will sidestep the issue of whether or 

not X and ? can be well-defined.) The actual observation for the patient will 

be 

(4.3.10) Y = (y\y2) = g(X,x) = (min{X,x}, 
1[0>?](?))> 

1 2 
i.e., the actual time of death, ? , and an indicator, Y , as to the cause of 

death. Generalization to involve data from ? patients and a variety of 
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competing risks is straightforward, and all the subsequent theory will apply 

equally well to such a generalization. 

The LP, of course, implies that the likelihood function, determined 

from (4.3.9) for the observed y, contains all the information about ? available 

from the experiment. The difficulty in utilizing this likelihood function lies 

in the presence of ? in the expression: typically, ? will be unknown (and 

complicated). If, however, v were judged to convey no information about ? (see 

Section 3.5 and Section 4.3.4) and f9,v(y) could be shown to factor into 
? 

separate terms involving ? and v, then the difficulty would disappear. This 

would result in an enormous simplification of the analysis, and is another of 

the great practical gains that can be realized through adoption of the LP. 

The following definition gives the key characterization of censoring mechanisms 

for which this program is possible. 

DEFINITION. A censoring mechanism g: ? ? ? ?* y is noninformative at y 6 y if 

g" (y) ?s cl product set, i.e., if 

g" (y) = A ? ? , where A 
y 

c X and ? c ?. 

EXAMPLE 29 (continued). Here 

g'W.y2)) - 

(y1?-) * iy1} if y2 = o 

{y1} ? [y1,?) if y2 = l, 

so that g is a noninformative censoring mechanism at all y ? y. 

EXAMPLE 27 (continued). Consider the situation in Example 27, but assume that 

? is now a random variable (and, hence, replace g(X) by g(X,p)). Since 

{y1} x-C|yV-) if y2 = ? 

g^UyV)) 

{cy1: c > 1} ? {(y1)} if y2 = 1, 

g is a noninformative censoring mechanism at all y ?y. 
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If g is noni riformati ve at y, then (4.3.9) becomes (employing also 

the independence of X and ?) 

(4.3.11) f9'v(y) = [ I f (x)][ ? ?(?)], ? 
x6Ay 

? 
X?By 

so that (for known v), the LP implies that all information concerning ? from 

the experiment is contained in 

(4.3.12) i*(e) = 
I f.(x). 

y 
x?Ay 

? 

If ? is unknown but "noninformative" for ? (see Sections 3.5 and 4.3.4), the 

same conclusion follows from the NNPP in Section 3.5.5. These conclusions can 

be summarized as follows. 

CENSORING PRINCIPLE 2. If X and ? are discrete, X and ? are ind?pendant, g is 

noninformative at the observed y, and either ? is known or it is unknown but 

noninformative, then Ev(E9,v,y) depends only on ?*(?) (from (4.3.12)). 

Note that this principle does not say that censoring has no 

effect on the analysis. Indeed, ?*(?) will often fail to be proportional to 

??(?) 
= 

fn(x). which would be used if no censoring occurred. Another point is 
? ? 

that the only censoring mechanisms which can guarantee that Ev(E9,v,y) does not 

depend on ? (for ? as in the principle) are noninformative censoring mechanisms. 

This is established in the following theorem. 

THEOREM 6. If g: X * h -+y is not a noninformative censoring mechanism at y, 

then there exists {f } on X such that Ev(E9,v,y) depends on v. 
? 

Proof. If g (y) is not a product set, it follows that there exist two points 

??? ?? ? ? such that either 

?1 
= {?: 9(?,??) 

= y and g(x,x2) f y}, 

or 

Q2 
= ??: 9(???1) t y and g(x,x2) 

= y}, 

or both are nonempty. Consider ? that are concentrated on {?,,X2h and define 
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O3 
s t*: gU?^) 

= 
g(x,A2) 

= y}. 

Equation (4.3.9) can then be written 

f^,V(y) 
= 

vU^P^n,) 
+ 

?(?2)??(O2) 
+ 

??(?3). 

= 
v?X^CPq??^ 

- 
Pe(?2)] 

+ 
?T(O2 

U O3)? 

Thus, as long as {f } is chosen so that 
[?^?^-?^?^] 

and 
??(?2 U 

?3) 
are 

not proportional as functions of ?, the likelihood function will depend on 

?(?,). || 

Finally, we leave the discrete setting and develop a very general 

version of Censoring Principle 2, based on the RLP. We will assume that ? and 

y are LCCB spaces, that ? is a Borei probability measure, and that 

g: ? ? ? +y is a Bore! function. The actual experiment of observing 

Y = g(X,x) is E9*v = (?, ?, {P9,v}), where 

(4.3.13) P9'V(C) = 
(??*?)({(?,?): g(x,X) ? C}). 

The definition of a noninformative censoring mechanism at y remains unchanged, 

and leads to the following principle. 

CENSORING PRINCIPLE 2'. Let Z a y be a Borei set such that g is a noninforma- 

tive censoring mechanism at all y ? C Suppose v-, and v? are Borei probability 

measures (for \) which are mutually absolutely continuous on C* = U ? 
y?C 

y 

(where g" (y) = ? ? ? ). Then, if either (i) v, and v2 are known, or (ii) 

they are unknown but noninformative (see Sections 3.5 and 4.3.4J., it should be 

the case that 

. 9?vl 9>v? 9??? 
(4.3.14) Ev(E ',y) = Ev(E ?,y) for {?? '}-a.e. y ? C. 

The conclusion in Censoring Principle 2* is not quite as strong 

as that in the original Censoring Principle 2, in that evidentiary equivalence 

is only stated to hold among equivalence classes of ? (on C). Of course, if 

the possible ? under consideration are known to be absolutely continuous with 

respect to some measure y, then it can be stated that ? is irrelevant (if it is 
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noninformative). For instance, in Example 29 it may be reasonable to assume 

that ? is absolutely continuous with respect to Lebesgue measure, and is thus 

ignorable (if noninformative). 

It seems likely that Censoring Principle 2' is a general consequence 

of the RLP. This is because one can define (see the RLP) U, = IL = C, f to be 

the identity map, and 

(4.3.15) c(y) = c((x,x)) = 
v2(dx)/v1(dx), 

and seek to show that (for any Borei subset, D, of C) 

(4.3.16) ?? Z(D) = 
/c(y)Pe '(dy). 

Since (4.3.16) is essentially (3.4.1) of the RLP (where 1/c has been replaced 

by c for convenience in what follows), Censoring Principle 2' would be an 

immediate consequence of the RLP (and the NNPP of Section 3.5, if the v.? are 

unknown but noninformative). And (4.3.16) seems to be a correct equation: 

it can trivially be verified to hold in the discrete setting, for instance. 

Unfortunately, severe measurability difficulties (due to the possible nasty 

nature of g) prevented us from verifying (4.3.16), in general. Under 

additional conditions, however, we were able to show that (4.3.16) does hold 

for some positive c, which suffices, by the above argument, to establish 

Censoring Principle 2' as a consequence of the RLP. Furthermore, though 

somewhat technical, these additional conditions involve only the censoring 

mechanism, g, and not the PQ or v. This makes general verification of the ? 

irrelevance of any specific censoring mechanism possible. 

THEOREM 7. Let g be a noninformative censoring mechanism at all y ? C, and 

suppose that there exist sequences {f } and {? } of measurable mappings 

f?: X -> X and ? : ? -> ?, such that the functions g (?,?) ? g(cp (?),??(?)) 

are countably valued and the o-algebras, Jt, 3 , and ? . generated on ? ? ? by 

g(XjX)> f?(?)? and g (?,?), respectively, satisfy the conditions 

1> *nv*nc;,n+lv-*n+l 
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00 oo 

?) ? V Jr = Jr. 
m=l n=m 

Then for any two probability measures v, and Vp on k, which are mutually 

absolutely continuous on C, 

(4.3.17) /h(y)P ,V2(dy) = 
/h(y)c(y)P '^(dy) 

C C 

for every bounded measurable function h on y and every probability measure ? 

on X. (Note that (4.3.16) follows trivially from (4.3.17). Hence, under the 

above conditions, Censoring Principle V is a consequence of the RLPJ 

Proof. We will prove the theorem for C = y. The modifications needed for 

arbitrary C are obvious. For ? >_ 1 let {y?}^?! be the countably many values 

of g*? the s-algebra & is generated by the countable partition 

pn = {?1? ? B?} of ? ? ? into the measurable rectangles (or product sets) 
j j 

Aj 
x 

Bj 
= 

9'?^' 
where 

Aj 
= 

V~n (A n} 
and 

Bj 
= ?"1{? n); here (as before) 

Ay 

and ? are determined by the relation g (y) = ? ? ? . For (?,?) e ? ? ?, 

define 

^(bJJ/v^bJ) ifv^Bj) >0, 

(4.3.18) cn(x,x) 
= 

if 
vl(Bj)=v2(Bj} 

= ?* 

c(x,x) = lim sup c (?,?), 
?-*? 

where j is determined by the relation gn(x,x) = yl?. J 

A direct computation verifies that, for any probability measure ? 

on %, 

*nV<^? 

???? ?9^?) 
<4?3?19* "cn 

? E 
f?? 

Indeed, to show this it is sufficient to take any bounded measurable function, 

h, on ? ? y and note that 
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/ /h(9n(x),gn(x,x))cn(x,x)P(dx)v1(dx) 
?f A 

j=l a" 
j 

>?(?") 
1 J 

J 

= 
/ ?f?(?).9?(?.?))?(??)??a?). 
X A 

By (4.3.19) and Condition (i), cn 
is a uniformly integrable martingale on 

(? ? ?, (3 ? 
^?)?>?? ???-|), 

for every P. Hence c converges to c with 

???-,-measure 1 for every P, and satisfies 

???1 
(4.3.20) cn 

= E [cl^v^] 
for every n >1. 

Since we may take ? to be concentrated on any single point x? x> we have 

actually shown that c (?,?) converges to ?(?,?) for every ? e ? and ?,-almost 

every ? in ? (where the exceptional set of v,-measure zero may depend on x). 

It is obvious from the definition of c that c (?,?) depends on ? and 

? only through y? = 
gn(x,x)? and therefore that c is J -measurable. It 

00 
follows that c is measurable over ? j for each m, and so (by Condition (ii)) 

n=m 

c is measurable over A Since any .^-measurable function may be written as a 

Borel-measurable function of g, there exists some positive function, c, on y 

with 

(4.3.21) ?(?,?) = Cog(x,x). 

Now let h be bounded and measurable on^, let ? be the probability 

measure on x9 and set 

???9 
(4.3.22) Rn 

= E 
?[hog|3n 

? 
^]. 

Again the martingale convergence theorem implies that h (?,?) converges to 

h?g(xa) for ???,-almost every (?,?), since h?g is ^measurable and 
CO 00 

Conditions (i) and (ii) imply that <?c ? ? c: v (s ? ? ). By Lebesgue's 
n=l n n=l n n 

dominated convergence theorem, (4.3.20), and (4.3.19), 
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/he dP 
' ] = / /hog cog P(dx)v,(dx) 

y z h 

= lim / /he P(dx)v,(dx) (by DCT) 
?-*? ? ? 

p 

= lim / JR c 
Pfdxjv^) (by (4.3.20)) 

?-*? % ? 

= lim / /h P(dx)v^) (by (4.3.19)) 
?-*? ? ? 

n ? 

= 
/ /hog P(dx)v^) (by DCT) 
X h 

g,v2 = 
/h dP \ 

V 

This verifies (4.3.17) and completes the proof. || 

Remark 1. In case it is possible to find {f?} 
and {? } so that ^ cjr ^, 

Condition (i) in the theorem may be eliminated and Condition (ii) can be 
00 

simplified to ? i = jr. 
n-1 n 

Remark 2. If 
f? 

and ? are themselves countably-valued, then obviously g is 

also, so the theorem applies if Conditions (i) and (ii) are satisfied. 

EXAMPLE 29 (continued). Letting <a> denote the closest integer to a (the 

larger integer in case of a tie), define 

f?(?) 
= 2~n <2nx> and 

??(?) 
= 2*n <2nx>. 

It is straightforward to verify that Conditions (i) and (ii) in Theorem 7 are 

satisfied, and hence that Censoring Principle 2' follows in complete 

generality from the RLP (for this situation). 

EXAMPLE 27 (continued). Let Pn 
= {A1?} be a sequence of partitions of the 

unit sphere (in R ) into finitely many Borei sets such that ? +, refines p and 

lim max diamiA'J) 
= 0. 

?-*? j<Jn 
J 
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Let {?.} be a collection of points such that ?!? ? A^, and define 

f (x) = ?2"??" if i ?2n|x| < i+1 and x/|x| e An, ?? J J 

??(?) 
= k2"n if k < 2% < k+1. 

Again the Conditions (i) and (ii) of Theorem 7 are easily verified, so that 

this censoring mechanism is also generally irrelevant. 

4.3.4 Informative Censoring 

It is, of course, not always the case that the censoring mechanism or 

distribution can be ignored. There are very few instances of fixed censoring 

wherein the mechanisms can be labeled informative, so we will concentrate in 

this section on random censoring. 

The most common reason for being unable to ignore the censoring 

distribution, v, in random censoring is dependence of the random variable X 

and the random censoring variable ?. In Example 29, for instance, one may 

have a non-cancer death which occurred because cancer substantially lowered 

overall health. Indeed in competing risk theory, in general, dependence 

between X and the censoring variables may be the rule rather than the exception. 

Such dependence makes Censoring Principle 2 inapplicable, and indeed ? (?) 

will typically depend upon ? in such situations. (The LP is still valid, 

of course.) 

A second possible reason that the censoring distribution might be 

informative is that the censoring mechanism, g, might fail to be noninformative. 

As a very simple example, suppose the actual observation is 

Y = g(X^) = ?+?, 

where X ? X = (0,~) and ? ? ? = (0,?). It is easy to check that g" (y) is not 

a product set in ? ? ? for any y, so that g clearly fails to be noninformative. 

For such g, ? (?) will typically depend on v. 

A third reason that ? might not be ignorable is that ? will often be 

unknown, and there could be some "prior" relationship between ? and ?. Again, 
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the notation of Section 3.5 is convenient here. Thus let ? stand for all 

unknown aspects of the situation and write ? = (?,?), where ? is of interest 

and ? is a nuisance variable (presumably containing unknown aspects of the 

distribution, v, of ?). For instance, if X * ? and ? ^ ? are similar 

competing risks, there might well be suspected relationships between ? and ? 

which prevent ? from being ignored (even if X and ? are independent and g is 

noninformative). We will not repeat the discussion of Section 3.5 concerning 

when and why ? (and hence ? ) can be ignored in such situations. 

A final kind of informative censoring should be mentioned, even 

though it is not censoring in the formal sense we have defined. This is 

censoring in which censored data is simply not observed or recorded. Thus, 

for the censoring mechanism described in (4.3.1) and (4.3.2), it could be the 

case that an X. > 10 is not observed or even known to have existed. Such a 

situation is easily dealt with by recognizing that the relevant probability 

distribution of the observed X. is the conditional distribution, given that 

X. <_ 10. The censoring mechanism will usually enter into this conditional 

distribution in a nonignorable fashion, however. 

Interestingly enough, this omission of data due to censoring can 

arise from the methods of reporting data (c.f. Dawid and Dickey (1977)). An 

obvious example is that of a trade journal which only publishes results of 

experiments which provide "significant" evidence according to some criteria. 

The data of interest, for a given issue, would be all data from experiments on 

that issue, but only that data leading to "significance" will become available; 

the rest will be censored. This is a very complicated problem, and it is not 

at all clear how to analyze the situation. The censoring of the journal 

clearly can not be ignored, however. 

4.4 SIGNIFICANCE TESTING 

4.4.1 Conflict with the LP 

Significance testing of a hypothesis (used here in the sense of 

P-values, rather than a-level testing) is viewed by many as a crucial element 
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of statistics, yet it provides a startling and practically serious example of 

conflict with the LP. A significance test of the hypothesis HQ, that X has 

distribution ? , proceeds by defining some statistic T(X), where large values 

of ? supposedly cast doubt on HQ, 
and then calculating, for the given observa- 

tion x, the significance level (or P-value) of x, 

(4.4.1) ? = P?(T(X) > T(x)) = 
[ P?(dy) 

iy:JT(y)iT(x)} 

(i.e., the probability under ? of observing ? or something more "extreme"). 

If this is small, then one supposedly doubts that HQ could be true. General 

discussions of significance testing (including discussions of important 

practical issues such as "real" versus "statistical" significance) can be 

found in Edwards, Lindman, and Savage (1963), Hacking (1965), Morrison and 

Henkel (1970), Edwards (1972), Cox and Hinkley (1974), Dempster (1974a,b), 

Pratt (1976,1977), Cox (1977), Barnard (1980), Good (1981), Barnett (1982), 

Berger (1985), Hall and Selinger (1986), and Berger and Delampady (1987). 

A very common setting for significance testing is the parametric 

framework of testing HQ: ? = 
eQ versus H-, : ? f 6q. Then the null distribution, 

? , is simply Pft in our usual notation (or f (?) if densities exist). In 
?0 ?0 

this parametric setting it is clear that reporting significance levels violates 

the LP, since significance levels involve averaging over sample points other 

than just the observed ? (see (4.4.1)). The extremely serious practical 

problems that can result are discussed in Section 4.4.2. 

Significance testing is also frequently used when only a single 

model ? is being contemplated. Testing of fit to a specified model is a 

common example. Since only one probability distribution is then involved, 

there is no likelihood function; it is hence often argued that the LP cannot 

apply to such a situation. Arguments to the contrary will be given in 

Section 4.4.3. 

4.4.2 Averaging Over "More Extreme" Observations 

The logic behind including all data "more extreme" than the given 

x, when calculating p, is not particularly convincing. Consider the following 
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106 THE LIKELIHOOD PRINCIPLE 

artificial example, related to an example in Cox (1958). 

EXAMPLE 30. Suppose, under PQ and P-j, respectively, that X has the 

distributions given in the following table. 

Pn(x) 

^(x) 

.75 

.70 

.14 

.25 

.04 

.04 

.037 

.005 

.033 . 

.005 

If T(x) = ? were used as the test statistic for a significance test of either 

Pq or Pn (i.e., if large ? were considered "extreme"), and if ? = 2 were 

observed, then the significance level against PQ alone would be 

P0 
= 

po^L2) 
= -?. 

while the significance level against P-, alone would be 

P1 
= 

P^X l2) 
= .05. 

(We are not thinking here of testing PQ versus P,; the focus is on comparing 

significance tests of each separate hypothesis.) Thus ? = 2 would provide 

"significant evidence against P-, at the 5% level," but would not even provide 

"significant evidence against PQ at the 10% level." 

The concern here, of course, is that were PQ and P-. being 

considered simultaneously as possible models, likelihood reasoning would argue 

that they are equally supported by ? = 2; their likelihood ratio is then equal 

to one. When considered in isolation therefore, it is definitely strange that 

? = 2 provides such different significance levels for PQ and P,. 

Jeffreys (1961) clearly exposed the questionable logic behind 

significance levels, stating 

"...a hypothesis which may be true may be 

rejected because it has not predicted 

observable results which have not occurred." 

In the example here, neither 
PQ nor P1 "predicts" that x = 3 or ? = 4 will 

occur, and indeed they do not occur, but P-j would be rejected at the 5% level, 

while Pq would not, because P-j "predicts" these unob&eAve,d results even less 

than P~. 
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CONSEQUENCES AND CRITICISMS OF THE LP AND RLP 107 

Questionable logic could perhaps be overlooked if it made little 

difference in practice, but here the averaging over other observations will 

virtually o?bjodtjo have a profound effect. Consider the following example from 

Edwards, Lindman, and Savage (1963). 

EXAMPLE 30.1. Suppose X = 
(X-|,... ,Xn), where the Xi are i.i.d. ??(?,s2), s2 

known. The usual test statistic for testing HQ: ? = ?,> versus ?-,: ? f eQ is 

T(X) = 
/?"|?-?0|/s, 

where 5G is the sample mean. If t = T(x) is the observed test statistic, the 

significance level is then 

? = 2(1 -F(?), 

where F is the standard normal cd.f.. 

Consider, now, this testing scenario from a likelihood perspective. 

Were H?, given by ?,: ? = ?-,, it would have been natural to use, as the compar- 

ative evidence for the two hypotheses, the observed likelihood ratio 

Lfi 
= 

ffl (x)/ffl (x). 
?1 ?0 ?1 

Unfortunately, the actual H-, consists of all ? f eQ, making it difficult to 

define a true likelihood ratio, L, of HQ to H-j. It seems clear, however, that 

a lower bound on L is 

L = f (x)/sup fft(x). " 
?? 

???0 
? 

The evidence against HQ is certainly no stronger than U 

An easy calculation shows that, in this example, 

L = exp{- ^-t2}. 

The following table gives values of ?^ for various t, and also gives the 

significance levels associated with these t. (The Lg row is discussed later.) 
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108 THE LIKELIHOOD PRINCIPLE 

Table 1. Likelihood Ratio Bounds and Significance Levels 

1.645 1.960 2.576 3.291 

.10 .05 .01 .001 

.258 .146 .036 .0044 

Lg .644 .409 .123 .018 

The surprise here is that 1^ is much larger than p. When ? is .05 

for instance, L^ is .146, indicating that the data provides no motte, than 1 to 7 

evidence against Hq. 

IL itself can be argued to be misleadingly small because it is 

based on maximizing the "likelihood of H,." More reasonable is to use, as 

the "likelihood of H-j", 
an average of f (x) over all ? f 9q. 

This leads to 

a u)Q?.gkt<?d tikzJUhood natio 

Lg = 
fe (?)/ j fe(x) g(e)de, 

?0 
{???0} 

? 

where g is some density (or "weight function"). A Bayesian would choose g 

to be the conditional prior density on H-j, 
in which case Lg would be the 

BayeA ^acZoK. 

Regardless of interpretation, one can gain insight into the 

impact of such evidence measures by calculating lower bounds on Lg over 

reasonable classes of g. For instance, in Berger and Sellke (1987) it is 

shown that for any density g which is a nonincreasing function of |?-?O|, 

Lg is at least as large as L9, given in the last row of Table 1. The 

indication is thus that, when p= .05 say, the evidence against HQ is actually 

no stronger than 1 to 2j. (And if one tried "natural" functions g, one would 

find that Lg is typically 1 or more when p= .05; see, e.g., Jeffreys (1961).) 

The above example is quite disturbing. It indicates that the 

classical statistician and the conditionalist will often reach very different 

conclusions with the same data, precisely because one averages over all 

"extreme" sample points while the other uses only the observed data. (Berger 

and Sellke (1987) specifically show that this averaging is the source of the 
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CONSEQUENCES AND CRITICISMS OF THE LP AND RLP 109 

discrepancy.) Furthermore, the discrepancy between significance levels and 

conditional measures of evidence (e.g., L_, Lg or Lg, the posterior probability 

of Hq, and even conditional frequentist measures -cf. Berger and Sellke 

(1987)) has been shown to hold in a huge variety of significance testing 

problems involving a "precise" hypothesis. (Hq need not be a point null for 

the discrepancy to arise - see Berger and Sellke, 1987, and Berger and 

Delampady, 1987 - but if 
HQ is, say, a one-sided hypothesis, then the 

discrepancy may not arise - see Casella and Berger, 1987.) Note also that 

this discrepancy is very related (but not identical) to "Jeffreys's Paradox" 

or "Lindley's Paradox". These issues are explored, in depth, in Edwards, 

Lindman, and Savage (1963), Berger and Sellke (1987) and Berger and 

Delampady (1987). Other relevant works include Lindley (1957, 1977), 

Jeffreys (1961), DeGroot (1973), Dempster (1974b), Dickey (1977), Smith and 

Spiegelhalter (1980), Good (1981, 1984), Shafer (1982), Zellner (1984), 

Berger (1985), Delampady and Berger (1987), and Delampady (1986a,b). 

One defense of averaging over other observations (and at the same 

time an attack on the LP) that is sometimes advanced is the claim that it is 

necessary to consider what observations might have, occurred. It is, however, 

a misconception to believe that the LP fails to do this. Indeed, in determin- 

ing the likelihood function (or family of distributions for X), it is crucial 

to consider and compare the possible ? that might be observed. Once this has 

been done, however, and the data obtained, the LP states that only the observed 

??(?) is needed. 

4.4.3 Testing A Single Null Model 

When only ? has been formulated, it has been argued that signif- 

icance testing does not violate the LP because nothing resembling a likelihood 

function exists. Although correct in a certain formal sense, there are sever- 

al weaknesses to the argument. 

Perhaps the most serious weakness follows from the observations 

in the previous section: if averaging over "extreme" sample points is 
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109.1 THE LIKELIHOOD PRINCIPLE 

virtually a?oay? bad in testing a "precise" null when alternatives are given, 

it seems incredibly optimistic to believe that such averaging will be reason- 

able when alternatives are not given. The argument that "significance testing 

is the only available statistical procedure" is hardly persuasive when it is 

known that this available statistical procedure is bad for testing precise 

hypotheses. 

A second weakness of the argument that only ? exists is that 

implicit alternatives to ? often are present. Indeed, alternatives must 

enter, at least informally, into the choice of the test statistic T(x). 

For instance, in Example 30 it seems justifiable to use T(x)=x to measure 

"extreme" only if the alternatives that one has in mind are, say, alternatives 

which are stochastically larger than PQ (so that a large ? tends to support 

the alternatives more than it tends to support Pq.) As another example of 

the implicit presence of alternatives, consider chi-square testing of fit. 

EXAMPLE 30.2. Consider a statistical experiment in which ? independent and 

identically distributed random quantities X-j, X2, ..., Xn are observed from 

a distribution F. It is desired to conduct a significance test of the 

hypothesis Hq?. 
F = 

Fq, where 
FQ is a specified distribution. A common test 

procedure, when no alternatives are specified, is the chi-square test of fit. 

Chi-SquaAe. Te?t Pn.oce.duAe,: First, a partition U,?}? Q of the real line is 

selected. Then the sample frequencies of the ? observations in the cells of 

the partition are calculated. Let z = 
(z-?, ..., zm)t denote these frequencies; 

thus z^ 
= number of X.. "s in 

(a.^, a.]. Define 

e1=F(ai)-F(ai-l)*PF(a1-l <X<a1), 

6? 
= 

FQ(ai).F0(ai.1)=P0(ai_1<X1ai), 

and 

??(?]. .?.. e/. ??.(??.??)*. 

Then the chi-square test procedure is to calculate the test statistic 
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iti (?. -???)2 
t = ? ? , 

i=l 
??? 

and approximate the significance level by 

2 
where ? , is a chi-square random variable with m-1 degrees of freedom. 

The implied alternatives here arise from the fact that ? has a 

Multinomial (?,?) distribution, so that basing the test on ? is equivalent 

to acknowledging the test to be that of 
Hq?. 

? = ? versus H, : ?^? . (Use of 

t can be argued to further imply that the alternatives, ?^? , are roughly 
ro 0 2 0 

ordered in plausibility according to ? = S (?? -??) /eV, so that one is 
i=l 

? ? ? 

really testing HQ: ? = 0 versus H-? : n> 0.) But this is a parametric problem 

with specified alternatives (and hence a likelihood function) so that 

LP-compatible testing methods can apply. Indeed, in Delampady and Berger 

(1987) it is shown that the same type of difficulty for significance testing, 

that was discussed in Section 4.4.2, exists here: the significance level is 

typically much smaller than sensible conditional measures of the evidence 

for Hn. 

The above argument, that there are implicit alternatives in 

significance testing, can actually be given a quite general formal foundation. 

It has previously been mentioned that the actual sample space 2 will be 

discrete in practice. But then, as discussed in Section 3.6.1, even the 

set {Pq} of all distributions on X actually results in a definable likelihood 

function. Furthermore, a significance test of ? can be identified with a 

test of 
HQ: 

? = 
eQ versus H-j : 

? ^ eQ, 
where 

?? 
=P . Thus the LP can apply, 

and argues against the use of significance levels. 

Although formally correct, we do not ascribe much practical 

importance to this last argument, because the class of all alternatives to 

? is typically much too big to suggest a sensible analysis. In practice, 

some consideration of the type of alternatives that are expected is necessary, 

even in classical significance testing. In choosing a test statistic T(x), 
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for instance, we earlier observed that it is often necessary to consider 

alternatives when defining "extreme." It has been argued that it may be 

easier to guess a reasonable T, reflecting intuitive judgements as to which 

observations support HQ and which support alternatives, than to attempt 

explicit consideration of alternatives and construction of ? by, say, likeli- 

hood ratio comparisons of ? with the alternatives. The argument that one 

can do better by use of intuition, than by explicit consideration of important 

relevant features of a problem (here, the alternatives), is difficult to 

refute, but is an argument that we would feel very uncomfortable having as a 

basis for our approach to science and understanding. Even more troubling is 

the fact that significance testing allows one to "hide" this use of personal 

intuition. Thus, while Pratt (1965) admits that consideration of alternatives 

can be hard and a source of controversy in many situations dealt with by 

significance testing, he argues that 

"Computing a P-value runs the danger of 

hiding this real uncertainty and legitimate 

disagreement behind a screen of irrelevant 

precision." 

As a final point, it has been extensively argued (cf. Hacking 

(1965)) that one can never really reject ? until one has something better, 

namely another model ? which is both "reasonable" and better supported by 

the data. In Example 30, for instance, the observation x = 2 is quite unlikely 

to occur under PQ, but it is equally unlikely to occur under P-j ; thus if PQ 

and P-j are known to be the only possibilities, then ? = 2 provides no evidence 

against PQ. Thus consideration of alternatives is imperative if one actually 

seeks to reject ? . 

4.4.4 Conclusions 

What is to be concluded about significance testing? First of all, 

it should be admitted that, as the significance level (or P-value) decreases, 

the evidence against HQ will be increasing (assuming that ? has been chosen 
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appropriately). Indeed, in a few special situations (primarily one-sided 

testing situations) the significance level can correspond to a reasonable 

conditional (Bayesian) measure of the validity of HQ (cf. Jeffreys (1961), 

Pratt (1965), DeGroot (1973), Fraser and Mackay (1976), Dickey (1977), 

Zellner (1982), and Casella and Berger (1987)). In general though, the 

magnitude of a significance level need bear no relationship (from problem 

to problem) to the actual amount of evidence against HQ, and significance 

levels in testing precise hypotheses are typically so misleadingly small 

that their use for actually rejecting a hypothesis is strongly contraindicated. 

Although a given significance level can mean vastly different 

things in different situations, it can be argued that, through frequent use 

in various situations, insight into its true strength of evidence against Hq 

can be obtained. This is perhaps true: capable people can become very good 

at doing tasks with grossly inadequate tools. This is not to say, however, 

that better tools should be ignored or, more importantly, that inexperienced 

people will do well with the inadequate tools. 

One possibly valid use of significance testing is to provide an 

alert that further investigation (in particular consideration of alternatives) 

is needed. As Barnard (1981) says 

"The question to be answered is whether 

the feature (T(x)) presented is so 

improbable on HQ as to justify the effort 

involved in exercising our imagination to 

produce an hypothesis that could account 

for it." 

There is no guarantee from a small significance level that ? is wrong (i.e., 

that an alternative hypothesis can be found which is substantially more 

supported by the data), but without a small significance level there may be 

no need to look past ? . This use of significance testing can be argued to 

be important even to Bayesians, as extensively discussed in Box (1980): for 

a given model and prior, the marginal (or predictive) density of X can be 
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110 THE LIKELIHOOD PRINCIPLE 

used to conduct a significance test which could alert one to question the 

model or prior. 

Of course, even this use of significance testing as an alert 

could be questioned, because of the matter of averaging over unobserved x. 

It is hard to see what else could be done with ? alone,9 however, and it is 

sometimes argued that time constraints preclude consideration of alternatives. 

This may occasionally be true, but is probably fairly rare. Even cursory 

consideration of alternatives and a few rough likelihood ratio calculations 

will tend to give substantially more insight than will a significance level, 

and will usually not be much more difficult than sensibly choosing ? and 

calculating the significance level. (See also Dempster (1974b).) 

Admittedly, such an approach will be somewhat imprecise, but what is the 

advantage of "irrelevant precision"? 

4.5 RANDOMIZATION ANALYSIS 

4.5.1 Introduction 

In classical finite population sampling (or survey sampling) and 

randomization testing, the randomization in the experimental design (used to 

select the sample or allocate treatments) is a dominant factor in the 

construction of measures of evidence about ?. These measures are 

pre-experimental in nature, and their use directly violates the LP and RLP. 

(The outcome of the randomization is usually known, and hence averaging over 

samples or treatment allocations that might have occurred is supposedly 

irrelevant.) Hence, belief in the LP would have a profound effect on one's 

view of these areas of statistics. 

Perhaps not surprisingly, it is in these areas, so drastically 

affected by the LP, that some of the strongest intuitive arguments against 

the LP can be raised. The issues involved are very complex, so much so that 

all we can hope to do is skim the surface of the subject. Indeed, we will 

essentially restrict ourselves to a defence of the LP in a few simple 

examples, trying to establish, as plausible, the argument that anything 
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sensible in randomization analysis is sensible precisely because it has a 

sensible interpretation from a likelihood viewpoint. 

Although our main emphasis will not be on criticizing 

randomization analysis, it is important to keep several issues in mind. 

First, randomization analysis can clearly be very silly conditionally, if 

followed blindly. Even proper randomization can result (by bad luck) in 

treatment groups unbalanced with respect to unanticipated (but observed to 

be important) covariates, or in a sample which is clearly unrepresentative 

of the population, and yet classical randomization analysis does not treat 

such situations any differently than situations where the outcome of the 

randomization is "good". Thus, if one randomly samples from the population 

of voters in a survey on preference in the next Presidential election and 

finds that, unfortunately, all members of the random sample happen to be 

Republican, it is permissible (classically) to ignore this fact and proceed 

with the usual analysis. A second problem with randomization analysis (or 

at least randomization testing) is that it is often implemented through 

significance testing, and the serious concerns of the previous section then 

apply. The third, and most important, problem is that randomization analysis 

doe? violate, the LP. In murky situations, where intuition stumbles, it seems 

especially necessary to depend on foundations. 

Because of the above (and various specific) criticisms of 

randomization analysis, such analysis is usually advanced, not as an always 

sound way of proceeding, but as the most useful practical method of obtaining 

a reasonable answer. We will try to argue that the case for this is weak, 

at best. 

Of course, even though we argue that the basis of randomization 

analysis is fundamentally in error, many of the specific procedures used in 

survey sampling and randomization testing are perfectly satisfactory. (If so, 

however, it is probably because they have some sensible interpretation 

consistent with the LP.) Also, the value of randomization itself, in 

treatment allocation and the choice of a sample, is not being addressed here. 
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Such randomization is often argued to be valuable (even by many conditional- 

ists) in helping to reduce systematic effects that perhaps might unwittingly 

be introduced by the experimental design or sampling plan. An experiment 

in which randomization is used properly will, most of the time, turn out 

to be reasonably balanced with respect to experimentally induced (and 

unanticipated) covariates. Randomization also helps greatly in convincing 

others, who do not have access to the experimental setup or data, that no 

systematic biases were present. Employing measures of evidence based on the 

randomization probabilities is an entirely different matter, however. 

Indeed, a conditionalist will not only ignore the randomization probabilities, 

since the outcome of the randomization is known, but will also check to see 

that balance with respect to important new covariates was indeed obtained. 

4.5.2 Finite Population Sampling 

A typical classical setup is that of having a population 

V = {y-i> ? ? ?>??\|} ?f ? units, where each unit y. can be represented as a 

vector y.j 
= 

(?^,?..), u.? representing a label (or other known information) 

about the unit and v- representing something unknown (but observable). It 

is desired to infer something about ? = (?-.,...,?*,) ? ?, from a sample 

% 
= 

(??? > y i ,..?^ h which is a subset of y% here s = 
ti-| ? ? ,iml 

c I = 

12 m 
{?,.,.,?} indicates which units from the population are selected to be part 

of the sample. Note that it is typically also possible to use the known 

labels u = 
(u-j,...,uN) in making inferences about ?. Let S denote the 

collection of all subsets of I, and suppose ? is a probability distribution 

on S. A procedure $(Vs>u) is to be used, and some criterion function 

L(?(^s,u),e) employed. Finally, the overall statistical procedure (?,?), by 

which it is meant that s will be chosen according to the probability 

distribution ? on ?and <s(^s,u) will be used, is evaluated classically by the 

frequentist measure of performance 

R(P,6,e) = S L(?(v,u),e)P(s). 
st? 

s - 

This content downloaded from 128.173.127.127 on Tue, 28 May 2013 20:57:09 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


CONSEQUENCES AND CRITICISMS OF THE LP AND RLP 113 
? 

EXAMPLE 31. Suppose it is desired to estimate the population total ? = S ??, 
i=l 

? 

using an estimator ?(^,u) and squared error loss 

LU(Vs>y),8) 
= 

(d(?5,?)-?)2. Suppose P(s) = 
1/(J?) 

for all s ? S of size n, 

corresponding to selection of a simple random sample of size n. The estimator 

(4.5.1) 6(U,u) = 
J- S v. 

s ~ n 
j=l ? 

(recall that % = ((u_. ,v- ),...,(u... ,v. ))) is unbiased in the sense that s 
?1 ?1 ?? ?? 

S ? a(?L,u)P(s) 
= ?, 

s* ? 

and hence R(P,?,e) can be considered to be the variance of the procedure (?,?), 

were it repeatedly used. 

To investigate this situation from the viewpoint of likelihood, 

note that the only randomness here is in the generation of s, and hence that 

(P(s) iffcen. 
(4.5.2) ? (V) = 

J 
S ? 

'0 otherwise, 

where O is the set of all possible vectors, yl, which could arise as samples 

for the given u and ?. (Note that the implicit sample space is the union, 

over all ?, of such O?.) Thus the likelihood function for ?, when ^s is 

observed, is simply 

(4.5.3) ?(e) = 
P(s)IA(v)(e), 

where (for ^s 
= ((u. ,v. ),...,(ui ,v. ))) 

11 mm 

h(%) 
= ???T: for j = l,...,m, the i. component of ? equals v- }. 

5 J j 

Since a(e) is constant for ???(?), it conveys no information about ?, 

other than that the part of ? observed (in ys) 
is known. This is deemed by 

some to be a failure of the LP, in that the statistical procedure is thought 

to provide considerable information about that part of ? not observed in *^s, 

call it ?*. 
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The likelihood (or maybe Bayesian) view is indeed, that the data 

contains no inherent information about ?*, and that the only way of infering 

anything about ?* is to relate it somehow to the observed sample. Various 

relationships which might be deemed reasonable are: 

(i) All vi are thought to be similar, and the labels ui contain no 

information. Of the many ways to model this, a simple (often too 

simple) possibility is to presume that the v- are independent 

2 2 
observations from a ???,t ) distribution. Then estimate ? and t , 

using the sample y 9 and infer whatever is desired about ?. In the 

situation of Example 31, the answers would be essentially the same 

as the classical answers. 

(ii) Suppose the vi are thought to be linearly related to the u-, say 

vi 
= a + 

?ui 
+ 

Eis 

where the e^ are presumed to have some distribution. Clearly a quite 

different analysis would be appropriate, 

(iii) Suppose two distinct similar groups within the population can be 

identified from y . Knowledge about each group can be obtained 

from y 9 as in (i), and the proportion of each group in the population 

estimated. (Of course, a stratified sample would probably have been 

desirable had the groups been identifiable solely from the labels.) 

(iv) Suppose it is felt that the sample does not look typical of the 

remainder of the population. (An unlucky sample was drawn, or the 

sample revealed an unanticipated bias in the sampling plan.) It is 

not clear what to do, but it certainly cannot be right to proceed 

with a classical analysis, as if the sample was satisfactory. 

In the situations above, classical sampling theorists would, of 

course, recommend different procedures for the various presumed models. The 

point of the discussion is to indicate that the data, y , really doesn't say 

anything about ?*, unless there is some background information relating the 
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data to the population. It might be argued that, even when nothing is known 

about the population, a simple random sample will probably produce a represen- 

tative subset of the population, so that an estimator such as (4.5.1) is 

reasonable for the population total. We do not disagree, but judge that 

(4.5.1) is then reasonable precisely because the sample is thought to be 

representative, in which case (4.5.1) would be justifiable from a variety of 

Bayesian arguments. The randomization may help to convince one that the 

sample is representative, but, once convinced of that fact, there is no 

further need to consider the sample selection probabilities. 

Modeling the population is often called the superpopulation 

approach to survey sampling. Although we have presented it as Bayesian in 

nature, the modeling of the population can also be argued to be as "objective" 

as any modeling usually done in statistics (cf. the discussion by Royall of 

Basu (1971)), in which case one can argue that a directly meaningful likeli- 

hood function for the superpopulation parameters will exist. To a Bayesian, 

the choice of a model is just part of the prior specification (and often the 

most important and uncertain part), so the distinction seems unnecessary. 

This discussion has assumed that the selection probabilities, 

P(s), are known. If they are partially unknown and depend on ? or on an 

informative nuisance parameter (see Section 3.5) they could be relevant to 

conclusions about ?. Rubin (1984) addresses this issue, distinguishing 

between "ignorable" and "nonignorable" sample selection mechanisms, and 

raises the related point that the P(s) may be useful as crude covariates in 

certain situations of stratified sampling. 

Another issue that has been raised is the possibility of involving 

the P(s) by purposely ignoring the randomization outcome. Indeed, Rao (1971) 

argues that one can obtain an "informative" likelihood function by ignoring 

the labels u. in the sample y . The available data is then only v, an 

m-vector of the observed v., with no record of which elements of the popula- 

tion it is associated with. It is easy to calculate, using (4.5.2) and 
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(4.5.3), that the likelihood function corresponding to ? is 

(4.5.4) ?(?) = S PtsJW)^? 
all ^s of size m M*s' 

This likelihood function may seem to contain more information about ?. In 

Example 31, for instance, it is easy to see that, if N/m is an integer, the 

M.L.E. for ? is any vector containing N/m copies of v. The M.L.E. for ? 

would thus be (4.5.1). 

In discussing the reasonableness of the above proposal, it is 

important to first note that ignoring data is often a sensible practical 

necessity, as the following example indicates. 

EXAMPLE 32. Suppose we observe (X,Y) having a joint density f(x|e)g(y|e) 

(i.e., X and Y are independent), but that f is known while g is completely 

unknown. If we have very little prior information about g, so little that 

y conveys no clear knowledge about ?, then basing the analysis on ? alone 

seems reasonable. Of course, ignoring y can be viewed as a formal violation 

of the LP, since it essentially involves integrating y out of the joint 

density of X and Y. It is not a violation of the spirit of the LP, however, 

providing ??(?) 
= f(x|e) is felt to be reasonably close to what would have 

been obtained were y included (say, by putting a prior distribution on g and 

integrating out over this prior). Further discussion and references on this 

issue can be found in Pratt (1965), who calls X an "insufficient statistic," 

and in Berger (1983). 

While ignoring data may often be a practical necessity, there is 

a crucial difference between doing so in Example 32 and doing so in the 

sample survey problem. In Example 32 an unknown element g was eliminated by 

ignoring data, while Rao (1971) suggests replacing the known likelihood 

function in (4.5.3) by the version in (4.5.4) that would result if the labels 

in s were ignored. No real simplification is involved in the latter 

situation; indeed (4.5.4) seems more complicated than (4.5.3). In some 
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situations a non-Bayesian likelihood analysis of (4.5.4) may seem easier 

than a similar analysis of (4.5.3), but such is probably only the case in 

simple situations like that of Example 31 where P(s) is constant, (and then 

direct reasoning of a model construction or Bayesian nature with (4.5.3) is 

also easy). And it is easy to construct examples where the use of (4.5.4) 

with highly variable P(s) can give completely unreasonable answers for 

particular observed y . 

We have barely touched the surface of survey sampling. Deeper 

discussions of these issues and other references can be found in Godambe 

(1966, 1982a, 1982b), Cornfield (1969), Basu (1969, 1971, 1978), Ericson 

(1969), Kalbfleisch and Sprott (1969), Rao (1971), Royall (1971, 1976), 

Godambe and Thompson (1976), Smith (1976), Cassel et. al. (1977), and 

Thompson (1980). A particularly convincing case for the Bayesian view can 

be found in Basu (1978). 

4.5.3 Randomization Testing 

Randomization testing was introduced by Fisher (cf. Fisher (I960)) 

and was further developed by Kempthome and others. (See Kempthorne and 

Folkes (1971) and Basu (1980) for some of these developments and other 

references). The basis of randomization testing is using the randomization 

mechanism involved in treatment allocation to experimental units to form 

probability assessments of evidence. The following simple example exhibits 

the key features of the approach. See Basu (1980), and the discussants 

thereof, for a more general discussion. 

EXAMPLE 33. In an experiment, ? independent pairs of matched subjects 

{(S^ ,S-|),...,(Sn,Sn)} are to be utilized to compare two treatments, TQ (the 

"standard") and T-j (the "new treatment"). Within each pair, the two treat- 

ments are randomly assigned: let r^ equal 0 or 1 as treatment TQ or T-|, 

respectively, is assigned to S. (so that treatment T#.j 
% is assigned to S..), 

and define r = 
(rlf...,r ). Note that P(ri 

= 0) = P(r.. = 1) = 
?. 

The result 
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of the experiment will be a vector X = 
(Xp...,Xn), where, for the ith pair, 

0 if Tq is judged to have worked better 

1 if ?-, is judged to have worked better. 
xi 

= 

(For simplicity of discussion, we assume that equality of treatments is not 

a possible observation, and that only the crude measures X.? are observable.) 

Randomization testing, here, would involve consideration of the 

hypothesis (HQ) that the treatments have an identical effect, in the sense 

that a given subject in each pair, say subject S^ (<5?? 
= 0 or 1), would do 

best no matter which treatment it received. It is easy to check that Hq can 

be written mathematically as 

(4.5.5) H0: Xi 
= 

(ri+6.)mdZ 
fori =l,...,n. 

Also, letting 6 = (<5,,...,<5 ), it is clear that, pAe.-ZKpe;Ume.ntally9 X has 

density (under Hq) f.(x) = 2~n (since there is only one assignment r which 

will match ? to 6, and each r has probability 2"n of occurring). 

Suppose that it is desired to perform a significance test of Hq 

against the one-sided alternative that T-j is a better treatment than TQ. 
The 

? 
natural test statistic would be X = S X., with large values of X providing 

i=l 
? 

evidence against Hq. The significance level (or P-value) of an observation, 

x, would then be 

a = 
PH (X > ? = S?.) = S f2'?. 

H0?$ 
- 

i=l 
? 

j=x J 

If, for example, all ?. = 1, then a = 2"n which, for large n, would seem to 

cast doubt on Hq. 

The pre-experimental measure of evidence, a, in the above example 

is based on the randomization probabilities. Since the actual randomization 

outcome r becomes known, however, conditional reasoning would argue that such 

probabilities are irrelevant. A conditional analysis of the problem might 

go as follows. 
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EXAMPLE 33 (continued). Because of the pairing (and the randomization) it 

might be deemed reasonable to pretend that the subjects within each pair are 

identical. If the pairs can be considered to be a random sample from the 

entire population of pairs, and ? denotes the (hypothetical) proportion of 

the population for which treatment T-j would be better than TQ, then one 

could write the joint density of ? and r as 

fe(x,r) 
= 2-???(1-?)?-?. 

A likelihood analysis could then be performed, based on this (binomial) 

likelihood for ?. (Of course, a significance test of ? = 
^ would give the 

same result as the randomization analysis, and we will argue that this is 

really why the randomization analysis is, at all, sensible.) 

The randomization mechanism plays no direct role in the above 

likelihood argument. Indeed, the use of randomization is limited to making 

more believable the assumption that the paired subjects are equivalent: the 

randomization hopefully eliminates the possibility of experimenter induced 

bias that might be introduced by, say, giving treatment TQ to the subjects 

(perhaps subconsciously) thought to be healthiest. It might be argued, by 

some, that the classical randomization analysis seems intuitively more 

sensible than the modeled likelihood analysis. The following illustration 

of biased randomization (as discussed in Basu (1980)) casts doubt on the 

validity of such an argument. 

EXAMPLE 33 (continued). Suppose the treatments are assigned by a randomiza- 

tion mechanism having the property that the subjects Si (independently) 

1 3 
receive treatment TQ with probability ?? and treatment T1 with probability ? 

Suppose, further, that the randomization outcome happens to be that each S^ 

receives treatment TQ, and the experimental outcome happens to be that each 

?. = 1. If the null hypothesis is true, then it must be the case that ?.? 
= 1 

for all i (see (4.5.5)). But it follows that the significance level against 

Hq?s 
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a=V 
= (l,...,l)(X-X 

= n) = P(a11 ?=0)=4"?? 

This significance level seems misleadingly low, due to the "unlikely" 

randomization outcome. The evidence against HQ certainly seems no stronger 

than it would have been had an unbiased randomizer been used. The modeled 

likelihood analysis would, of course, be unaffected by the use of the biased 

randomizer. Thus it seems that the randomization analysis may be rather 

suspect, unless it corresponds to a sensible modeled likelihood analysis. 

As with finite population sampling, the likelihood approach tends 

to involve further modeling of the situation under investigation. While to 

some extent unappealing (more assumptions must be introduced), there seems 

to be little choice. In Example 33, if one were not comfortable in treating 

the subjects within a pair as identical, or the pairs as representative of 

the population, then the randomization analysis would also be very suspect. 

(If it so happened that a certain subject in each pair could be identified 

as "healthier", a careful investigation of the matchups of treatments and 

subjects would be indicated.) Extensive discussions of these issues can be 

found (with other references) in Savage et. al. (1962), Hill (1970), 

Good (1976), Rubin (1978), Lindley and Novick (1981), and especially 

Basu (1980). 
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Chapter 5. IMPLEMENTATION OF THE LIKELIHOOD PRINCIPLE 

5.1 INTRODUCTION 

The LP strikes us as correct, and behaving in violation of it 

would be a source of considerable discomfort. Yet the LP does not tell one 

what to do (although insisting on methods based on the observed likelihood 

function certainly reduces the possibilities). It can indeed be argued that 

there is sometimes no sensible method of behavior which is completely consis- 

tent with the LP. 

This raises a very important distinction which is often misunder- 

stood in foundational matters. "Foundations" usually proceeds by formulating 

properties of desirable behavior, and then seeing what can be deduced from 

these properties. The quintessential example is that from (very reasonable) 

axioms of "consistent" or "rational" behavior, it can be deduced that any 

"consistent" analysis corresponds to some Bayesian analysis. This does not 

imply, however, than any particular form of consistent (Bayesian) analysis is 

necessarily satisfactory, since, as C.A.B. Smith said in Savage, et. al. (1962), 

"Consistency is not necessarily a virtue: 

one can be consistently obnoxious." 

And there is no guarantee that a nonobnoxious consistent way of behaving exists. 

(See Berger (1984e) for further discussion.) Thus foundational arguments 

(including the LP) can logically be considered irrelevant from an operational 

perspective. 

This is certainly overstating the case, somewhat, in that, at the 

very least, foundational arguments can be invaluable in giving direction to 

121 
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our efforts. Thus the "consistency" theory strongly suggests that truth lies 

in a Bayesian direction, and the LP strongly suggests that truth lies in the 

direction of methods based on determination and utilization of the likelihood 

function (for the observed x). Luckily (or inevitably) these two directions 

are compatible. 

To show that the LP is not irrelevant, we must argue that a 

sensible method of analysis exists which is compatible with it. This is simply 

too much to ask; it would involve demonstrating that such a methodology works 

well "across-the-board" in statistics. Instead, we will content ourselves to 

arguing for what, we feel, this methodology must be, namely robust Bayesian 

analysis. We start out, however, with a very brief description of non-Bayesian 

likelihood methods. Until Section 5.4, we will assume that the likelihood 

function 
??(?) (for the observed x) exists. 

5.2 NON-BAYESIAN LIKELIHOOD METHODS 

It should first be mentioned that there are classically based 

likelihood methods such as maximum likelihood estimation and likelihood ratio 

testing. Although these are usually given evidential interpretations in 

frequentist terms, the concepts themselves are clearly of great importance in 

likelihood methods. The literature on these subjects is too vast to even 

attempt mentioning. 

Since the LP states that all evidence about ? is contained in 

ix(d)> one conceivable solution to the problem of what to do is simply to 

report ?,?(?)? leaving its use and interpretation "to the user" (cf., Fisher 

(1956a) and Box and Tiao (1973)). This is not necessarily unreasonable, as 

"eyeballing" a likelihood function often reveals most things of interest, at 

least when T is low dimensional. Many people probably could learn to usefully 

deal with likelihood functions as the basic elements of statistics (and indeed 

many now do). Even a Bayesian should encourage reporting of likelihood func- 

tions. Thus Good (1976) says 
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"If a Bayesian is a subjectivist he will 

know that the initial probability density 

varies from person to person and so he will 

see the value of graphing the likelihood 

function for communication. A Doogian will 

consider that even his own initial probability 

density is not unique so he should approve 

even more". 

Nevertheless, reporting of *?(?) can not be considered to be the end of the 

statistician's job; properly using ?, (?) can be difficult and crucial. Also, 

the natural visual interpretation that will be ascribed to *?(?) by most users 

is that of a probability distribution for ?, an interpretation needing careful 

handling. 

Most of the likelihood methods that have been proposed are 

dependent on the interpretation that ??(??)/??(??) 
measures the relative 

support of the data for e-i and ?2? Extensive development of this idea can be 

found in Hacking (1965) and Edwards (1972). Other likelihood developments can 

be found in Fisher (1956a), Barnard, Jenkins and Winsten (1962), Birnbaum 

(1962a), Barnard (1967a), Sprott and Kalbfleisch (1969), Kalbfleisch and Sprott 

(1970), Andersen (1970, 1971, 1973), Kalbfleisch (1971, 1978), Barndorff-Nielsen 

(1971), Sprott (1973a, 1973b), Cox and Hinkley (1974), Cox (1975), Tjur (1978), 

Hinkley (1978, 1979, 1980, 1982), Grambsch (1980), Barnett (1982), and many of 

the references given in Chapter 2. "Plausibility Inference" (c.f. Barndorff- 

Nielsen (1976)) is also related. (Not all of these authors necessarily 

subscribe to the LP, of course.) 

We do not detail these developments for several reasons. First, 

the space requirement would simply be prohibitive. Second, many of the 

techniques proposed, while valuable, are either designed only for a narrow class 

of problems, and hence do not provide a basis for a general likelihood based 

theory, or attempt generality but fall prey to counterexamples. (See Birnbaum 
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(1962a), the discussion in Kalbfleisch and Sprott (1970), Plante (1971), Basu 

(1975), Hill (1973, 1975), and Levi (1980) for some such counterexamples.) 

Finally, and most importantly, we will argue in the next section that there 

are compelling reasons for utilizing ??(?) through Bayesian analysis, and hence 

that non-Bayesian likelihood techniques are inherently limited. Such techniques 

can offer substantial improvements over classical methods, however, and should 

be useful for those unwilling to accept a Bayesian approach. Also, many of 

the technical developments in these articles can be useful even to a Bayesian. 

5.3 ARGUMENTS FOR BAYESIAN IMPLEMENTATION 

Savage, in the discussion of Birnbaum (1962a), said 

"...I suspect that once the likelihood 

principle is widely recognized, people will 

not long stop at that halfway house but will 

go forward and accept the implications of 

personalistic probability for statistics." 

It would be inappropriate here to present the full range of arguments for 

Bayesian analysis. Instead, we will concentrate on indicating how sensible 

use of the likelihood function seems possible only through Bayesian analysis. 

5.3.1 General Considerations 

First, believers in the LP should, it seems,be especially wary of 

what Good (1976) called 'adhockeries'. These are superficially reasonable 

methods of analysis which, however, have no firm foundational basis. Careful 

investigation of adhockeries always seems to reveal a flaw. Non-Bayesian use 

of likelihood functions virtually always proceeds by developing an adhoc 

method of dealing with involved situations. No adhoc method ever seems to be 

sufficient. Indeed, the rationality or consistency justification for Bayesian 

analysis gives a strong indication that no adhoc method will ever prove 

foolproof. 

This content downloaded from 128.173.127.127 on Tue, 28 May 2013 20:57:09 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


IMPLEMENTATION OF THE LIKELIHOOD PRINCIPLE 125 

An example of the problems faced by non-Bayesians is that, 

discussed in Section 3.5, of dealing with informative nuisance parameters. 

Such nuisance parameters are part of the likelihood function, yet need to 

essentially be eliminated before progress can be made. The Bayesian approach 

provides a natural (though maybe difficult) way of doing this; determine a 

prior distribution and integrate out the nuisance parameter (after multiplying 

the likelihood function and the prior). Simple alternatives, such as maximizing 

over the nuisance parameter, are simply too crude to give general hope of 

success (see Lindley in the discussion of Birnbaum (1962a)), although fairly 

sophisticated methods (such as those in Hinde and Aitken (1984)) may often 

work reasonably well. 

The only situations in which pure likelihood methods are completely 

convincing are simple ones (such as testing two simple hypotheses), where they 

in fact correspond to Bayes procedures. Thus Birnbaum (1962a) says (and 

supports with examples) 

"And, at least for such simple problems, 

one might say that (LP) implies (Bayes) 

in the very broad and qualitative sense 

that use of statistical evidence as 

characterized by the likelihood function 

alone entails that inference - or decision- 

making behavior - will be externally indis- 

tinguishable from (some case of) a Bayesian 

mode of inference." 

The above arguments will not be very compelling to most non- 

Bayesians, so let us turn to the key issue - that ??(?) need make little sense 

unless interpreted through a Bayesian filter. If p is a prior (density for 

convenience) on T, then a Bayesian believing p is reasonable or plausible would 

view ??(?) through the posterior distribution 

p(?|?) = ?. (?)p(?)//p(?)?, (e)de, 
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which essentially corresponds to viewing ? (?) as a probability density w.r.t. 

the (properly normalized version of) p. The prior p need not be proper, and 

indeed those wanting "objectivity" might desire to use a "noninformative" prior 

p as the basis of the normalizing measure. In any case, the key to the 

Bayesian approach is to treat ??(?) 
as an actual probability density - and it is 

reasonable to do so only when it is considered a density w.r.t. the presumed 

prior measure for ?. 

A number of justifications for this view have been advanced. First 

is the quite persuasive argument that probability is the language of 

uncertainty, so the uncertainty about ?, reflected in 
*?(?), 

should be 

expressed probabilistically. Second, it usually is necessary to compare or 

relate one subset of T to another, and some method of averaging over ??(?) 
is 

then needed. Indeed, Basu (1975) presents reasonable arguments that 
??(?) 

should be "additive" when T is discrete. (His argument, however, that in 

reality T is always discrete, is much less convincing than the corresponding 

argument that % is discrete; we measure X to only a certain accuracy, but ? 

could still be anything.) 

Non-Bayesian averaging of i (?) has the severe problem that 

reparameterization can change the answer. One can make a change of variables 

n = ?(?), where ? is a 1-1 function, and the resulting likelihood function for 

?, namely ? (?* (?)), could look completely different. Adhoc averaging methods 

will virtually always give different conclusions for the reparameterized 

likelihood function (as will many other intuitive likelihood techniques), a 

very disturbing prospect. Of course, the interpretation of ??(?) as a 

probability density w.r.t. the prior measure is immune to this problem, since 

a reparameterization simply introduces a Jacobian in the transformed prior. 

In some situations, it is clearly imperative to determine and in- 

troduce p. One such situation is that of Section 4.5.2, in which the likeli- 

hood function itself conveys almost no information unless ? is severely 

restricted through p (i.e., a suitable model for the population is introduced). 

Indeed the nonparametric situation discussed in Section 3.6.1 is the general 
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prototype for this situation, in that the likelihood function is very difficult 

to use unless ? is substantially restricted a priori, corresponding to proposing 

a model (or class of models) for the distribution of X. The "generalized 

inverse" problems discussed in Jaynes (1981) also have this same flavor. 

The failure of the likelihood function to provide clearly inter- 

pretable information, when T is huge, is sometimes deemed a criticism of the 

LP. Instead, we view it as an indication that prior information must be used 

in such situations. (See also the discussion in Section 4.5.) 

5.3.2 The Fraser-Monette-Ng, Stone, and Stein Examples 

Next, we turn to three important examples which have been viewed 

as counterexamples to the LP, but instead are viewed by us as indications that 

a Bayesian (rather than intuitive) interpretation of the likelihood function is 

needed. The first is an example from Fraser, Monette, and Ng (1984). (See 

also Evans, Fraser, and Monette (1986) and the discussion therein for 

additional development.) 

EXAMPLE 34. Suppose X= T= {1,2,...}, and 

|?/2,2?,2?+1 

when ? is even 

(?-1)/2,2?,2?+1 when ? M is odd 

1,2,3 when ? = 1. 

The likelihood function is easily seen to be 

|x/2,2x,2x+l 

when ? is even 

(x-l)/2,2x,2x+l when ? f 1 is odd 

1,2,3 when ? = 1. 

Thus, for any x, the data intuitively gives equal support to the three 

possible ? compatible with that observation. On solely likelihood based 

grounds, therefore, any of the three ? would be a suitable estimate. Consider, 

therefore, three possible estimators, ?,, <52, and 6g, corresponding to using 

the first, middle, and last possible ?, respectively: thus 
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x/2 when ? is even 

??(?) = 
\ (x-l)/2 when ? f 1 is odd 

1 when ? = 1, 

d2(?) 
= 2x, and 

d3(?) 
= 2x+l. 

Now 

??(d2(?) 
= ?) = 

PQ(X 
= ?/2) 

and 

??(d3(?) 
= ?) = 

?T(? 
= (?-1)/2) 

1/3 when ? is even 

0 otherwise, 

1/3 when ? f 1 is odd 

0 otherwise, 

while, amazingly, 

(5.3.2) ?T(^(?) 
= ?) = 

?6(? 1,2,3? = 1 when ? = 1 

?O({2?,2?+1}) = 2/3 otherwise. ? 

Even more surprising is that the confidence set C-.(x) = {2x,2x+l} seems twice 

as good from a "pure likelihood" viewpoint as Cp(x) 
= {<5,(x)}, and yet 

0 when ? = 1 

Pg?C^X) 
contains ?) = 

while 

1/3 otherwise 

1 when ? = 1 

PQ(C0(X) contains ?) = 

2/3 otherwise. 

Of course, the measures here are frequentist measures, but the decision- 

theoretic or coherency evaluation arguments of Section 3.7 can be applied to 

indicate substantial inferiority of op, <$-, or C, in repeated use. 

Let us now consider what happens when ??(?) is passed through a 

Bayesian filter. A Bayesian has a prior density p for ?, and his posterior 

density will be 
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ix(eMe) p(?)??d1(?),d2(?),d3(?)}(?) 
p(???)-?[?G~ 

= 

p(d1(?))?d2(?)?(d3(?)) 
' 

Thus, indeed, the data conveys nothing to the Bayesian except that ? is 

<5-|(x), d2(?), 
or 

d3(?). 
Is the Bayesian indifferent between 

d^?), d2(?), 

and 
d3(?), 

however? He is only if p(d,(?)) = 
p(d2(?)) 

= 
p(d3(?)), 

which cannot 

hold for all ? (when p is a proper density). Indeed it will typically be 

the case, at least for densities which are monotonically decreasing for large 

?, that ?t(d-?(?)) > 
p(d2(?)) 

+ 
tt(d3(?)). Thus a Bayesian would never always use 

d2, d3, or C,, and would, in fact, tend to use d,. The Bayesian thus avoids 

the danger inherent in pure likelihood reasoning. 

As a final comment on this example, note that a (sophisticated) 

noninformative prior Bayesian obtains a reasonable (objective) answer to this 

problem. Although one might naively give ? a constant (improper) prior density, 

resulting in the ill-advised p(?|?) = M0)? 1#t ?'d clear from (5.3.1) that ? 

is approximately a scale parameter. This would lead a noninformative prior 

Bayesian to use the Jeffrey's (1961) prior density for a scale parameter, 

namely p(?) = ? . With this noninformative prior, not only is d,(?) again the 

clear choice for ?, but the posterior probability that ? = d,(?) is 

approximately 2/3 for large x. (This, incidentally, provides a conditional 

justification for the frequentist report in (5.3.2).) 

Thus, either a proper prior Bayesian or a careful noninformative 

prior Bayesian will easily arrive at a sensible likelihood-based conclusion in 

this example. We have seen no pure likelihood methods which can make the same 

claim. 

EXAMPLE 35. Stone (1976) (see also Hill (1981) for a discussion similar to 

the following) considers a very interesting example in which a drunken soldier, 

starting at an intersection 0 in a city (which has square blocks), staggers 

around on a random path trailing a taut strong. Eventually the soldier stops 

at an intersection (after walking at least one block) and buries a treasure. 

Let ? denote the path of the string from 0 to the treasure. Letting N, S, E, 
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and W stand for a path segment one block long in the indicated direction, ? can 

be expressed as a sequence of such letters, say 

e=NNESWSWW. 

(Note that NS, SN, EW, and WE cannot appear, as the taut string would just be 

rewound. In expressions below, however, we allow such combinations to appear 

for notational convenience, although they are to be understood to cancel.) 

After burying the treasure, the soldier randomly chooses one of 

the four possible directions and walks one block in that direction (still 

keeping the string taut). Let X denote this augmented path, so that X is one 

of the paths {eN, eS, T?, eW}, with probability j each. We observe X, and are 

to find the treasure. 

Note first that, for given X = x, the only possible values of ? 

are {xN, xS, xE, xW}, and since the probability that X = ? when each of these ? 

obtains is j, we have the likelihood function 

*?(?) 
= 

? 

for each of the four possible e. 

Stone uses this example to indicate a problem with use of the 

"noninformative" prior p(?) = 1 for all possible paths e, since an easy 

calculation then shows that the posterior probability of each of the four 

possible q9 given x, is j. This supposedly conflicts with the intuition that, 

given q, X is three times as likely to extend the path as to backtrack (there 

are 3 directions to extend the path and only one to backtrack), so that ? 

"most likely" arose from the one ? (among the four possibilities) for which ? is 

an extension. Fraser, in the discussions of Stone (1976) and Hill (1981), 

indicates that this strikes him as a conclusive counterexample to the LP itself, 

the "likelihoods" of 
-? seeming absurd from a frequentist (conditional on ?) 

viewpoint. 

To us, this example again serves to indicate that the likelihood 

function can really be utilized only through Bayesian analysis. For instance, 

forget for a moment the amusing structure of Stone's example, and just consider 
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the statistical problem involving ? and X. Suppose ? was in actuality generated 

according to the (prior) distribution 

1/ (2?3?-1) if length of ? < ? 

p(?) = ' 

0 if length of ? > ?, 

and that a path ? of length < ? is observed. Then a Bayesian analysis is 

certainly correct, and the posterior probability of each of the possible ? 

given ? is indeed j. Returning to the example of the soldier, this makes clear 

that if ? is felt to have essentially a uniform prior in the neighborhood of x, 

then the analysis decried by Stone and Fraser is correct. 

The difficulty here is that it was never described "why" the 

soldier stopped at a given intersection and buried the treasure, i.e., how ? 

was generated. We, in fact, would doubt that ? was locally uniform at any x. 

Far more reasonable would be to assume that the soldier stops after a path of 

length n, with some probability pn, 
and that all paths of length ? (there are 

? = 4?3 of them when ? _>!) have equal probability of occurring. Then, if ? 

is a path of length n, 

,(e) - 
Pn/Nn. 

For a given ? of length m >^ 1, three of the possible ? are of length m+1 while 

one is of length m-1. The posterior probabilities of these are 

( WW? _ _JV]___ 

3(WWi+<WVi>? 
3pn*i+ 9p*-i 

(for the ? of length m+1) and 

<Pm-l/Nm-l>i . 9Vl_ 

3WW{+<P,n-l/Vl>? ^l^n^ 

(for the ? of length m-1). If 
pm+1 

= 
pm-1, then these probabilities are y^ 

and 4, respectively, indicating that it certainly is sensible to presume that 

the treasure is buried at that ? for which ? is an extension of the path. 

(This analysis is very similar to that of Dickey in the discussion of Stone 

(1976) and to the analysis in Hill (1981) using a finitely additive prior on n). 
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The above considerations can be reinforced by considering a second 

model proposed by Fraser in the discussion of Hill (1981). Fraser's model is 

that the observation X is generated from ? according to the following scheme, 

where xQ denotes a given particular path and 0 the origin: 

W 
= 

i 
and 

V0) 
= 

Iwhen 
? ? {X0N?X0E'X0S,X0W}' 

fe(0) 
= 1 when ? = 

xQ, 

1 3 
f (?) = 

j and fQ(0) 
= -t for the remaining ?. 

(The soldier trails an elastic string, and after burying the treasure at the 

end of ? / Xq he passes out and has a 75% chance of being snapped back to 0; the 

end of xQ, however, is very slippery, so if the soldier buries the treasure 

there and passes out he will be snapped back to 0 for sure. There also happens 

to be a good Samaritan who walks the streets within one block of a shelter at 

xQ, 
and if the soldier passes out at 

XqN, xqS, XqW, or xQE and doesn't get 

snapped back to 0, the good Samaritan will take him back to xQ.) Suppose 

now that the observation from this model just happens to be xQ, so that the 

likelihood function for ? is the same as that obtained from Stone's model for 

the observation xQ. The LP says that the conclusions in each case should be 

the same, and we concur. Since ? is still the path generated by the drunken 

soldier, the prior defined by p(?) = 
Pn/Nn 

1S still appropriate, and the 

resulting Bayesian analysis sensible. (Alternatively, if ? had been generated 

in such a way that the prior was felt to be locally uniform near xQ 
- note 

that any proper prior could only be locally uniform near some of the possible 

observations - the Bayesian analysis with p(?) = ? would be appropriate.) 

This Bayesian reasoning is in conflict with frequentist reasoning, 

which states in the situation of Stone that, conditional on ?, X is three 

times as likely to extend the path as to backtrack, while in the situation of 

Fraser there is no reason to think this. Such reasoning seems to be the basis 

of the claim by Fraser (in the discussion of Hill (1981)) that the situation 

provides a counterexample to the LP. To us it instead provides yet another 
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counterexample to frequentist reasoning. If there is doubt as to this, 

imagine that ? really was generated according to one of the priors considered 

here (and a compelling case can be made that the drunken soldier actually does 

generate ? according to p(?) = 
Pn/Nnh 

in which case there seems little doubt 

that the two models give the same answer. (See also Berger (1984a).) 

This example again shows the possible error in attempting to base 

an analysis solely on ? (?), and shows how the Bayesian perspective resolves 

the difficulties. One interesting feature of this example is that the natural 

noninformative prior density is constant, and results in the ill-advised 

p(?|x) 
= 

j, for the four possible ?. The difficulty with the noninformative 

prior approach here is that the parameter space can be viewed as the free group 

on two generators and, as shown by Peisakoff (1950), this group is too large 

for group-based statistical analyses to work. (Peisakoff discusses the 

problem from the viewpoint of invariance theory, but invariance theory has a 

very close relationship with noniformative prior Bayesian theory - cf. Berger 

(1980).) Bondar and Milnes (1981) provide extensive discussion concerning when 

such groups are "too large." 

EXAMPLE 36. Stein (1962) constructed the following example to show the 

difficulty in casually applying the LP. An unknown quantity ? > 0 can be 

2 2 
measured by X ^7l(Q9o ) (a known) or by Y having density 

2 

(5.3.3) f(y|e) = cy-1 exp{- ^ (1 - 
^)2}I(0 be)(y), 

10iooo 
where c is the appropriate normalizing constant, b is enormous (say, 10 ), 

and d is large (say, 50). The likelihood functions * (?) and ? (?) for the 
? y 

respective experiments would be (ignoring multiplicative constants and 

recalling that ? > 0) 

*?(?) 
= exp {- -\ (?-?)2}?(0,??)(?)' 2s 

d2 2 

*y(e) 
= exp 

{"?7(e"y)}I(y/b,-.)(e)? 
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Suppose now that the observations are such that ? = y = ad. Then 

the only difference between ? (?) and iAq) is the difference between the x y 

factors I/Q m\(Q) and 
I(v/k ?M9)? which can be shown to be negligible because 

b is so huge. Thus the LP says that the given observations, ? and y, provide 

(essentially) the same information about ?. We agree with this entirely. 

Next, Stein observes that the usual, say 95%, frequentist or 

objective conditional confidence interval for ? when ? is observed is 

(5.3.4) (?-(1.96)s, ?+(1.96)s) 

(note that ?/s = d = 50, so the restriction to ? > 0 is essentially irrelevant), 

and hence that application of the LP implies that the interval 

(5.3.5) (y-(1.96)[y/d], y+(1.96)[y/d]} 

should be used if y is observed. Again we agree, providing the interval in 

(5.3.4) is inappropriate. 

Considering now the interval in (5.3.5) as a frequentist interval 

(to be used for all y), a calculation shows (see Berger (1980)) that 

(5.3.6) ??(? 
- 

??? 
< ? < Y + 1L9S1I) < io"100. 

This, to a frequentist, casts extreme doubt on the premise that the interval 

in (5.3.5) contains ?, and seems to indicate a failure of the LP. 

To a Bayesian, there is no real problem with this example. The 

use of (5.3.5) was predicated on the validity of (5.3.4), which in turn follows 

only if the prior is approximately locally uniform within several standard 

deviations s of the actual observation ? (and is well behaved outside this 

region). In reality, this will never be the case for all ? and s; any proper 

prior will give substantially different results as ? and particularly a vary. 

Indeed, note that it was assumed that ? = y = ad in the above conditional 

analysis, and since it can be shown that Y is almost certain to be enormous 

(on the order of b in size), it follows that we must imagine that ? and a are 

also enormous. The use of (5.3.4), when ? and a are enormous, will rarely be 

conditionally sound. It is this use of (5.3.4), not the use of the LP, which 

is in error. And if a very small y just happens to occur, then and only then 
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is use of (5.3.4), and hence (5.3.5), indicated. 

Two observations concerning a Bayesian analysis of this problem are 

in order. The first is that clever Bayesian reasoning is not required to show 

the inadequacy of the interval in (5.3.5) for all but very small y. Indeed, 

for virtually any prior distribution, the interval in (5.3.5) will have 

posterior probability near zero. The second observation is that a standard 

noninformative prior Bayesian analysis does work well here. For the density 

in (5.3.3), ? can easily be seen to be a scale parameter, and again the 

standard noninformative prior density would be p(?) = ? . A Bayesian analysis 

with this improper prior gives very sensible answers and shows the interval in 

(5.3.5) to be seriously inadequate for all but very small y. 

It is worthwhile to summarize the three main points that are 

illustrated in the above examples. 

1. Intuitive utilization of likelihood functions can be misleading. In 

Examples 34 and 35, for instance, the usual interpretation of a likelihood 

function as a measure of the comparative support of the data for the various ?, 

while formally correct, can lead to an erroneous conclusion if prior information 

is not considered. 

Example 36 also demonstrates that intuitive approaches which work 

well in a certain situation should not be carelessly transferred to different 

situations with a similar likelihood function. It is true that, when prior 

information is vague in the normal mean situation, the "confidence" interval 

(5.3.7) (?-(1.96)s, ?+(1.96)s) 

is a reasonable conditional procedure. Naively transferring this to the Y 

situation fails, however, because (5.3.7) is reasonable only when a is small 

enough for the prior information to indeed be vague, and the Y problem involves 

observations which will usually correspond to huge a. This "error" is noted 

and extensively discussed in Basu (1975). 

2. While not directly related to our central thesis, these examples indicate 

the care needed in the use of improper "noninformative" priors. When prior 
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opinions are indeed reflected by a locally noninformati ve prior (in the region 

of T for which the likelihood function is significant), the use of noninforma- 

tive priors is reasonable as an approximation. (See also Box and Tiao (1973), 

Dickey (1976), and Berger (1984e).) It appears, however, especially from 

Example 35, that automatic use of noninformative priors can lead one astray. 

This is not to say that use of noninformative priors is to be avoided; indeed 

we feel that they are invaluable in obtaining relatively simple, good, and 

"objective" statistical procedures. 

3. These examples can be turned around and used as indictments of frequency 

reasoning. Frequency reasoning in each example would correspond (at best) to 

Bayesian analysis with respect to a certain, very special, prior. Quite 

different answers were seen to obtain if other prior beliefs were held. This, 

of course, is another general justification for the Bayesian position: a "good" 

frequentist procedure is usually a Bayes procedure with respect to some prior, 

and if the corresponding prior does not seem reasonable, use of the procedure 

is suspect. 

5.4 ROBUST BAYESIAN ANALYSIS 

We seem to have been inexolorably led to Bayesian analysis. Our 

interpretation of the situation at this point is that we can best interpret 

the information from the data, namely ??(?), as a probability density on @ 

w.r.t. some prior measure, p, reflecting our prior beliefs (or lack thereof) 

concerning e. Thus one need only elicit his prior distribution, p0, and 

perform a Bayesian analysis. 

Unfortunately, eli citation of 
wQ is not easy, and indeed cannot be 

done with complete accuracy in a finite amount of time. (We are thinking of 

p0 
as the prior which would be the result of infinitely long reflection on 

the problem.) It is not clear that writing down a quick guess at 
irQ 

and 

performing a Bayesian analysis with this guess is better than other non- 

Bayesian methods of analysis. The fear is that the guess for ttq might contain 

features which would be deemed to be in error upon further reflection, and that 

This content downloaded from 128.173.127.127 on Tue, 28 May 2013 20:57:09 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


IMPLEMENTATION OF THE LIKELIHOOD PRINCIPLE 137 

these features might have such an overwhelmingly detrimental effect on the 

analysis that a classical analysis which ignores prior information might be 

preferable. 

The obvious method of alleviating such fears is to do robust 

Bayesian analysis (see Berger 1984e, 1985, and 1987 for general surveys and 

references), wherein one considers, instead of a single guess for ttq, a class r 

of plausible prior distributions felt certain to contain p0. From r (and the 

likelihood function) one obtains a class of possible posterior distributions 

to work with. (Note that, in this robust Bayesian sense, Ev(E,x) really is a 

set of "evidences".) If the conclusion or action to be taken is essentially 

the same for all such posteriors, then the problem is solved. Indeed, in a 

sense this is the only situation in which there can be said to be an 

unequivocal answer to a problem. (This holds true also when risa class of 

priors of various individuals who must come to a joint conclusion.) 

It may happen, however, that the conclusion or action to be taken 

is quite different for various posteriors in the class. When this is the 

case there are four options: (i) Attempt further prior elicitation (resulting 

in a narrowing of r); (ii) Obtain more data; (iii) Conclude that there is no 

answer; and (iv) Choose among the possible answers according to some criteria 

not involving further prior elicitation. Solutions (i) and (ii) are certainly 

to be attempted, if possible, but limited time or resources may preclude such 

solutions (an example of Good's Type II rationality). Note that solution 

(i) may be somewhat simpler than it seems at first sight, since the observed 

data may effectively rule out a large portion of r, meaning that further prior 

elicitation can be concentrated on specific aspects of the problem. Solution 

(iii) is certainly reasonable, and is in some sense the only truly honest 

conclusion if (i) or (ii) cannot be pursued. But in many situations it is 

necessary to proceed anyway and obtain an "intelligent" guess at the answer. 
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This brings us to solution (iv), i.e., the use of alternate 

criteria. There are many possibilities here, with the following five being 

the most important: 

1. Put a prior distribution on r itself, and carry out a formal Bayesian 

analysis. (Note that this would be simply a formal prior distribution of 

some sort, since the prior elicitation process has supposedly ceased.) 

2. Use minimax type criteria on posterior measures (e.g., posterior expected 

losses) for p e r. 

3. Use frequentist measures to select a "good" procedure compatible with 

p G G. 

4. Use some measure of "information" to select a prior in r, such as a 

"maximum entropy" prior (cf. Jaynes (1982)) or a "reference" prior 

(cf. Bernardo (1979)). 

5. Use Type II maximum likelihood methods (cf. Good (1965)), essentially 

choosing the prior p ? r which maximizes the marginal or predictive 

density m(x|w) = ?p[? (x)] for the given data ? (such a prior being the 

"most plausible" prior in G in light of the data). This is a standard 

adhoc Bayesian and empirical Bayesian technique. 

Discussion and other references for these methods can be found in Berger 

(1984e, 1985) and Berger and Berliner (1986). Of interest here is that two of 

these methods, namely methods 3 and 4, can violate the LP. (Method 4 can 

violate the LP because the selected prior will typically depend on all of E, 

not just the observed likelihood function.) We will not enter into a discus- 

sion of the relative merits of the five methods, but do note that there seem to 

be statistical problems that are most amenable to solution by each of the meth- 

ods. For instance, there are many high dimensional and nonparametric problems 

where it is hard to find any reasonable prior distribution, much lessdoa robust 

Bayesian analysis, and yet relatively simple frequentist procedures exist which 

can be meaningful to a conditionalist in the sense of Example 16 in Section 

4.1.3. Consider the following example, which we learned from Brad Efron. 
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EXAMPLE 37. The experiment, E, consists of observing X-.,...,X,5, which are 

i.i.d. observations from a completely unknown continuous density f on R . 

(Here we identify ? with the unknown f, so ? is the set of all continuous 

densities on R .) Of interest is ?, the median of the unknown density. A 

simple binomial calculation shows that a 96.5% frequentist confidence interval 

for ? is given by [X/4\f xfn)]? 
where the ?,.? are the order statistics. 

Due to the extreme difficulty of constructing reasonable prior distributions 

on T, a Bayesian might well choose to simply use 
Cx(4)>xm \L with the 

interpretation provided by Example 16. 

Thus, because of difficulties in performing a robust Bayesian 

analysis, a conditionalist might formally violate the LP. Of course, this 

could be viewed as merely a temporary condition due to the lack of development 

of Bayesian theory; certainly greater effort has been expended by statisticians 

on development of non-Bayesian theory. Also, the need to compromise should not 

be viewed as providing legitimacy to the compromises, but should instead be 

viewed as a forced stab in the dark. Thus Savage, in Savage et. al. (1962), 

states 

"I used to be bowed by critics who said, 

with apparent technical justification, that 

certain popular nonparametric techniques 

apply in situations where it seems meaning- 

less even to talk of a likelihood function, 

but I have learned to expect that each of these 

techniques either has a Bayesian validation or 

will be found to have only illusory value as a 

method of inference." 

A second reason for possible violation of the LP, as discussed in 

Section 4.1.3, is that many users of statistics will be unable to perform 

careful robust Bayesian analyses. For these users we must provide simple 

Bayesian procedures with "built in" robustness. In part, this robustness 
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should be measured in a frequency sense, since the procedures will be used 

repeatedly (i.e., for different X). Of course, good conditional performance 

of these procedures should still be of paramount concern. Note, in particular, 

that the noninformative prior or "objective" Bayesian procedures are usually 

very good procedures from this perspective of use by nonspecialists, and may 

formally violate the LP through dependence of the noninformative prior on E 

(and not just the observed ? (?)). In a similar vein, Haj?k (1967, 1971) argues 

that asymptotic theory (which can provide useful simple procedures for 

nonspecialists in complicated situations) can sometimes be more difficult if 

one is restricted to basing it only on the given likelihood function, and not 

on E as a whole. 

As a final comment concerning Bayesian analysis, it should be 

mentioned that choice of a prior (or class r) will often have to wait until 

after the data is at hand and ??(?) is available. Thus in Barnard, Jenkins, 

and Winsten (1962) it is stated (where they refer to "weights" instead of a 

"prior") 

"The advantage of looking first at the 

likelihood function and then considering 

the weights, lies in the fact that the 

likelihood function will often be so near 

zero over much of the range of ? that the 

weights in these regions can be quickly 

dismissed from consideration." 

This "choosing the prior after seeing the data" strikes many as unsavory, but 

it is absolutely essential when ? is high dimensional or otherwise complicated. 

It is less disturbing when viewed from the robust Bayesian viewpoint, where a 

conclusion is deemed clearcut only when any reasonable prior passed over ??(?) 

gives essentially the same answer. See Berger(1984e) for further discussion. 
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5.5 CONCLUSIONS 

At first sight, we seem to have come to the conclusion that the LP 

is not always applicable, in that the only satisfactory method of analysis 

based on the LP seems to be robust Bayesian analysis, which because of 

technical difficulties may sometimes require use of techniques that formally 

violate the LP. We emphatically believe, however, that the LP is always valid, 

in the sense that the experimental evidence concerning ? is contained in ? (?). 

Because of limited time and resources, however, interpreting or making use of 

this evidence may involve use of measures violating the LP. Of course, whenever 

such a measure is used one should make sure that it has not led to a 

recognizably erroneous conditional conclusion. 

Until now (in this section) we have assumed the existence of 
??(?). 

As mentioned in Sections 3.4 and 3.6.1, this assumption is (in a sense) always 

valid, since the sample space is always finite in reality and then ? (?) 

always exists, even when the model is uncertain or unknown. Practical 

considerations often call for the use of continuous approximations, however, 

for which the likelihood function may be ill-defined or not exist. (Of course, 

as mentioned in Section 3.6.1, even in many continuous nonparametric situations 

the likelihood function can be considered to exist.) In any case, the RLP 

always applies, and a good case can also be made that robust Bayesian analysis 

is the only reasonable method of analysis consistent with it. More frequent 

compromises may, however, be needed in these more difficult situations. 

Even for those who find themselves unable to accept Bayesian 

methods, the LP should not be ignored and the conditional viewpoint should be 

kept in mind. If a classical procedure is being used, a quick check to make 

sure that it is saying something which is at least sensible conditionally seems 

only prudent. Statistics looks very bad when it recommends a conclusion that 

clearly contradicts common sense. 

This content downloaded from 128.173.127.127 on Tue, 28 May 2013 20:57:09 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


References 

AITCHISON, J. and DUNSMORE, I. R. (1975). Statistical Prediction Analysis. 

Cambridge University Press, Cambridge. 

AKAIKI, H. (1982). On the fallacy of the likelihood principle. Statistics and 

Probability Letters 1, 75-78. 

AMARI, S. (1982). Geometrical theory of asymptotic ancillarity and conditional 

inference. Biometrica 69, 1-18. 

ANDERSEN, E. B. (1970). Asymptotic properties of conditional maximum likeli- 

hood estimators. J. Roy. Statist. Soc. ? 32, 283-301. 

ANDERSEN, ?. B. (1971). A strictly conditional approach in estimation theory. 

Skand. Aktuarietidskr. 54, 39-49. 

ANDERSEN, E. B. (1973). Conditional Inference and Models for Measuring. 

Mentalhygiejnisk Forlag, Copenhagen. 

ANSCOMBE, F. J. (1963). Sequential medical trials. J. Amer. Statist. Assoc. 

58, 365-383. 

ARMITAGE, P. (1961). Contribution to the discussion of C.A.B. Smith 

'Consistency in statistical inference and decision'. J. Roy. Statist. Soc. 

? 23, 1-37. 

ASPIN, ?. ?. (1949). Tables for use in comparisons whose accuracy involves two 

variances, separately estimated (with an appendix by B. L. Welch). 

Biometrika 36, 290-296. 

BAHADUR, R. R. (1954). Sufficiency and statistical decision functions. Ann. 

Math. Statist. 25, 423-462. 

143 

This content downloaded from 128.173.127.127 on Tue, 28 May 2013 20:57:09 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


144 THE LIKELIHOOD PRINCIPLE 

BARNARD, G. A. (1947a). A review of 'Sequential Analysis' by Abraham Wald. 

J. Amer. Statist. Assoc. 42, 658-669. 

BARNARD, G. A. (1947b). The meaning of significance level. Biometrika 34, 

179-182. 

BARNARD, G. A. (1949). Statistical inference (with Discussion). J. Roy. 

Statist. Soc. ? 11, 115-139. 

BARNARD, G. A. (1962). Comments on Stein's ? remark on the likelihood 

principle'. J. Roy. Statist. Soc. A 125, 569-573. 

BARNARD, G. A. (1967a). The use of the likelihood function in statistical 

inference. In Proc. 5th Berkeley Symp. on Math. Statist, and Prob., 

University of California Press, Berkeley. 

BARNARD, G. A. (1967b). The Bayesian controversy in statistical inference. 

J. Inst. Actuaries 93, 229-269. 

BARNARD, G. A. (1971). Scientific inferences and day-to-day decisions. In 

Foundations of Statistical Inference, V. P. Godambe and D. A. Sprott 

(eds.). Holt, Rinehart and Winston, Toronto. 

BARNARD, G. A. (1974). On likelihood. In the Proceedings of the Conference on 

Foundational Questions in Statistical Inference, 0. Barndorff-Nielsen, 

P. Blaesild, and G. Schou (eds.). Department of Theoretical Statistics, 

University of Aarhus. 

BARNARD, G. A. (1975). Conditional inference is not inefficient. Scandinavian 

J. of Statist. 3, 132-134. 

BARNARD, G. A. (1980). Pivotal inference and the Bayesian controversy (with 

Discussion). In Bayesian Statistics, J. M. Bernardo, M. H. DeGroot, 

D. V. Lindley, and A.F.M. Smith (eds.). University Press, Valencia. 

BARNARD, G. A. (1981). A coherent view of statistical inference. Presented at 

the Symposium on Statistical Inference and Applications, University of 

Waterloo, August, 1981. 

BARNARD, G. A. and GODAMBE, V. P. (1982). Allan Birnbaum, A memorial article. 

Ann. Statist. 10, 1033-1039. 

This content downloaded from 128.173.127.127 on Tue, 28 May 2013 20:57:09 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


REFERENCES 145 

BARNARD, G. ?., JENKINS, G. M., and WINSTEN, C. B. (1962). Likelihood inference 

and time series. J. Roy. Statist. Soc. A 125, 321-372. 

BARNARD, G. A. and SPROTT, D. A. (1983). The generalized problem of the Nile: 

robust confidence sets for parametric functions. Ann. Statist. 11, 104- 

113. 

BARNDORFF-NIELSEN, 0. (1971). On Conditional Statistical Inference. 

Matematisk Institute, Aarhus University. 

BARNDORFF-NIELSEN, 0. (1976). Plausibility inference (with Discussion). J. 

Roy. Statist. Soc. ? 38, 103-131. 

BARNDORFF-NIELSEN, 0. (1978). Information and Exponential Families in Statisti- 

cal Theory. Wiley, New York. 

BARNDORFF-NIELSEN, 0. (1980). Conditionality resolutions. Biometrika 679 293- 

310. 

BARNETT, V. (1982). Comparative Statistical Inference (2nd Edition). John 

Wiley and Sons, New York. 

BARTHOLOMEW, D. J. (1967). Hypothesis testing when the sample size is treated 

as a random variable. J. Roy. Statist. Soc. ? 29, 53-82. 

BARTLETT, M. S. (1936). Statistical information and properties of sufficiency. 

Proc. Royal Soc. A 154, 124. 

BARTLETT, M. S. (1953). Approximate confidence intervals, I, Biometrika 40, 

13-19. II, Biometrika 40, 306-317. 

BASU, D. (1964). Recovery of ancillary information. In Contributions to 

Statistics, C. R. Rao (ed.), 7-20. Pergamon Press, Oxford. 

BASU, D. (1969). Role of the sufficiency and likelihood principles in sample 

survey theory. Sankhya A 31, 441-454. 

BASU, D. (1971). An essay on the logical foundations of survey sampling, part 

one. In Foundations of Statistical Inference, V. P. Godambe, and D. A. 

Sprott (eds.). Holt, Rinehart and Winston, Toronto. 

BASU, D. (1975). Statistical information and likelihood (with discussions). 

Sankhya Ser. A 37, 1-71. 

This content downloaded from 128.173.127.127 on Tue, 28 May 2013 20:57:09 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


146 THE LIKELIHOOD PRINCIPLE 

BASU, D. (1978). On the relevance of randomization in data analysis (with 

discussion). In Survey Sampling and Measurement, N. K. Namboodiri (ed.). 

Academic Press, New York. 

BASU, D. (1980). Randomization analysis of experimental data: the Fisher 

randomization test. J. Amer. Statist. Assoc. 759 575-595. 

BERGER, J. (1980). Statistical Decision Theory: Foundations, Concepts, and 

Methods. Springer-Verlag, New York. 

BERGER, J. (1984a). In defense of the likelihood principle: axiomatics and 

coherency. In Bayesian Statistics XT, J. M. Bernardo, M. H. DeGroot, 

D. Lindley, and A. Smith (eds.). 

BERGER, J. (1984b). Bayesian salesmanship. In Bayesian Inference and Decision 

Techniques with Applications: Essays in Honor of Bruno deFinetti* P. K. 

Goel and A. Zellner (eds.). North-Holland, Amsterdam. 

BERGER, J. (1984c). The frequentist viewpoint and conditioning. To appear in 

the Proceedings of the Berkeley Conference in Honor of J. Kiefer and J. 

Neyman9 L. LeCam and R. Olshen (eds.). Wadsworth, Belmont California. 

BERGER, J. (1984d). A review of J. Kiefer's work on conditional frequentist 

statistics. To appear in The Collected Works of Jack Kiefer (L. Brown, 

I. Olkin, J. Sacks, H. Wynn, eds.). 

BERGER, J. (1984e). The robust Bayesian viewpoint (with discussion). In 

Robustness in Bayesian Statistics, J. Kadane (ed.), 63-144. 

North-Holland, Amsterdam. 

BERGER, J. and BERLINER, L. M. (1983). Robust Bayes and empirical Bayes 

analysis with e-contaminated priors. Technical Report #83-35, Statistics 

Dept., Purdue Uni v., W. Lafayette. 

BERNARDO, J. M. (1979). Reference posterior distributions for Bayesian 

inference (with discussion), j. Roy. Statist. Soc. ? 419 113-147. 

BIRNBAUM, A. (1961a). On the foundations of statistical inference: binary 

experiments. Ann. Math. Statist. 32, 414-435. 

This content downloaded from 128.173.127.127 on Tue, 28 May 2013 20:57:09 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


REFERENCES 147 

BIRNBAUM, A. (1961b). Confidence curves: an omnibus technique for estimation 

and testing statistical hypotheses. J. Amer. Statist. Assoc. 56, 246-249. 

BIRNBAUM, A. (1962a). On the foundations of statistical inference (with 

discussion). J. Amer. Statist. Assoc. 57, 269-306. 

BIRNBAUM, A. (1962b). Intrinsic confidence methods. Bulletin of the Int. 

Statist. Inst. 39, 375-383. 

BIRNBAUM, A. (1968). Likelihood. In International Encyclopedia of the Social 

Sciences, Vol. 9. 

BIRNBAUM, A. (1969). Concepts of statistical evidence. In Philosophy, 

Science, and Method: Essays in Honor of Ernest Nagel, S. Morgenbesser, 

P. Suppes, and M. White (eds.). St. Martin's Press, New York. 

BIRNBAUM, A. (1970a). Statistical methods in scientific inference. Nature 225, 

1033. 

BIRNBAUM, A. (1970b). On Durbin's modified principle of conditionality. J. 

Amer. Statist. Assoc. 65, 402-403. 

BIRNBAUM, A. (1972). More on concepts of statistical evidence. J. Amer. 

Statist. Assoc. 67, 858-861. 

BIRNBAUM, A. (1977). The Neyman-Pearson theory as decision theory and as 

inference theory: with a criticism of the Lindley-Savage argument for 

Bayesian theory. Synthese 36, 19-49. 

B0NDAR, J. V. (1977). On a conditional confidence principle. Ann. Statist. 5, 

881-891. 

B0NDAR, J. V. and MILNES, P. (1981). Amenability: A survey for statistical 

applications of Hunt-Stein and related conditions on groups. Zeitschr. 

Wahrsch. Verw. Geb. 57, 103-128. 

BOX, G.E.P. (1980). Sampling and Bayes' inference in scientific modelling and 

robustness (with discussion). J. Roy. Statist. Soc. ? 143, 383-430. 

BOX, G.E.P. and TIAO, G. C. (1973). Bayesian Inference in Statistical Analysis. 

Addison-Wesley, Reading. 

BROWN, L. D. (1967). The conditional level of Student's t-Test. Ann. Math. 

Statist. 38, 1068-1071. 

This content downloaded from 128.173.127.127 on Tue, 28 May 2013 20:57:09 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


148 THE LIKELIHOOD PRINCIPLE 

BROWN, L. D. (1978). A contribution to Kiefer's theory of conditional 

confidence procedures. Ann. Statist. 6, 59-71. 

BROWNIE, C. and KIEFER, J. (1977). The ideas of conditional confidence in the 

simplest setting. Commun. Statist. A6(8), 691-751. 

BUEHLER, R. J. (1959). Some validity criteria for statistical inference. 

Ann. Math. Statist. 30, 845-863. 

BUEHLER, R. J. (1971). Measuring information and uncertainty. In Foundations 

of Statistical Inference, V. P. Godambe and D. A. Sprott (eds.). Holt, 

Rinehart and Winston, Toronto. 

BUEHLER, R. J. (1976). Coherent preferences. Ann. Statist. 4, 1051-1064. 

BUEHLER, R. J. (1982). Some ancillary statistics and their properties (with 

discussion). J. Amer. Statist. Assoc. 77, 581-594. 

BUEHLER, R. J. and FEDDERSON, A. P. (1963). Note on a conditional property of 

Student's t. Ann. Math. Statist. 34, 1098-1100. 

BUNKE, H. (1975). Statistical inference: Fiducial and structural versus 

likelihood. Math. Operationsforsch. U. Statist. 6, 667-676. 

CASELLA, G. and HWANG, J. T. (1982). Zero-radius confidence procedures. Tech- 

nical Report, Cornell University. 

CASSEL, C. M., S?RNDAL, C. E., and WRETMAN, J. H. (1977). Foundations of 

Inference in Survey Sampling. Wiley, New York. 

CORNFIELD, J. (1966). Sequential trials, sequential analysis, and the likeli- 

hood principle. The American Statist. 20, No. 2, 18-23. 

CORNFIELD, J. (1969). The Bayesian outlook and its application (with 

discussion). Biometrics 25, 617-657. 

COX, D. R. (1958). Some problems connected with statistical inference. Ann. 

Math. Statist. 29, 357-372. 

COX, D. R. (1971). The choice between ancillary statistics. J. Roy. Statist. 

Soc. ? 33, 251-255. 

COX, D. R. (1975); Partial likelihood. Biometrika 62, 269-276. 

This content downloaded from 128.173.127.127 on Tue, 28 May 2013 20:57:09 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


REFERENCES 149 

COX, D. R. (1977). The role of significance tests. Scand. J. Statist. 4, 49- 

70. 

COX, D. R. (1978). Foundations of statistical inference: the case for 

eclecticism. Austral. J. Statist. 20, 43-59. 

COX, D. R. (1980). Local ancillarity. Biometrika 67, 279-286. 

COX, D. R. and HINKLEY, D. V. (1974). Theoretical Statistics. Chapman and 

Hall, London. 

DAWID, A. P. (1975). On the concepts of sufficiency and ancillarity in the 

prescence of nuisance parameters. J. Roy. Statist. Soc. ? 37, 248-258. 

DAWID, A. P. (1977). Conformity of inference patterns. In Recent 

Developments in Statistics, J. R. Barra, et. al. (eds.). North-Holland, 

Amsterdam. 

DAWID, A. P. (1980). A Bayesian look at nuisance parameters. In Bayesian 

Statistics, J. M. Bernardo, M. H. DeGroot, D. V. Lindley, and A.F.M. Smith 

(eds.). University Press, Valencia. 

DAWID, A. P. (1981). Statistical inference. In Encyclopedia of Statistical 

Sciences, S. Kotz and N. L. Johnson (eds.). Wiley, New York. 

DAWID, A. P. and DICKEY, J. M. (1977). Likelihood and Bayesian inference from 

selectively reported data. J. Amer. Statist. Assoc. 72, 845-850. 

DAWID, A. P. and STONE, M. (1982). The functional-model basis of fiducial 

inference (with discussion). Ann. Statist. 10, 1054-1074. 

DE FINETTI, B. (1962). Does it make sense to speak of 'Good probability 

appraisers'? In The Scientist Speculates, I. J. Good (ed.). Basic Books, 

New York. 

DE FINETTI, B. (1972). Probability, Induction, and Statistics. Wiley, New 

York. 

DE FINETTI, B. (1974). Theory of Probability, Volumes 1 and 2. Wiley, New 

York. 

This content downloaded from 128.173.127.127 on Tue, 28 May 2013 20:57:09 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


150 THE LIKELIHOOD PRINCIPLE 

DE GROOT, M. H. (1973). Doing what comes naturally: interpreting a tail area 

as a posterior probability or as a likelihood ratio. J. Amer. Statist. 

Assoc. 68, 966-969. 

DEMPSTER, A. P. (1974a). Remarks on inference. In the Proceedings of the 

Conference on Foundational Questions in Statistical Inference, 0. 

Barndorff-Nielsen, P. Blaesild, and G. Schou (eds.). Department of 

Theoretical Statistics, University of Aarhus. 

DEMPSTER, A. P. (1974b). The direct use of likelihood for significance test- 

ing. In the Proceedings of the Conference on Foundational Questions in 

Statistical Inference, 0. Barndorff-Nielsen, P. Blaesild, and G. Schou 

(eds.). Department of Theoretical Statistics, University of Aarhus. 

DEMPSTER, A. P. (1975). A subjectivist look at robustness. Bull, of the 

International Statist. Inst. 46, 349-374. 

DICKEY, J. M. (1976). Approximate posterior distributions. J. Amer. Statist. 

Assoc. 71, 680-689. 

DICKEY, J. M. (1977). Is the tail area useful as an approximate Bayes factor? 

J. Amer. Statist. Assoc. 72, 138-142. 

DURBIN, J. (1970). On Birnbaum's theorem on the relation between sufficiency, 

conditionality, and likelihood. J. Amer. Statist. Assoc. 65, 395-398. 

EDWARDS, A.W.F. (1972). Likelihood. CU.P., Cambridge. 

EDWARDS, A.W.F. (1974). The history of likelihood. Int. Statist. Rev. 42, 

9-15. 

EDWARDS, W., LINDMAN, H., and SAVAGE, L. J. (1963). Bayesian statistical 

inference for psychological research. Psychological Review 70, 193-242. 

EFRON, ?. and HINKLEY, D. V. (1978). Assessing the accuracy of the maximum 

likelihood estimator: observed versus expected Fisher information. 

Biometrika 65, 457-482. 

ERICSON, W. A. (1969). Subjective Bayesian models in sampling finite 

populations. J. Roy. Statist. Soc. ? 31, 195-233. 

This content downloaded from 128.173.127.127 on Tue, 28 May 2013 20:57:09 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


REFERENCES 151 

FISHER, R. ?. (1921). On the 'Probable Error' of a coefficient of correlation 

deduced from a small sample. Metron. I, part 4, 3-32. 

FISHER, R. A. (1925). Theory of statistical estimation. Proc. Cambridge Phil. 

Soc. 22, 700-725. 

FISHER, R. A. (1934). Two new properties of mathematical likelihood. Proc. 

Royal Soc. A 144, 285-307. 

FISHER, R. A. (1956a). Statistical Methods and Scientific Inference. Oliver 

and Boyd. Edinburgh. 

FISHER, R. A. (1956b). On a test of significance in Pearson's Biometrika 

Tables (no. 11). J. Roy. Statist. Soc. ? 18, 56-60. 

FISHER, R. A. (1960). The Design of Experiments (7th ed.). Oliver and Boyd, 

Edinburgh. 

FRASER, D.A.S. (1963). Cn the sufficiency and likelihood principles. J. Amer. 

Statist. Assoc. 58, 641-647. 

FRASER, D.A.S. (1968). The Structure of Inference. Wiley, New York. 

FRASER, D.A.S. (1972). Bayes, likelihood, or structural. Ann. Math. Statist. 

43, 777-790. 

FRASER, D.A.S. (1973). Inference and redundant parameters. In Multivariate 

Analysis-Ill, P. R. Krishnaiah (ed.). Academic Press, New York. 

FRASER, D.A.S. (1976). Necessary analysis and adaptive inference (with 

discussion). J. Amer. Statist. Assoc. 71, 99-113. 

FRASER, D.A.S. (1977). Confidence, posterior probability, and the Buehler 

example. Ann. Statist. 5, 892-898. 

FRASER, D.A.S. (1979). Inference and Linear Models. McGraw-Hill, New York. 

FRASER, D.A.S. and MACKAY, J. (1976). On the equivalence of standard inference 

procedures. In Foundations of Probability Theory, Statistical Inference, 

and Statistical Theories of Science, Vol. II, W. L. Harper and C. A. 

Hooker (eds.). Rei del, Dordrecht. 

FREEDMAN, D. A. and PURVES, R. A. (1969). Bayes methods for bookies. Ann. 

Math. Statist. 40, 1177-1186. 

This content downloaded from 128.173.127.127 on Tue, 28 May 2013 20:57:09 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


152 THE LIKELIHOOD PRINCIPLE 

GEISSER, S. (1971). The inferential use of predictive distributions. In 

Foundations of Statistical Inference, V. P. Godambe and D. A. Sprott 

(eds.). Holt, Rinehart, and Winston, Toronto. 

GIERE, R. N. (1977). Allan Birnbaum's conception of statistical evidence. 

Synthese 36, 5-13. 

GODAMBE, V. P. (1966). A new approach to sampling from finite populations, I. 

J. Roy. Statist. Soc. ? 28, 310-319. 

GODAMBE, V. P. (1979). On Birnbaum's mathematically equivalent experiments. 

J. Roy. Statist. Soc. ? 41, 107-110. 

GODAMBE, V. P. (1982a). Likelihood principle and randomization. In Statistics 

and Probability: Essays in Honor of C. R. Rao, G. Kallianpur, P. R. 

Krishnaiah, and J. K. Ghosh (eds.). North-Holland, Amsterdam. 

GODAMBE, V. P. (1982b). Estimation in survey sampling: robustness and 

optimality. J. Amer. Statist. Assoc. 77, 393-406. 

GODAMBE, V. P. and THOMPSON, M. E. (1976). Philosophy of survey-sampling 

practice. In Foundations of Probability Theory, Statistical Inference, 

and Statistical Theories of Science, Vol. II, W. L. Harper and C. A. 

Hooker (eds.). Rei del, Dordrecht. 

GODAMBE, V. P. and THOMPSON, M. E. (1977). Robust near optimal estimation in 

survey practice. Bulletin of the Internat. Statist. Inst. 47, 127-170. 

GOOD, I. J. (1950). Probability and the Weighing of Evidence. Griffin, London. 

GOOD, I. J. (1965). The Estimation of Probabilities. ?. I. T. Press, 

Cambridge. 

GOOD, I. J. (1976). The Bayesian influence, or how to sweep subjectivism under 

the carpet. In Foundations of Probability Theory, Statistical Inference, 

and Statistical Theories of Science, Vol. II, W. L. Harper and C. A. 

Hooker (eds.). Reidel, Dordrecht. 

GOOD, I. J. (1981). Some logic and history of hypothesis testing. In 

Philosophy in Economics, J. C. Pitt (ed.). Reidel, Dordrecht. 

This content downloaded from 128.173.127.127 on Tue, 28 May 2013 20:57:09 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


REFERENCES 153 

GRAMBSCH, P. (1980). Likelihood inference. Ph.D. Dissertation, University of 

Minnesota. 

HACKING, I. (1965). Logic of Statistical Inference. Cambridge University 

Press, Cambridge. 

HAJEK, J. (1967). On basic concepts of statistics. In Proceedings of the 

Fifth Berkeley Symposium on Mathematical Statistics and Probability, 

LeCam and J. Neyman (eds.). University of California Press, Berkeley. 

HAJEK, J. (1971). Limiting properties of likelihoods and inference. In 

Foundations of Statistical Inference, V. P. Godambe and D. A. Sprott 

(eds.). Holt, Rinehart, and Winston, Toronto. 

HEATH, D. and SUDDERTH, W. (1978). On finitely additive priors, coherence, 

and extended admissibility. Arm. Statist. 6, 333-345. 

HILL, B. (1970). Some contrasts between Bayesian and classical inference in 

the analysis of variance and in the testing of models. In Bayesian 

Statistics, D. L. Meyer and R. 0. Collier, Jr. (eds.). Peacock Publishers, 

Itasca, Illinois. 

HILL, B. (1973). Review of "Likelihood" by A.W.F. Edwards. J. Amer. Statist. 

Assoc. 68, 487-488. 

HILL, B. (1974a). Review of"Bayesian Inference in Statistical Analysis" by 

G.E.P. Box and G. Tiao. Technometrics 16, 478-479. 

HILL, B. (1974b). On coherence, inadmissibility, and inference about many 

parameters in the theory of least squares. In Studies in Bayesian 

Econometrics and Statistics, S. Fienberg and A. Zellner (eds.). North- 

Holland, Amsterdam. 

HILL, B. (1975). Abberant behavior of the likelihood function in discrete 

cases. J. Amer. Statist. Assoc. 70, 717-719. 

HILL, B. (1981). On some statistical paradoxes and non-conglomerability. In 

Bayesian Statistics, J. M. Bernardo, M. H. DeGroot, D. V. Lindley, and 

A.F.M. Smith (eds.). University Press, Valencia. 

This content downloaded from 128.173.127.127 on Tue, 28 May 2013 20:57:09 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


154 THE LIKELIHOOD PRINCIPLE 

HINDE, J. and AITKIN, M. (1984). Nuisance parameters, canonical likelihoods, 

and direct likelihood inference. Technical Report, Centre for Applied 

Statistics, University of Lancaster. 

HINKLEY, D. V. (1978). Likelihood inference about location and scale parame- 

ters. Biometrika 65, 253-262. 

HINKLEY, D. V. (1979). Predictive likelihood. Ann. Statist. 7, 718-728. 

HINKLEY, D. V. (1980a). Fisher's development of conditional inference. In 

R. A. Fisher: An Appreciation, S. E. Fienberg and D. V. Hinkley (eds.). 

Springer-Verlag, New York. 

HINKLEY, D. V. (1980b). Likelihood as approximate pivotal distribution. 

Biometrika 67, 287-292. 

HINKLEY, D. V. (1983). Can frequentist inferences be very wrong? A conditional 

'yes'. In Scientific Inference, Data Analysis, and Robustness, G.E.P. 

Box, T. Leonard, and C. F. Wu (eds.). Academic Press, New York. 

JAMES, W. and STEIN, C. (1961). Estimation with quadratic loss. In Fourth 

Berkeley Symposium Math. Statist, and Prob. University of California 

Press, Berkeley. 

JAYNES, E. T. (1981). The intuitive inadequacy of classical statistics. 

Presented at the International Convention on Fundamentals of Probability 

and Statistics, Luino, Italy. 

JAYNES, E. T. (1982). Papers on Probability, Statistics, and Statistical 

Physics, a reprint collection. D. Reidel, Dordrecht. 

JEFFREYS, H. (1961). Theory of Probability (3rdedn.J. Clarendon Press, 

Oxford. 

JEFFREYS, H. (1973). Scientific Inference (3rdean.). CU.P., Cambridge.. 

JOSHI, V. M. (1976). A note on Birnbaum's theory of the likelihood principle. 

J. Amer. Statist. Assoc. 71, 345-346. 

KALBFLEISCH, J. D. (1971). Likelihood methods of prediction. In Foundations 

of Statistical Inference* V. P. Godambe and D. A. Sprott (eds.). Holt, 

Rinehart, and Winston, Toronto. 

This content downloaded from 128.173.127.127 on Tue, 28 May 2013 20:57:09 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


REFERENCES 155 

KALBFLEISCH, J. D. (1974). Sufficiency and conditionality. In the Proceedings 

of the Conference on Foundational Questions in Statistical Inference, 

0. Barndorff-Nielsen, P. Blaesild, and G. Schou (eds.). Department of 

Theoretical Statistics, University of Aarhus. 

KALBFLEISCH, J. D. (1975). Sufficiency and conditionality. Biometrika 62, 

251-268. 

KALBFLEISCH, J. D. (1978). Likelihood methods and nonparametric tests. J. 

Amer. Statist. Assoc. 73, 167-170. 

KALBFLEISCH, J. D. and SPROTT, D. A. (1969). Applications of likelihood and 

fiducial probability to sampling finite populations. In New Developments 

in Survey-Sampling. Wiley, New York. 

KALBFLEISCH, J. D. and SPROTT, D. A. (1970). Application of likelihood methods 

to models involving large numbers of parameters (with discussion). J. 

Roy. Statist. Soc. ? 32, 175-208. 

KEMPTHORNE, 0. and F0LKES, J. L. (1971). Probability, Statistics, and Data 

Analysis. Iowa State University Press, Ames. 

KIEFER, J. (1975). Conditional confidence approach in multi-decision problems. 

In Proceedings of the Fourth Dayton Multivariate Conference, P. R. 

Krishnaiah (ed.). 143-158. North-Holland, Amsterdam. 

KIEFER, J. (1976). Admissibility of conditional confidence procedures. Ann. 

Math. Statist. 4, 836-865. 

KIEFER, J. (1977a). Conditional confidence statements and confidence estima- 

tors (with discussion). J. Amer. Statist. Assoc. 72, 789-827. 

KIEFER, J. (1977b). The foundations of statistics - are there any? Synthese 

36, 161-176. 

KIEFER, J. (1980). Conditional inference. In the Encyclopedia of Statistics, 

S. Kotz and N. Johnson (eds.). Wiley, New York. 

LANE, D. A. and SUDDERTH, W. D. (1983). Coherent and continuous inference. 

Ann. Statist. 11, 114-120. 

This content downloaded from 128.173.127.127 on Tue, 28 May 2013 20:57:09 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


156 THE LIKELIHOOD PRINCIPLE 

LAURITZEN, S. L. (1974). Sufficiency, prediction, and extreme models. Scand. 

J. Statist. 1, 128-134. 

LE CAM, L. (1977). A note on metas tati s tics or 'an essay toward stating a 

problem in the doctrine of chances'. Synthese 36, 133-160. 

LEVI, I. (1980). The Enterprise of Knowledge. MIT Press, Cambridge. 

LINDLEY, D. V. (1958). A survey of the foundations of statistics. Appi. 

Statist. 7, 186-198. 

LINDLEY, D. V. (1971). Bayesian Statistics Review. S.I.A.M., Philadelphia. 

LINDLEY, D. V. (1982). Scoring rules and the inevitability of probability. 

Int. Statist. Rev. 50, 1-26. 

LINDLEY, D. V. and NOVICK, M. (1981). The role of exchangeability in inference. 

Ann. Statist. 9, 45-58. 

LINDLEY, D. V. and PHILLIPS, L. D. (1976). Inference for a Bernoulli process 

(a Bayesian view). American Statist. 30, 112-119. 

MAULDON, J. G. (1955). Pivotal quantities for Wishart's and related distribu- 

tions and a paradox in Fiducial theory. J. Roy. Statist. Soc. ? 17, 

79-85. 

MORRISON, D. F. and HENKEL, R. E. (1970). The Significance Test Controversy. 

Aldine, Chicago. 

NEYMAN, J. (1957). 'Inductive behavior' as a basic concept of philosophy of 

science. Rev. Intl. Statist. Inst. 25, 7-22. 

NEYMAN, J. (1967). A Selection of Early Statistical Papers of J. Neyman. 

University of California Press, Berkeley. 

NEYMAN, J. (1977). Frequentist probability and frequentist statistics. 

Synthese 36, 97-131. 

OLSHEN, R. A. (1973). The conditional level of the F-test. J. Amer. Statist. 

Assoc. 68, 692-698. 

PEDERSEN, J. G. (1978). Fiducial inference. Int. Statist. Review 46, 147-170. 

PEISAKOFF, M. (1950). Transformation Parameters. Ph.D. Thesis, Princeton 

University. 

This content downloaded from 128.173.127.127 on Tue, 28 May 2013 20:57:09 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


REFERENCES 157 

PICCINATO, L. (1981). On the orderings of decision functions. Symposia 

Mathematica XXV. Academic Press, London. 

PIERCE, D. A. (1973). On some difficulties with a frequency theory of 

inference. Ann. Statist. 1, 241-250. 

PLACKETT, R. L. (1966). Current trends in statistical inference. J. Roy. 

Statist. Soc. A 129, 249-267. 

PLANTE, A. (1971). Counter-examples and likelihood. In Foundations of 

Statistical Inference, V. P. Godambe and D. A. Sprott (eds.). Holt, 

Rinehart, and Winston, Toronto. 

PRATT, J. W. (1961). Review of Lehmann's Testing Statistical Hypotheses. 

J. Amer. Statist. Assoc. 56, 163-166. 

PRATT, J. W. (1965). Bayesian interpretation of standard inference statements 

(with discussion). J. Roy. Statist. Soc. ? 27, 169-203. 

PRATT, J. W. (1976). A discussion of the question : for what use are tests 

of hypotheses and tests of significance. Commun. Statist.-Theor. Meth. A5, 

779-787. 

PRATT, J. W. (1977). 'Decisions' as statistical evidence and Birnbaum's 

'confidence concept'. Synthese 36, 59-69. 

RAIFFA, H. and SCHLAIFER, R. (1961). Applied Statistical Decision Theory. 

Graduate School of Business Administration, Harvard University. 

RAO, C R. (1971). Some aspects of statistical inference in problems of 

sampling from finite populations. In Foundations of Statistical Inference, 

V. P. Godambe and D. A. Sprott (eds.). Holt, Rinehart, and Winston, 

Toronto. 

ROBINSON, G. K. (1975). Some counterexamples to the theory of confidence 

intervals. Biometrika 62, 155-161. 

ROBINSON, G. K. (1976). Properties of Student's t and of the Behrens-Fisher 

solution to the two means problem. Ann. Statist. 5, 963-971. 

ROBINSON, G. K. (1979a). Conditional properties of statistical procedures. 

Ann. Statist. 7, 742-755. 

This content downloaded from 128.173.127.127 on Tue, 28 May 2013 20:57:09 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


158 THE LIKELIHOOD PRINCIPLE 

ROBINSON, G. ?. (1979b). Conditional properties of statistical procedures for 

location and scale parameters. Ann. Statist. 7, 756-771. 

ROSENKRANTZ, R. D. (1977). Inference, Method, and Decision: Towards a Bayesian 

Philosophy of Science. Reidel, Boston. 

ROYALL, R. (1971). Linear regression models in finite population sampling 

theory. In Foundations of Statistical Inference, V. P. Godambe and D. A. 

Sprott (eds.). Holt, Rinehart, and Winston, Toronto. 

ROYALL, R. (1976). Likelihood functions in finite population sampling 

survey. Biometrika 63, 605-617. 

RUBIN, D. B. (1978). Bayesian inference for causal effects: the role of 

randomization. Ann. Statist. 6, 34-58. 

RUBIN, D. B. (1984). The use of probability scores in applied Bayesian 

inference. In Bayesian Statistics II3 J. M. Bernardo, M. H. DeGroot, 

D. V. Lindley, and A.F.M. Smith (eds.). 

SAVAGE, L. J. (1954). The Foundations of Statistics. John Wiley and Sons, 

New York. 

SAVAGE, L. J. (1970). Comments on a weakened principle of conditionality. J. 

Amer. Statist. Assoc. 65, 399-401. 

SAVAGE, L. J. (1976). On rereading R. A. Fisher (with discussion). Ann. 

Statist. 4, 441-500. 

SAVAGE, L. J., et. al. (1962). The Foundations of Statistical Inference. 

Methuen, London. 

SEIDENFELD, T. (1979). Philosophical Problems of Statistical Inference. 

Reidel, Boston. 

SELLIAH, J. (1964). Estimation and testing problems in a Wishart distribution. 

Ph.D. Thesis, Dept. of Statistics, Stanford University. 

SMITH, T.M.F. (1976). The foundations of survey sampling: a review. J. Roy. 

Statist. Soc. A 139, 183-204. 

SPROTT, D. A. (1973a). Normal likelihoods and their relation to large sample 

theory of estimation. Biometrika 60, 457-465. 

This content downloaded from 128.173.127.127 on Tue, 28 May 2013 20:57:09 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


REFERENCES 159 

SPROTT, D. A. (1973b). Practical uses of the likelihood function. In 

Inference and Decision, University Press of Canada, Toronto.' 

SPROTT, D. A. (1975). Marginal and conditional sufficiency. Biometrika 62, 

599-605. 

SPROTT, D. A. and KALBFLEISCH, J. D. (1969). Examples of likelihoods and 

comparisons with point estimates and large sample approximations. J. Amer. 

Statist. Assoc. 64, 468-484. 

STEIN, C (1961). Estimation of many parameters. Inst. Math. Statist. Wald 

Lectures, Unpublished. 

STEIN, C. (1962). A remark on the likelihood principle. J. Roy. Statist. Soc. 

A 125, 565-568. 

STONE, M. (1976). Strong inconsistency from uniform priors (with discussion). 

J. Amer. Statist. Assoc. 71, 114-125. 

THOMPSON, M. E. (1980). Likelihood principle and randomization in survey 

sampling. Report 78-04, Dept. of Statistics, University of Waterloo. 

TJUR, T. (1978). Statistical inference under the likelihood principle. 

Preprint 1, Institute of Mathematical Statistics, University of Copenhagen, 

Copenhagen. 

WALLACE, D. L. (1959). Conditional confidence level properties. Ann. Math. 

Statist. 30, 864-876. 

WELCH, B. L. (1939). On confidence limits and sufficiency with particular 

reference to parameters of location. Ann. Math. Statist. 10, 58-69. 

WILKINSON, G. N. (1977). On resolving the controversy in statistical inference 

(with discussion). J. Roy. Statist. Soc. ? 39, 119-171. 

YATES, F. (1964). Fiducial probability, recognizable subsets, and Behrens' 

test. Biometrics 20, 343-360. 

ZELLNER, A. (1971). An Introduction to Bayesian Inference in Econometrics. 

Wiley, New York. 

ZELLNER, A. (1982). Applications of Bayesian analysis in econometrics. Pre- 

sented at the Institute of Statisticians International Conference on Prac- 

tical Bayesian Statistics at St. John's College, Cambridge. 

This content downloaded from 128.173.127.127 on Tue, 28 May 2013 20:57:09 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


160 THE LIKELIHOOD PRINCIPLE 

Additional or Updated References 

BAYARRI, M. J., DEGROOT, M. H., and KADANE, J.B. (1987). What is the likeli- 

hood function? (With Discussion). In Statistical Decision Theory and 

Related Topics IV, Volume 1, S. S. Gupta and J. Berger (eds.). Springer- 

Verlag, New York. 

BERGER, J. (1985). Statistical Decision Theory and Bayesian Analysis. 

Springer-Verlag, New York. 

BERGER, J. (1987). Robust Bayesian analysis: sensitivity to the prior. To 

appear in the Proceedings of the Conference in Honor of I. J. Good, 

K. Hinkelmann (ed.). 

BERGER, J. and BERLINER, L. M. (1986; previously 1983). Robust Bayes and 

empirical Bayes analysis with e-contaminated priors. Ann. Statist. 14, 

461-486. 

BERGER, J. and BERRY, D. (1987). The relevance of stopping rules in statisti- 

cal inference. In Statistical Decision Theory and Related Topics IV, 

Volume 1, S. S. Gupta and J. Berger (eds.). Springer-Verlag, New York. 

BERGER, J. and BERRY, D. (1988). Statistical analysis and the illusion of 

objectivity. To appear in American Scientist. 

BERGER, J. and DELAMPADY, M. (1987). Testing precise hypotheses (with 

Discussion). Statistical Science 2, 317-352. 

BERGER, J. and SELLKE, T. (1987). Testing a point null hypothesis: the 

irreconcilability of P-values and evidence (with Discussion). J. Amer. 

Statist. Assoc. 82, 112-139. 

This content downloaded from 128.173.127.127 on Tue, 28 May 2013 20:57:09 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


ADDITIONAL OR UPDATED REFERENCES 160.1 

BERLINER, M. (1987). Discussion of Bayarri, DeGroot, and Kadane (1987). In 

Statistical Decision Theory and Related Topics IV, Volume 1, S. S. Gupta 

and J. Berger (eds.). Springer-Verlag, New York. 

BHAVE, S. V. (1984). Two concepts of conditionality. J. Statist. Plann, and 

Inf. 10, 131-135. 

BUTLER, R. W. (1986). Predictive likelihood inference with applications (with 

Discussion). J. Roy. Statist. Soc. ? 47, 1-38. 

BUTLER, R. W. (1987). A likely answer to lwhat is the likelihood function?' 

Discussion of Bayarri et. al. in Statistical Decision Theory and Related 

Topics IV, Volume 1, S. S. Gupta and J. Berger (eds.). Springer-Verlag, 

New York. 

CASELLA, G. and BERGER, R. (1987). Reconciling Bayesian and frequentist 

evidence in the one-sided testing problem. J. Amer. Statist. Assoc. 82, 

106-111. 

DAWID, A. P. (1986). Discussion of Evans, Fraser, and Monette (1986). Canad. 

J. Statist. 14, 196-197. 

DELAMPADY, M. and BERGER, J. (1987). Lower bounds on posterior probabilities 

for multinomial and chi-squared tests. Technical Report #86-37, Department 

of Statistics, Purdue University, West Lafayette. 

EVANS, M., FRASER, D. A. S., and MONETTE, G. (1985a). Mixtures, embeddings, 

and ancillarity. Canad. J. Statist. 13, 1-6. 

EVANS, M., FRASER, D. A. S., and MONETTE, G. (1985b). Regularity conditions 

for statistical models. Canad. J. Statist. 13, 137-144. 

EVANS, M., FRASER, D. A. S., and MONETTE, G. (1985c). On the role of principles 

in statistical inference. In Statistical Theory and Data Analysis, 

K. Matusita (ed.). North-Holland, Amsterdam. 

EVANS, M., FRASER, D. A. S., and MONETTE, G. (1986). On principles and argu- 

ments to likelihood (with discussion). Canad. J. Statist. 14, 181-199. 

FRASER, D. A. S. (1984). Structural models. In Encyclopedia of Statistical 

Science, Volume 6, N. L. Johnson and S. Kotz (eds.). Wiley, New York. 

This content downloaded from 128.173.127.127 on Tue, 28 May 2013 20:57:09 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


160.2 THE LIKELIHOOD PRINCIPLE 

FRASER, D. A. S., MONETTE, G., and NG, K. W. (1984). Marginalization, likeli- 

hood, and structural models. In Multivariate Analysis VI, P. R. 

Krishnaiah (ed.). North-Holland, Amsterdam. 

GOOD, I. J. (1984). Notes C140, C144, C199, C200, and C201. J. Statist. 

Computation and Simulation 19. 

HALL, P. and SELINGER, B. (1986). Statistical significance: balancing evi- 

dence against doubt. Australian J. of Statist. 28, 354-370. 

HARTIGAN, J. A. (1967). The likelihood and invariance principles. Ann. Math. 

Statist. 3, 533-539. 

HILL, B. (1987a). On the validity of the likelihood principle. In Statistical 

Decision Theory and Related Topics IV, Volume 1, S. S. Gupta and J. Berger 

(eds.). Springer-Verlag, New York. 

HILL, B. (1987b). The validity of the likelihood principle. The American 

Statistician 41, 95-100. 

HINDE, J. and AITKIN, M. (1987, previously 1984). Canonical likelihood: a 

new likelihood treatment of nuisance parameters. Biometrika 74, 45-58. 

JOSHI, V. M. (1983). Likelihood principle. In Encycl. Statist. Sci. 4, 

644-647, S. Kotz and ?. L. Johnson (eds.). Wiley, New York. 

KAY, R. (1985). Partial likelihood. In Encycl. Statist. Sci. 6, 591-593. 

S. Kotz and N. L. Johnson (eds.). Wiley, New York. 

LINDLEY, D. V. (1957). A statistical paradox. Biometrika 44, 187-192. 

LINDLEY, D. V. (1977). A problem in forensic science. Biometrika 64, 207-213. 

P0C0CK, S. J. (1977). Group sequential methods in the design and analysis of 

clinical trials. Biometrika 64, 191-199. 

SHAFER, G. (1982). Lindley's paradox. J. Amer. Statist. Assoc. 77, 325-351. 

SMITH, A. F. M. and SPIEGELHALTER, D. J. (1980). Bayes factors and choice 

criteria for linear models. J. Roy. Statist. Soc ? 42, 213-220. 

ZELLNER, A. (1984). Posterior odds ratios for regression hypotheses: general 

considerations and some specific results. In Basic Issues in Econometrics. 

University of Chicago Press, Chicago. 

This content downloaded from 128.173.127.127 on Tue, 28 May 2013 20:57:09 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Discussione Auxiliary Parameters and 

Simple Likelihood Functions 

By Professors M. J. Bayarri and M. H. DeGroot 

(University of Valencia and Carnegie-Mellon University) 

We are grateful to our friends Jim Berger and Robert Wolpert for 

giving us this opportunity to contribute to their valuable and comprehensive 

study of the likelihood principle. Our prior distribution was highly concen- 

trated on their writing an excellent monograph, and the evidence provided by 

the data we now have confirms our prior opinion. Their treatment is careful 

and thoughtful (this means that we agree with them) and leaves little room for 

further discussion. Nevertheless, haremos todo lo posible; we will try. 

Our comments will be restricted to the material in Section 3.5 

pertaining to the construction of a likelihood function to be used in statisti- 

cal problems involving nuisance variables, nuisance parameters, and future 

observations. We will use the notation x, y, w, ?, and ? to represent the same 

quantities as in Section 3.5.2. Here, ? is the observation and all the other 

quantities are unobserved, y and w are regarded as variables, ? and ? are 

regarded as parameters, and y and ? are of interest. It will be convenient for 

us to use the notation f(x,y,w|c,n) rather than f(c ? (x,y,w) to denote a 

conditional density. 

The basic purpose of a likelihood function is to serve as a func- 

tion that relates observed and unobserved quantities, and conveys all the 

relevant information provided by the observed data about the unobserved quanti- 

ties. From the Bayesian point of view, which we shall adopt in this discussion, 

160.3 
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we are interested in finding f(y,c|x). If the design of the experiment is not 

under consideration, we could simply wait until ? is observed and then assess 

the density f(y,c|x) directly. However, to guide our thinking and to help make 

our conclusions more convincing to others, we would typically introduce some 

structure into our learning process by writing f(y,?|x) in the form 

(D f(y,?|x) ? f(x|0 f(y|x,e) f(0. 

If there is general agreement about the form of the densities f(xU) and 

f(y|x,C), then these densities can be regarded as "given" and in the spirit of 

(3.5.1), a likelihood function could be defined as 

(2) ?x(y,c) 
= f(xU) f(y|x,c) = f(x.yU). 

In BDK we referred to this likelihood function as LF because it is derived 

from the conditional density of the "variables" given the "parameters". 

We regard the likelihood function (2) as unsuitable as a general 

definition because we do not believe there is a clear-cut distinction between 

unobserved variables and parameters. The form of (2) relies on the density 

f(x>yU) being given or agreed on. We can rewrite this density as 

(3) f(x,yU) = f(x|y,c) f(y|?), 

and agreement about f(x,yU) is equivalent to agreement about both factors on 

the right-hand side of (3). In this case the likelihood function would be 

given by (2). However, it is possible that there is agreement about the form 

of f(x|y>?) while the form of f(y|?) is considered as highly subjective. In 

this case, a likelihood function for y and ? based on the observation ? would 

be simply 

(4) ?x(y,c) 
= f(x|y,e). 

Thus, when an experimenter reports to us some particular function 

of y and ? which is his or her likelihood function based on the observed data, 

we would still need further information from the experimenter in order to be 
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able to make inferences or calculate posterior distributions. We must know 

whether or not the density f(yU) has been included in the likelihood function. 

In other words, in order to be able to use this likelihood function, we must 

know not only the function itself but also which factors have been used to de- 

rive it. (We will argue later in this discussion that it is unnecessary ever 

to include the factor f(yU) in the likelihood function in order to convey the 

evidence provided by the data x, since this factor does not involve x.) 

It should be noted that the factors on the right-hand side of (2) 

contain only the variables y and parameters ? that are of interest. In many 

problems, the densities f(x|?) and f(y|x,?) can still be difficult to specify 

or can still be considered highly subjective by others. These difficulties are 

usually reduced by introducing further structure into the learning process by 

means of a more detailed specification of the "parameter space" of ? and the 

"sample space" of y. These specifications are represented by a "nuisance 

parameter" ? and a "nuisance variable" w. As a result, (1) now becomes 

(5) f(y.S|x) ? / J f(xU.n) f(y,w|x,?,n) f(c,n) dw dn. 

It should be emphasized that ? and w are selected by us for our 

convenience. If we have been successful in our selection, then there will be 

general agreement among others on the form of f(xU,n) and f(y,w|x,c,n). It 

is presumably because of such agreement that Berger and Wolpert regard these 

densities as being "given", and define a likelihood function (3.5.1) to be 

their product 

(6) ?x(y,u),c,n) 
= f(xU,n) f(y,w|x,c,n) 

= f(x,y>w^,n). 

In view of these comments, the traditional expression "nuisance parameter" for 

n seems inappropriate. Because it helps us to build models and to achieve 

agreement about those models, ? might better be called an auxiliary parameter. 
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When ? is a vector of observations, one typical way in which a con- 

venient choice of the auxiliary parameter ? can simplify the density ?(?|?,?) 

is making the components of ? conditionally independent. More importantly, a 

convenient choice of ? may make y and w conditionally independent of ? given 

? and ?. In this case, f(y,w|x,?,n) reduces to f(y,w|c,n) and the likelihood 

function (6) becomes 

(7) *x(y,w,C,n) 
= f(xU,n) f(y,wU,n). 

Regardless of whether the density f(y,w|c,n) is given or subjective, it does 

not involve the data x, so all the evidence in ? about the unknowns is contain- 

ed in the first factor f(x|c,n) on the right-hand side of (7). Thus, we be- 

lieve that it is the only factor that should be included in the likelihood 

function. The inclusion of other functions of the unknowns, such as f(y,w|c,n) 

or the prior fU,n), which do not depend on the data, seems artificial. 

It should be noted that the likelihood function that we are recom- 

mending in this situation, namely 

(8) *x(y,w,?,n) 
= f(xU,n), 

can also be expressed because of conditional independence as 

(9) ?x(y,w,c,n) 
= f(x|y,w,C,n). 

In other words, this likelihood function is simply the conditional density of 

the observations given the unobserved quantities. In BDK this likelihood 

function was called LF . and is in accord with the basic definition (3.1.1) 

given by Berger and Wolpert. 

More generally, every Bayesian analysis proceeds from a specifica- 

tion of the joint density f(x,y,w,c,n). If we let s denote the set {x,y,w,c,n> 

of all the components of all the quantities considered in the problem, and let 

Sj 
and s? denote non-empty subsets of s such that s-, ? s2 

= 0 and SjU^n 
= s, 

then the joint density f(s) can be expressed as the product f(s) = 
f(sJs2)x 

f(s2). The various likelihood functions under consideration in this discussion 
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are of the form 
f(Sj|s2) 

for some particular choice of s,, or are derived from 

f(s1|s2) by integrating out quantities that are not of interest. The subset 

Sj 
is always taken to contain ? and usually, as in LF , to contain other 

"variables" with given distributions. However, it should be emphasized that 

s, is sometimes also taken to contain components of the "parameters", as in 

2 
Berger and Wolpert's (3.5.2) where ? is implicitly moved into s, and then 

integrated out. (In more colloquial terms, the choice of a likelihood function 

is essentially the choice of where to put the bar in the joint density 

f(x>y>w,C,n). In LF it is put between w and ?, whereas in LF . it is put 

between ? and y.) 

Clearly, there are very many different possible choices of s,, and 

the definition of the likelihood function can become very arbitrary. The 

fundamental idea is that in order to convey the evidence about the unknowns 

provided by the data, it is unnecessary to include any quantities other than ? 

in s?. Indeed, the possible inclusion of other quantities can only lead to 

confusion for the users of these likelihood functions. Thus we claim that the 

evidence provided by the data is conveyed most efficiently and most generally 

by the likelihood function that we have called LF . , as given by (9). 

It should be emphasized that we are making an important distinction 

between the evidence provided by ? about ? and y, and the information that is 

needed to make inferences about ? and y. This distinction is clear in the 

Bayesian approach, but less clear in the likelihood-based frequentist approach. 

However, even in that approach, the distinction becomes clear if 
LFQbs 

is 

always used but inferences incorporate other factors such as f(y^) in (3). 

Thus, a large variety of inferential aims can be accomplished with just LFQbs 

rather than an equally large variety of likelihood functions. 
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Discussion by Professor Bruce M. Hill 

(University of Michigan) 

I should like to congratulate Berger and Wolpert on their lucid 

and informative presentation of the history and substance of the likelihood 

principle, and their extension of the likelihood principle. Although I found 

their extension interesting, and hope that it may resolve some doubts concern- 

ing the status of the likelihood principle in the infinite case, my own view 

is that the likelihood principle really stands or falls in the finite case. 

The part of their article that I would like to discuss is that concerning the 

various examples that have been presented against the likelihood principle, 

where my views are perhaps different from those of Berger and Wolpert (BW), and 

in the course of the discussion my approach to the infinite case should become 

clear. Before doing so I want to preface my remarks with two comments. First, 

I think that we Bayesians should be grateful to Stein, Stone, Fraser and 

Monette, for their interesting examples, all of which have some real substance 

to them. Theories require good criticism in order to grow, and the lack of 

such criticism has been detrimental to the Bayesian theory. Secondly, I think 

it is essential that we keep in mind the distinction between the likelihood 

principle (by which I mean the formal likelihood principle of BW) and various 

implementations or interpretations of the likelihood principle. I shall try to 

demonstrate that none of the examples speak against the likelihood principle as 

such, but rather that they constitute frequentistic arguments against the use 

of specific improper (or diffuse finitely additive) prior distributions. I 

shall then explain why I think such arguments have no real teeth to them. 

161 
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Let us begin with the example of Stein. Although it was originally 

presented by Stein as an argument against the likelihood principle, with an 

argument against lazy Bayesians tacked on at the end, I regard it as primarily 

an argument against Bayesians (such as myself) who use improper or finitely 

additive prior distributions to obtain approximate posterior distributions, and 

also against the theory of de Finetti (which I follow) which in principle does 

not rule out any finitely additive prior distribution. To begin with, the 

likelihood principle does not justify either (5.3.4) or (5.3.5) of BW, since it 

does not suggest a way of attaching probability to sets. It is true of course 

that some individuals who support the likelihood principle (perhaps with quali- 

fications), such as George Barnard and A. W. F. Edwards, also sometime recom- 

mend the use of such probabilistic interpretations of the likelihood function, 

but that is by virtue of additional assumptions, whether explicit or implicit, 

and is not really part of the likelihood principle. BW apparently accept that 

(5.3.6) is a strong argument against the use of a uniform improper prior dis- 

tribution for theta, but suggest that there is no difficulty for Bayesians be- 

cause on the one hand theta is a scale parameter and so it is the logarithm of 

theta (if anything) that should be given a uniform prior distribution, as in 

Barnard's reply to Stein; and on the other hand, and more importantly, they 

argue that with proper prior distributions the type of interval that Stein 

shows has bad frequentistic properties can occur only rarely since "Y is almost 

certain to be enormous." Although I agree with both arguments of BW, it seems 

to me that the issue being raised by Stein is not whether a sensible Bayesian 

can avoid the intervals (5.3.5), but rather whether by virtue of carelessness 

or because his theory permits such intervals (as for example is true of the 

de Finetti theory) the unwary or even wary Bayesian will become frequentistic 

prey. If there really were a trap with teeth to it then Stein's example would 

suggest either that one stick with proper prior distributions, or else be quite 

careful in the choice of improper, or merely finitely additive, prior distribu- 

tions, and as Stein says, this would make the "prior distribution used dependon 
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accidental features of the decision problem." Now to me this seems to be a 

real and important issue. Suppose we are discussing a real-world parameter, 

whose existence, definition, and meaning, in no way depend upon the experiment 

to be performed. (The existence of such parameters may be far less common 

than is usually assumed, but presumably we could all agree that at least some 

such parameters exists, or at any rate are worth discussing, and confine atten- 

tion to these. When the "parameter" depends upon the experiment for its 

existence and meaning, then, of course, the likelihood principle does not 

apply.) In the subjective Bayesian theory of de Finetti and L. J. Savage, the 

prior distribution for such a parameter would be chosen to represent one's 

opinions about that parameter, and whether the measurement is to be made 

according to the normal model or according to (5.3.3) should not in any way 

affect the prior distribution. If for some reason I thought that a uniform 

improper prior for theta was appropriate as an approximation under the normal 

model, and then learned that in fact the measurement error was distributed 

according to (5.3.3), but with the nearly identical likelihood functions that 

Stein produces, then it seems to me that the uniform prior should still provide 

a satisfactory approximation in obtaining my posterior distribution. Further- 

more, a Bayesian who would use the uniform prior for theta when the measure- 

ment error is normally distributed, but would use a uniform prior distribution 

for the logarithm of theta when the measurement error is distributed according 

to (5.3.3), is coming very close to violating the likelihood principle in 

this example, since he is making very different inference about theta in the 

two cases even though the likelihood functions are in a certain sense very 

"close," and theta is the same fixed quantity. See Savage (1970) for 

a related argument. (Some Bayesians, for example Box and Tiao, actually 

recommend that prior distributions be made to depend upon the sampling scheme, 

and so would use a different prior distribution for the parameter of a 

Bernoulli sequence if the experiment were of binomial form than if the experi- 

ment were of negative binomial form, even when the choice of the experiment is 
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made by randomization and is thus uninformative, and this clearly violates 

the likelihood principle. Whatever else may be said of such an approach, it 

is certainly not a part of the ordinary subjective Bayesian theory, in which 

the prior distribution for a parameter of the type we are discussing does not 

depend upon what experiments may or may not be performed at some future time. 

Furthermore, if BW choose to use improper prior distributions, but only when 

these do not lead to bad frequentist properties, then they too are perilously 

close to a violation of the likelihood principle, since their choice will turn 

out to depend upon the sampling distribution, just as with Box and Tiao.) 

What the Stein example actually demonstrates is that if a Bayesian uses the 

uniform prior distribution for theta, then his posterior probability for the 

interval (5.3.5), given any y, is at least .95, while given any theta, the 

frequentist probability for the interval is very tiny according to (5.3.6). 

This is the phenomenon of nonconglomerability. Conglomerability is a property 

of a probability distribution, and was defined by de Finetti (1972, p. 99) 

as follows: if the conditional probability of an event, given each 

element of a partition, lies between ? and q, then also the probability of 

the event lies between ? and q. Conglomerability always holds for countably 

additive probability distributions and countable partitions, but need not 

hold for merely finitely additive distributions, and in fact, as shown 

recently in Hill and Lane (1983) using only elementary mathematics and 

verifying a conjecture of de Finetti, conglomerability and countable additivity 

are equivalent for countable spaces. The uniform improper prior distribution 

can be given a finitely additive interpretation, which is why the nonconglomer- 

ability exhibited by Stein can occur. Thus for the partition based upon the 

value of theta, we have (5.3.6), while for the partition based upon the value 

of Y, the intervals (5.3.5) have posterior probability at least .95 for all 

possible such Y values, when the uniform prior distribution for theta is used. 

The unconditional probability of the interval has not been defined, but 

whatever value it is given must exhibit a nonconglomerability with respect to 

one or the other of the two partitions. In Hill (1981) I 

This content downloaded from 128.173.127.127 on Tue, 28 May 2013 20:57:09 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


DISCUSSION BY HILL 165 

gave some general arguments as to why nonconglomerability cannot be avoided in 

the subjective Bayesian framework, and as to why I believe there is really very 

little that is operationally meaningful in the type of superficially frighten- 

ing calculation exhibited in (5.3.6). After discussing the other examples, I 

will return to this issue, and suggest a new argument as to why there is no 

way to demonstrate any undesirable consequences if one uses an improper prior 

distribution. Thus although I agree with BW that the Bayesian can always avoid 

the trap by using proper distributions, I also like to use improper prior dis- 

tributions or merely finitely additive prior distributions when I think they 

yield a simple and satisfactory approximation to rr?y posterior distribution, and 

do not accept (as BW seem to do) that there are any operationally meaningful 

ill consequences to so using such distributions (even for all possible values 

of Y in the Stein example). A general theory pertaining to the type of conse- 

quences that arise in nonconglomerable situations has been formulated and 

elegantly presented by Heath and Sudderth (HS) in Heath and Sudderth (1978) 

and by Lane and Sudderth (1984), and as we shall see later all of the 

examples purportedly against the likelihood principle, are in fact merely more 

examples of the type of incoherence discussed by HS. (See HS example 5.2 for a 

very simple example similar to that of Stein.) It is my opinion, however, that 

the HS requirement for coherence, to the extent it goes beyond the de Finetti 

form of coherence (which only requires avoidance of sure loss with a finite 

number of gambles), is too restrictive, and at least in the special case of 

the Monette-Fraser example, I will argue that the apparent ill consequences of 

violating the HS condition for coherence cannot really be made operational. 

The Stone example does not directly pertain to the likelihood 

principle, and has been analysed by myself in Hill (1981) from a 

finitely additive point of view. In addition to observing that a finitely 

additive diffuse uniform distribution on the "length" of path yields the 

standard confidence result, it was also pointed out that in order to obtain the 

uniform distribution on the location of the treasure that Stone criticizes it 
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is necessary to employ a diffuse finitely additive prior distribution which 

gives odds of nine to one in favor of paths of length j+1 versus paths of 

length j-1, for all j > 1, and such a prior distribution seems rather silly in 

this example. Nonetheless, just as in the Stein example the de Finetti theory 

does not rule out such prior distributions, and the question is once again 

whether a serious case can be made against their use. It may be noted that the 

posterior obtained with this prior is also incoherent in the sense of Heath and 

Sudderth. 

Fraser in his discussion of my Valencia article Hill (1981) 

maintained that the Stone example also has implications with regard to 

the likelihood principle, and gave the example reported by BW. The example as 

initially presented did not seem appropriate to me, since it required that 

first theta, the true path to the treasure, be selected as in Stone's example, 

next that the observed path of the Stone experiment be given, and finally that 

a randomization be performed that leaves one with the same likelihood function 

as before. In this situation, where the second experiment consists of the 

first experiment together with an irrelevant randomization, the likelihood 

principle follows from just the sufficiency principle, and is barely worth 

commenting on. However, the Fraser example can be modified so that this is 

no longer the case, for example, one can imagine that a new experiment E* is 

performed as follows: first a path ? from the origin is selected according to 

a probability distribution that depends upon theta, in such a way that ? is 

equally likely to be any of the four paths for which theta is a one block 

extension or retraction of z, and we observe this z. Next, someone else who 

somehow or other happens to know the true theta, unobservedly retracts or 

extends ? back (or forth) to the true theta (which therefore remains the true 

parameter of the experiment), and from there does the experiment with the 

Fraser likelihood function as presented by BW, with ? = x(0). One then 

observes in this last experiment a path X. The likelihood function for theta 

based upon the data ? - ?, ? = ?, in the experiment E*, is then identical with 

the likelihood function derived from the Stone experiment with the same 
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observed path ?, and so with this modification the Fraser example does meet the 

conditions for the likelihood principle to apply. If one adopts a Bayesian 

point of view, then as BW argue, one has precisely the same apriori information 

about theta no matter which experiment is performed, and it is certainly 

reasonable to draw the same inference in each experiment. Suppose, however, 

one imagines that it is meaningful to consider the case of no prior information 

(whatever this means), so that Bayesian inference is not possible. It would be 

interesting to know what the appropriate non-Bayesian inference about theta 

would be under E* as opposed to the Stone experiment. Would, for example, a 

non-Bayesian now treat theta as though it were equally likely to be any of the 

four possible paths? Rather than calling into question the likelihood princi- 

ple it seems to me that this example may raise some serious problems for non- 

Bayesians. 

Now let us turn to the new example by Monette and Fraser (MF). 

This example does not seem to pertain directly to the likelihood principle, 

since there is only one experiment under discussion. It does, like the other 

examples, suggest that according to frequentist standards a certain improper, 

or diffuse finitely additive, prior distribution is unsatisfactory, and BW, 

as in the Stein example, argue that for proper prior distributions, and even 

for the conventional improper prior distribution for something akin to a 

scale parameter, there is no difficulty. Although again I agree with BW that 

ordinarily one need only consider quite proper prior distributions, and also 

that the particular improper or finitely additive distributions that are being 

castigated may be of no special interest, I would nonetheless like to argue 

that as yet very little has been demonstrated against the use of such prior 

distributions. My argument would be much the same in all examples, but will 

be presented here in connection with the MF example, which is the simplest. 

What has been shown is that choice of an improper uniform prior distribution 

(or a finitely additive diffuse prior distribution) for theta would lead to a 

posterior distribution, such that if I were to bet in accord with it, I would 

be a loser in the Heath-Sudderth sense (this is closely related to a lack of 
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extended admissibility). Since I regard the finitely additive uniform distri- 

bution as useful for approximations, and as having as much justification as any 

other distribution (to be given full rights, as de Finetti says), and in any 

case I don't think that it matters whether theta is akin to a scale parameter, 

so that I cannot take refuge in the BW argument unless I dispense entirely 

with both merely finitely additive distributions and improper priors, I am 

loathe to give it up so easily. So suppose I fall into the trap and agree to 

post odds in accord with the posterior distribution that is uniform over the 

three possible values for theta, given x. Let us see to what extent MF can 

take advantage of such foolishness as I am willing to exhibit. In order to 

do so they must construct a real world version of their mathematical model. So 

first of all they must somehow or other pick a theta, and then pick an ? in 

accord with their model. The Heath-Sudderth gambling scenario seems to be a 

convenient and appropriate way of describing the operational consequences of 

my potential incoherency (even for those who think that they don't gamble), 

and if desired, can easily be translated into non-gambling terms. Thus suppose 

that theta is picked from amongst the positive integers by the master of cere- 

monies in any way he likes, and then X is selected according to the MF distri- 

bution for X, given theta. After we are all given the value ? that X takes 

on, I then use the posterior distribution based upon the uniform prior distri- 

bution for theta to determine the odds that I, as bookie, will give for the 

various values of theta. Also, after observing x, MF are entitled to place 

any finite number of bets concerning theta they wish, and finally theta is 

revealed by the master of ceremonies and all bets are paid off. Suppose that 

MF bet a dollar on the event that theta takes on the value <5,(X), and let G 

denote the final payoff from me to them. Given theta, there is at least 

probability 2/3 that 
6j(X) will equal theta, and so the expectation of G, 

given theta, is at least $1, for all possible theta, and I am incoherent in 

the sense of Heath-Sudderth. However, to make the transaction operationally 

meaningful it is necessary to specify precisely how X will be revealed, for 
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example, that X will be expressed to the base 10 (or in any other specified 

form whatsoever), and that a certain finite time limit is prescribed during 

which the game is to be played. Now I think that all of us could come to 

agreement that given the constraints of the world we live in, there is an 

upper bound, say N, to the value of X that can be reported to us as data in 

the prescribed form and in the prescribed time, for example, an ? such that in 

the present state of technology even the fastest computer could not display an 

integer greater than ? in the time allotted for the experiment. (To be even 

more realistic, the same is true with regard to theta, but for the purpose of 

the present argument we need not assume any constraint on the magnitude of 

theta, and shall follow MF in assuming that the master of ceremonies can choose 

any value whatsoever, and then can and does select an X in the way that MF 

specify. Of course theta, like X, cannot actually be reported it if exceeds N, 

but one might wish to consider cases where the master of ceremonies has extra- 

ordinary powers, and is entrusted to announce who wins the gamble in situations 

where X does not exceed ? but 2 X does. This points out that there are in 

fact a variety of ways to make the Heath-Sudderth scenario operationally mean- 

ingful, and that our assumption that X cannot be reported if it exceeds some 

known N, is merely the minimal real-world constraint. This gives the present 

argument greater generality in that it may apply even when theta is a real- 

world physical parameter for which there would be no known bounds. If a bound 

on theta were available then of course the argument would apply all the more. 

However, the point is that whether or not there is such a bound on theta, there 

is necessarily a bound on the possible value of X that can be reported. If we 

do take into account known bounds on possible theta, or on possible reported 

values of theta, then this would lead us to proper prior distributions as in 

BW. However, it is not necessary to introduce such considerations in the 

present example since, as we shall soon see, the boundedness of the X that can 

be reported already destroys the frequentistic argument.) Suppose then that 

theta and X are selected by the master of ceremonies in accord with the MF 

model, without any constraint upon the magnitude of either, and that ? is a 
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known upper bound for any X that can possibly be reported as data. We do not 

assume that ? is the least possible upper bound for a reportable X, but merely 

that it is an upper bound. (It is, of course, desirable that ? be not too much 

larger than the least upper bound, but the argument does not depend upon this.) 

Thus our experiment now consists in precisely the MF experiment, together with 

the modest real world constraint that if X > N, then no value of X will be 

reported (since it would be impossible to do so), and hence that any bets that 

depend upon the value of X will be called off. In this situation the actual 

gamble as to whether theta is 6-.(X) is called off whenever X > N, and we are 

dealing with a conditional gamble in the sense of de Finetti (1974, Ch. 4). 

Consequently the payoff from me to MF is now as before if X is 

actually reported, but all gambles are called off if X > N. (There is nothing 

underhanded here with regard to the reduction to conditional gambles: in order 

that transactions can occur, so that the scenario has operational meaning, it 

is necessary that the bets are conditional bets, given that a value of X is 

reported, and hence conditional upon the event that the X selected in the MF 

experiment does not exceed N. If X > ? then no X is reported and no gambles 

can be made concerning whether theta = d-?(?). Note also that it is not neces- 

sary to assume that X must be reported if X < N, but merely that X cannot be 

reported if X > N, and that X must be reported if it is possible to do so in 

the fashion prescribed.) It is interesting now to see what becomes of the 

frequentist argument that showed that the conditional expectation of my loss, 

given theta, is at least $1, for all possible theta. I am still using the same 

prior distribution as before, so that if I am actually given a value of X 

(necessarily <_ N) then I post the same odds as before against the event that 

theta = 
?^x). 

If theta is sufficiently small so that X both can and must be 

reported (hence necessarily theta < N/2), then the expectation of G, given such 

a theta, is the same as before, at least $1. On the other hand, if theta > N/2, 

then the only values of X that can possibly be reported are X = theta/2 or 

(theta-l)/2, depending on whether theta is even or odd. Hence given a value 

of theta > N/2, and given that the gamble is not called off, it is certain that 
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theta is not equal to 6,(X), and so the conditional expectation of G, given 

such a theta and that the gamble is not called off, is -$1, while the uncondi- 

tional expectation of G, given such a theta, lies between -$.33 and $0. 

Whether in gambling terms or in coverage probability terms, it is thus seen 

that when a real-world constraint as to the value of X that can be reported is 

incorporated into the MF example, then the example breaks down, and in fact if 

a value of X is actually reported,then the very same 
<5-|(X) 

that appeared so 

desirable from the MF point of view, becomes impossible as the value of theta 

when theta > N/2. (A variation of this scenario would require me also to post 

odds on theta, given the information that X exceeds N. This would require care 

in obtaining the posterior distribution for a finitely additive prior distribu- 

tion, but in any event the 6.(X) are still not available, and the frequentistic 

argument still breaks down.) 

The above form of argument suggests why there need not be anything 

wrong with using the finitely additive uniform distribution in connection with 

experiments conducted by human beings, i.e., where the reportable observation 

X, if not theta itself, must be bounded, and one can with a little thought 

always choose a generous upper bound. More generally, when theta is not 

chosen by any human, but is a parameter of the real world, then one may not be 

able to argue for any upper bound for theta, but in my opinion neither will 

there by any operationally meaningful scenario in which one who chooses a 

finitely additive distribution can be shown to be in trouble by virtue of 

frequentist properties. BW suggest using proper prior distributions for theta 

as a way of avoiding the apparent frequentistic difficulties in the above 

examples. However, if BW or Heath-Sudderth wish to use improper or merely 

finitely additive prior distributions, and if they choose to avoid nonconglom- 

erability and its frequentistic consequences, as in the various examples, then 

it seems to me that they are in fact going to violate the likelihood principle, 

since the particular improper or finitely additive distributions that they must 

rule out in order to avoid nonconglomerability will depend upon the form of 
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the experiment, just as the prior distributions that Box and Tiao recommend 

depend upon the form of the experiment. (BW can avoid violating the likelihood 

principle by either restricting themselves to proper prior distributions, or by 

using improper prior distributions only when they provide an "adequate" approx- 

imation to the posterior distribution based upon some proper prior distribution. 

But I think it is too restrictive always to restrict oneself to proper prior 

distributions, and although, as mentioned earlier, I too ordinarily take the 

approximation point of view, I don't think the notion of what is an adequate 

approximation should depend upon frequentistic properties.) In the Stein 

example and in the Heath-Sudderth example (5.2), where according to the model 

(taken literally) the parameter and data are not discrete and the set of theta 

compatible with the data is not finite, the argument I have given above must 

be modified, but I think that here too, when real-world constraints are 

allowed for, the frequentistic argument will again break down, and I hope that 

my discussion of the MF example at least suggests some of the difficulties 

involved in trying to make the frequentistic argument operational. In my 

Valencia article I also suggested that as yet no serious argument for conglom- 

erability had ever been given (since that time Lane and Sudderth (1984) have 

given such an argument, but I do not agree with their views concerning the 

appropriate gambles with which to define coherency), and suggested also that 

Stonefs example had an implicit assumption of conglomerability for its castiga- 

tion of the uniform prior. (Stone (1979) replied by asserting that Hill is like 

a prisoner condemned to death by guillotine who rejoices that the guillotine 

will be chosen from an infinite collection. I replied "Yes, Mervyn, but all your 

guillotines are made of butter." At a deeper level this concerns the appro- 

priate interpretation of conditional probability, whether in terms of gambles 

that are called off if the conditioning event does not occur, as in de Finetti 

(1972, p. 81), or in the more usual way, but there is not space to go 

into this here.) Sir Harold Jeffreys once criticized conventional tests of 

significance because they reject hypotheses that may be true on the basis of 

data that have not occurred. Apparently some would also have us reject the 
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use of improper prior distributions because of experiments that cannot be 

performed. 

Finally, let me mention an important real-world problem where 

exactly such considerations as I have been discussing arise. Consider a 

balanced one-way random effects analysis of variance model, with I rows and J 

columns. In Hill (1980) I examined the consequences of drawing inference about 

the ratio of the between to the within variance, t, using as data only the 

ratio of the mean square between to the mean square within. It was shown that 

this can in fact be justified by a fully Bayesian analysis, and is appropriate 

when the prior distribution of the two variance components is such that their 

ratio is independent of the within variance, and the overall mean is given a 

diffuse prior distribution. The problem then reduces to one of inference about a 

simple location parameter, ? = ln(l+Jx), based upon data ? = ln(MSB/MSW), and 

with the distribution of ?-?, given ?, being that of the logarithm of a random 

variable having the F distribution with 1-1 and I(J-l) degrees of freedom. 

The likelihood function for ? based upon the data ? is then the density of this 

ln(F) distribution, translated so that the mode is at ? (and with degrees of 

freedom reversed), except that the density must be truncated from below at 0 

because ? is nonnegative (it is convenient and harmless to think of the likeli- 

hood function as being defined for all ?, so that even if ? is negative, the 

mode is at ?, and then to make the truncation from below at 0 stem from the 

prior distribution.) If one uses the uniform prior distribution for ?, with 

? > 0, then one is in precisely the type of situation that the Stein, HS (5.2), 

and MF examples, deal with. Although there is nothing magical or mandatory 

about use of this particular prior distribution, and in fact there is usually 

a great deal of prior information about the ratio of variance components in 

such problems, so that I would recommend use of a proper prior distribution 

for ?, at the same time, I think a great deal of insight can be obtained from 

the improper uniform prior on ?, and do not think it should be automatically 

ruled out merely because it may lead to bad frequentistic risk properties. As 

I argue in Hill (1980), the posterior expectation based upon this improper prior 

This content downloaded from 128.173.127.127 on Tue, 28 May 2013 20:57:09 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


174 THE LIKELIHOOD PRINCIPLE 

yields, at least in some respects, a more plausible estimator for a multi- 

variate mean (the realized random effects) than does the positive-part Stein 

estimator. For example, the posterior expectation cannot shrink all the way 

to the grand mean of the observations, since the weight given to the row means 

y.# decreases only to 2/(1+1) as the ratio of the between to within mean 

square goes to 0, whereas of course the positive-part Stein estimator can give 

zero weight to the row means, and this is not always sensible. The behavior 

of the posterior expectation stems partly from the particular form of the 

prior distribution for the variance components (especially the fact that the 

ratio of the variance components is apriori independent of the within variance 

component), and partly from the truncation of the posterior distribution of ? 

from below at 0, neither of which do non-Bayesians incorporate into their 

analysis. In my opinion due respect for the likelihood principle, and proper 

allowance for these aspects of the problem, are far more important than any 

frequentistic arguments against the use of improper prior distributions, while 

at the same time, as BW would presumably agree, a proper prior distribution 

for the variance components would ordinarily be reasonable, and give the best 

of both worlds. 

DISCUSSION OF THE SECOND EDITION BY PROFESSOR HILL 

Since the publication of the first edition of the monograph by 

Berger and Wolpert, I have written several articles pertaining to the validity 

of the likelihood principle, and to its role in Bayesian data-analysis. I 

believe that the example of Hill (1987a,b) clearly shows that the original 

statement of the likelihood principle by Birnbaum in terms of an abstract con- 

cept of evidence was faulty. The difficulty in the likelihood principle is 

easily remedied, however, and this was done in my statement of the restricted 

likelihood principle in those articles. In my formulation one speaks not of 

the evidence in some undefined abstract sense, but rather only of the evidence 

about the value of ?, and excludes from the discussion any assertion about how 

? might relate to other unknowns, whether hypotheses or parameters. Thus my 
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example can be viewed as showing that two different experiments that yield 

proportional likelihood functions for ? do not necessarily provide the same 

evidence about ?, since we can learn, for example, that ? has a different 

'color' in the two experiments. The color might be an important part of the 

overall evidence about ?. Of course the color can be included in the parameter, 

but the likelihood principle, as usually formulated, does not require one to do 

so. It is hoped that once this point is understood, others will, like myself, 

become even stronger supporters of the essential part of the likelihood 

principle. 

The basic point of my example is related to fundamental questions 

that arise in theories of causality, for example, concerning determinism and 

the possibility of independence in the real world. Such questions arise in 

critical discussions of quantum mechanics and relativity theory, for example, 

in connection with Bell's inequality, as well as in philosophy. 

In Hill (1985-86, p. 223) I have given an account of how the like- 

lihood principle must be further modified to deal with Bayesian data-analysis, 

where through exploration of the data, one may modify the original model. The 

same article, p. 202f, argues that even apart from inadmissibility, incoherence, 

and the failure to utilize available information, the frequentist approach 

breaks down completely in connection with such data-analysis, since all fre- 

quentistic assertions must be conditional not only upon the diagnostics used, 

but their order, and even the thoughts that cross one's mind. Such conditional 

probabilities are plainly both unknown and unknowable. Finally, Hill (1988) 

gives a very short, and partly new, proof of the stopping rule principle, i.e., 

that the stopping rule is irrelevant for inferential and decision-making pur- 

poses, or that "sequential analysis is a hoax," as concluded by Anscombe (1963, 

p. 381). Here the proof does not depend upon the likelihood principle, or 

even the restricted likelihood principle. Instead, it is shown that on a post- 

data basis, i.e., given the realized data, sequential analysts purport to 

extract information over and above that following from the corresponding fixed 

sample size experiment, from a logically certain event. In this article the 
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important distinction between the pre-data and post-data considerations is 

emphasized. Once one is given the data, the primary aim must be to make 

intelligent and rational decisions, for which the Bayesian approach seems 

quite well suited. Of course sequential design need not necessarily be a hoax, 

but it appears that not very much is known about this potentially important 

subject, perhaps because of the confusion between pre-data and post-data consid- 

erations, as discussed in Hill (1988). 

The likelihood principle is often mistakenly assumed to be largely 

equivalent to the Bayesian approach. The likelihood principle, as proposed by 

Birnbaum, in terms of an abstract and empty concept of evidence, was in fact 

the last gasp (intellectually speaking) of the theory of classical statistics, 

with its naive pretence at objectivity. Indeed, Birnbaum (1962, p. 277) quotes 

Jimmie Savage as follows. "Rejecting both necessary and personalistic views of 

probability left statisticians no choice but to work as best they could with 

frequentist views... The frequentist is required, therefore, to seek a concept 

of evidence, and of reaction to evidence, different from that of the primitive, 

or natural, concept that is tantamount to application of Bayes' theorem." 

"Statistical theory has been dominated by the problem thus created, 

and its most profound and ingenious efforts have gone into the search for new 

meanings for the concepts of inductive inference and inductive behavior. 

Other parts of this lecture will at least suggest concretely how these efforts 

have failed, or come to a stalemate. For the moment, suffice it to say that a 

problem which after so many years still resists solution is suspect of being ill 

formulated, especially since this is a problem of conceptualization, not a 

technical mathematical problem like Fermat's last theorem or the four-color 

problem." 

Birnbaum then states that "The present paper is concerned primarily 

with approaches to informative inference which do not depend upon the Bayesian 

principle of inverse probability." It would therefore appear that Birnbaum 

regarded his approach to evidence as meeting the objections that Savage and 

others had raised. However, just as the Michelson-Morely experiment spelt the 
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death knell for classical physics (which was at least a highly successful and 

useful subject), one must wonder what is left of classical statistics, without 

even Birnbaum's likelihood principle to sustain it. All that appears to be 

left is the restricted likelihood principle, which is implied by the Bayesian 

approach, and is somewhat more general than the Bayesian approach, since it 

allows for versions of Bayesian data analysis such as in Hill (1988). I know 

of no way to demonstrate even the restricted likelihood principle, however, 

other than through the Bayesian approach. 

I think that nowadays it will be readily understood that the pre- 

tence at objectivity in classical statistics was equivalent to taking a partic- 

ular subjectivistic Bayesian view, that based upon diffuse prior distributions, 

and by fiat declaring that this constitutes objectivity. Such prior distribu- 

tions play an important role in Bayesian statistics, via the stable estimation 

argument of Jimmie Savage, but do not acquire any magical status in the Bayes- 

ian theory. 

The nature of "objectivity" was never seriously discussed in class- 

ical statistics, despite the fact that this was and is a notoriously difficult 

question in philosophy. Even in statistics, numerous examples exist showing 

that this pretence cannot be made, without leading to absurdities. There are 

many examples in which the realized likelihood function is nearly flat, no 

matter what the pre-data expected information may have been. This occurs, for 

example, in inference about variance components when the classical unbiased 

estimator of the between variance component is negative, as in Hill (1965, 

1967). A more sophisticated example of the need for a subjective view occurs 

in deciding whether a particular observation is an "outlier," as in Hill (1974b, 

Section 4) and Hill (1988, Section 3). What the so-called objectivists do, as 

Jack Good says, is to SUTC (sweep the subjective aspects under the carpet). 

Probability and statistics, as related to the real world, are fundamentally 

subjective or personalistic. In certain situations, however, one may obtain 

practical objectivity by means of a consensus as to appropriate prior distri- 

butions and models. See Hill (1985-86, 1988). Also, sometimes certain 
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"objectivistic" methods, such as the fiducial approach, can be justified 

Bayesianly, as for example with A(n) in Bayesian nonparametric statistics, 

Hill (1987c). Finally, by a delicious irony, it also turns out that the few 

important objective criteria that frequentists have recommended, such as 

admissibility, extended admissibility, etc., lead inevitably back to the 

Bayesian approach. 

The distinguished philosopher and psychologist, William James 

(1896, p. 97) puts it quite well: "Objective evidence and certitude are doubt- 

less very fine ideals to play with, but where on this moonlit and dream-visited 

planet are they to be found? I am, therefore, myself a complete empiricist so 

far as my theory of human knowledge goes. I live, to be sure, by the practical 

faith that we must go on experiencing and thinking over our experience, for 

only thus can our opinions grow more true; but to hold any one of them - I 

absolutely do not care which - as if it never could be reinterpretable or 

corrigible, I believe to be a tremendously mistaken attitude, and I think that 

the whole history of philosophy will bear me out." 

James's eloquent statement can serve as a preamble to the theory 

and practice of Bayesian data analysis and decision-making, which is a synthe- 

sis of the empiricism-pragmatism of John Locke, David Hume, Charles Peirce, 

and William James, with the rationalism of Plato, Descartes, Kant, and others, 

and to which I believe that the next century will be devoted. 
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Discussion by Professor David A. Lane 

(University of Minnesota) 

Berger and Wolpert have done the statistics community a service by 

calling our attention once again to the likelihood principle (LP) and its 

implications. They repeat Birnbaum's(1962a) message, already admirably 

recapitulated by Basu (1975) and Dawid (1977): if you work within the 

classical (?, T, {P.}) - paradigm, you want to make inferences about "true ?" 
? 

on the basis of "observed x," and you wish to respect certain fundamental 

principles of inference (for example, the sufficiency and weak conditionality 

principles), then your inference had better depend upon the observation ? 

through the likelihood function that ? induces on T. In particular, you must 

accept the implications of some other principles that many statisticians regard 

as false, never mind fundamental, like the stopping time and censoring 

principles. 

There are several bail-out options for statisticians who choose 

neither to follow the LP to fully conditional analysis nor to raise adhockery 

to a scientific principle. They can reject the (?, ?, {P }) - paradigm by ? 

requiring either more structure (as do structuralists, pivoteers, and, perhaps, 

some "objective" Bayesians) or less (as do defenders of al ternati ve-free 

significance tests and, more drastically, exploratory data analysis); or they 

can modify the fundamental pre-principles so that the LP and the objectionable 

post-principles fail to be derivable from them, as did Durbin (1970) and 

Kalbfleisch (1975); or they can claim that other, more fundamental, principles, 

like the Confidence Principle, conflict with the LP, making an ideological 

choice among competing principles necessary. 
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Since Bayesian practice is consistent with the LP, Bayesians have 

no need to refute Birnbaum's work. Indeed, to Berger and Wolpert, the LP is a 

trump card in the Bayesian salesman's hand. They argue, as did Basu (1975), 

that only Bayesian ideas permit the LP to be properly implemented and that 

Bayesian considerations unravel the "counterexamples" to the LP produced by 

Armitage, Stein, Fraser and others. 

But even to Bayesians, consistency with Bayesian ideas should be 

no guarantee of foundational cogency. For example, the fact that (essentially) 

admissible decision rules are Bayes does not recommend Wald's formulation of 

decision theory to most Bayesians. So the question arises: should Bayesians 

promote Birnbaum's formulation and derivation of the LP as a cornerstone of 

the foundations of statistics? I think not, for two reasons. First, the LP 

is embedded in a paradigm which is not directly applicable to many, if not 

most, of the important real problems of statistical inference. Because of the 

ambiguity and limitations of this paradigm, the proof of the LP is not 

compelling. Second, the LP ignores what I regard as the fundamental tenet of 

Bayesi anity: the purpose of an inference is to quantify uncertainty. When 

this tenet is properly taken into account, foundational arguments can be 

adduced that lead directly to Bayesian methods. 

The next section elaborates the first of these reasons in some 

detail. For a development of the second, see Lane (1981) and Lane and 

Sudderth (1984). 

(?, T, iPJ) and the LP 

I shall discuss three problems with the LP. The first relates to 

the meaning, the second to the adequacy, and the third to the relevance of the 

(X? ?, {Pe})-paradigm. Both the first and the second of these problems call 

the derivation of the LP into question. 

1. What do the elements of T represent? This question is important, since 

the proof of the LP requires us. to consider the mixture of two different 

experiments with "the same T." There at least three possible interpretations 
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of the elements of T: 

a) ? is the distribution ?O; 

b) T is an abstract set and ? merely indexes the distribution P_; ? 

c) ? is a possible value for some "real" physical parameter, and ?O is to 

be regarded as the distribution of the random quantity X should ? be the 

true value of that parameter. 

Interpretations a) and b) are mathematically precise. They are 

defined in terms of the assumed model and do not refer to the physical 

reality that model is intended to represent. 

Interpretation c) has an entirely different character and raises 

difficult philosophical issues. When - and in what sense - do "real" physical 

parameters exist? If I opt for interpretation c), must I believe that a coin 

has a propensity to come up heads ? ? 100% of the time in an (infinitely) long 

series of repeated flips? I am inclined to believe that there may be "real" 

physical parameters in measurement error problems, although even here a strict 

operational ist construction leads to interpretation a) rather than c) for the 

parameter ?: the measuring process, encoded as P_, defines the quantity 

measured. In few other problems to which statistical inference is applied 

are there model-free physical quantities standing behind each model parameter. 

To decide whether or not you agree, think about your last regression or time- 

series analysis. 

Both Berger and Wolpert (pp. 42-3) and Dawid (1977, p. 252) seem 

to favor interpretation c). For example, Berger and Wolpert say that the LP 

applies only when the elements of the two parameter sets are "the same 

parameter, i.e. are physically or conceptually the same quantity." 

Unfortunately, they neglect to tell us how we are to decide when two different 

experiments measure the same quantity or how to deal with model parameters 

that lack any natural interpretation in terms of physical quantities. More- 

over, in virtually all of their examples, the set T is uninterpreted and 

merely serves to index the set of distributions {P?}, which suggests that in 

these cases they are thinking about T in the sense of interpretation b). 
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It is hard to take the LP seriously as a foundational instrument if we must 

always interpret the elements of ? as "real" physical quantities, unless we 

are given some guidance on what constitutes reality and how reality is tied 

to mathematics by the models we select. 

It matters which of the three interpretations we give to the 

elements of T. They lead to very different conclusions about the validity of 

the derivation of the LP. Interpretation a) gives no scope for the mixture 

principle: only experiments whose sampling distributions are identical share 

"the same ?." As such, the LP is reduced to the sufficiency principle and, 

for example, the stopping time principle does not follow from the LP. 

Interpretation b), on the other hand, gives tremendous scope for 

mixing. Any two experiments with the same index set can be mixed. Consequent- 

ly, if there are a pair of observations, one from each experiment, that yield 

the same likelihood function on the index set T, the LP then declares that the 

"evidence" or "inference" derived from the two experiments with these two 

observations must be identical. This is a start!ingly unBayesian conclusion. 

For example, must my predictive inference for the next outcome in any sequence 

of Bernoulli trials in which I have so far obtained three successes and one 

failure be the same? But what in the mathematics of the LP proof precludes 

interpreting T purely as an index set and so deriving a version of the LP 

that conflicts with Bayesian practice? 

The foundational status of the LP cannot be determined until T is 

interpreted. Depending on whether one adopts interpretation a), b) or c), the 

LP is devoid of interesting consequences, wrong, or severely and ambiguously 

restricted in its domain of applicability. 

2. The proof of the LP is convincing only in so far as the sufficiency and 

weak conditionality principles are intuitively compelling. While Bayesian 

practice respects both principles, only weak conditionality seems unarguable 

on its face. I share I. J. Good's reaction to the sufficiency principle, as 

reported in his discussion of Birnbaum(1962a). Despite Fisher's gift for 
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suggestive names (what more could you possibly need than something that is 

sufficient?), the fact that the distribution of X given the value of a 

statistic ? is ?-free does not immediately impel me to base my inference only 

on the value of T. 

Suppose, though, that the observation ? is generated by first 

generating a value for ? according to a distribution indexed by some element 

of the parameter set T and then an extraneous randomization mechanism is used 

to pick an ? on the orbit of the observed value of T. In such a case, it is 

clear that ? is sufficient and that inference about ? should be based only on 

T. (The sufficient statistic that appears in the derivation of the LP does 

not bear this postrandomization relation to the observation x.) 

Now, for any sufficient statistic ? defined on a statistical 

model (?, T, {PQ}), there is no way to tell from the information encoded in 

(?? T, {??}) whether the observation ? is or is not generated from ? by 

postrandomization. So, if you do not find the sufficiency principle compel- 

ling except in the postrandomization case, you must agree with Barnard and 

Fraser that not enough information is encoded in (?, T, {PQ}) upon which to 

base a general principle of inference. And I believe that this conclusion 

is correct. After all, the information in (?, T, {PQ}) says nothing about how 

the model represents reality, and it is hard to see how a principle of 

inference can disregard the details of this representation. Though we use 

models to guide the way we formulate inferences, the inferences themselves 

have value to us only if they yield useful statements about the world. 

3. Even though "inference" is undefined in the LP formulation, the validity 

of the LP seems to depend on two premises about the nature of inference in 

the (?, T, {?O}) - paradigm: 

a) The purpose of inference is to make some statement about the "true" value 

of an unobservable parameter ? on the basis of an observed quantity x; 

b) ? exists independently of the "experiment" E that produces x, and informa- 

tion about ? can be separated into two components, one deriving just from 
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E (to which the LP refers) and "other information" presumably preexisting 

E. 

I believe that these premises are rarely true in real situations to which 

statistical inference is applied. If I am right, the scope of the LP as a 

foundational instrument is narrow. 

Except for measurement error problems, the real aim of inference 

is usually to generate a prediction about the value of some future observables; 

see Geisser (1971 and 1984) and Aitchisonand Dunsmore (1975) for extensive 

discussion of this proposition and further references. This is especially 

true in situations where the model parameters do not represent real physical 

quantities, the typical case in regression and time-series analyses. Esti- 

mating model parameters is in general a "half-way house" on the way to predict- 

ing some relevant future observation, and much can be lost by focusing founda- 

tional discussion on the half-way house instead of the ultimate destination. 

For example, the relevant uncertainty for a patient with a particular clinical 

condition undergoing a particular therapy is not a confidence band for an 

estimated survival curve; rather, the patient and his physician should be 

concerned with the predictive distribution for that patient's future lifetime. 

The inferential question of interest to the patient is how to generate this 

predictive distribution. 

The LP does not address this question directly. Berger and Wolpert 

claim that prediction can be embedded in the LP framework by including the 

future observable as part of the unknown parameter. But then ? appears as a 

nuisance parameter that is clearly not "noninformative" in the sense of Berger 

and Wolpert. LP ideas provide no guidance on the treatment of informative 

nuisance parameters. On the other hand, de Finetti's subjective Bayesian 

theory is directed towards the problem of predicting future observables, and 

the notion of coherence derived from that theory provides a foundational basis 

for predictive inference; see Lane and Sudderth (1984). In this theory, 

models may be used to help generate predictions about the future observable y 

based upon observed x, but the models merely provide a convenient structure 

This content downloaded from 128.173.127.127 on Tue, 28 May 2013 20:57:09 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


DISCUSSION BY LANE 181 

and need carry no metaphysical burden of "reality" for the parameters they 

contain. 

Premise b) cited above ignores the fact that model parameters are 

frequently inseparable from the "experiment" whose possible distributions they 

index. Especially in applications arising in nonexperimental sciences like 

econometrics or resource management, the model is scupltured either from data 

already in hand or perhaps from a realistic view of what data are potentially 

obtainable. In such cases, there is no way to separate what (?,?) says about 

? from "prior" information about ?; in fact, ? cannot be said to exist prior to 

the formulation of E, even though there may be much prior information about 

which ? might be observed. In these situations it is hard to criticize 

"objective" Bayesians who violate the LP by letting their "priors" depend upon 

the structure of the experiment E. 
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Discussion by Professor Lucien LeCam 

(University of California at Berkeley) 

Professors Berger and Wolpert are to be thanked and congratulated 

for giving us a closely argued view on the foundations of statistics. Their 

arguments in favor of the Likelihood Principle are very persuasive indeed. One 

may suspect, however, that some readers will be convinced and converted while 

some others will hold fast to their misguided beliefs, in spite of all the 

evidence. 

I shall try here to indicate why the present writer belongs to the 

latter category. 

There is a body of statistical theory, call it "type 1", that deals 

with the following kind of systems. When contemplating a particular unresolved 

question, one devises experiments to ascertain what the facts are. The mathe- 

matician will abstract the idea of "experiment", using an object formed by a 

family of probability measures on a suitable field. The consequences of using 

particular procedures to analyse the "experiment" are then describable in 

probabilistic language. One can attempt to single out procedures that have a 

reasonable performance in this probabilistic world. That is a bit like select- 

ing tools: wrenches are often, but not always, successful at unscrewing bolts; 

paint brushes often fail in the same activity. 

This kind of endeavor has given us the Neyman-Pearson theory and 

Wald's theory of "statistical decision functions". One can readily claim that 

the whole enterprise is misguided, but it does seem to have a role to play in 

certain endeavors, like planning experiments, settling arguments that involve 

several scientists and odd questions such as "is methotrexate effective in the 
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treatment of colon cancer." 

There is another body of theory, call it "type 2", that deals with 

axioms of coherent behavior and principles of evaluation of evidence. Some of 

it, and perhaps most of it, has to do with what "one" should "think" after the 

results of the experiments have become known. Comparatively little has been 

written on how "one" can transmit the "evidence" to another person, even in the 

Berger-Wolpert text, this communication problem takes second place to the " one 

should think" question. 

Berger and Wolpert see evidence of contradiction between the 

"type 1" and "type 2" approaches. In a strictly mathematical view of the prob- 

lem, there is no overlap between the two approaches because "type 1" does not 

have any probabilities to play with once the dice have been cast. 

Consider for instance an experiment involving two containers, one 

with 50% red objects, the other with 25%. A coin is tossed to select a con- 

tainer. Then one extracts a ball from that container. It turns out to be 

blue. When all of that has been properly carried out there are no probabilities 

left since the container has been selected. It is either the first or the 

second and not a probabilistic mixture of both. Any assignment of probabilities 

at that stage requires amplification of the model, with thinking about possible 

repetitions of the experiments or degrees of belief, or betting strategies or 

whatever. 

Berger and Wolpert try to convince us that in such a situation one 

should follow the likelihood principle. The argument is thorough. L. J. 

Savage's argument was also very thorough, but I have yet to find a scientist 

who would be convinced by a posterior distribution on the methotrexate and 

colon cancer question if the prior has been supplied by a pharmaceutical 

company. The point is that one can easily argue oneself into a corner. 

In the present case,however, I think that the argument has one 

major flaw. It is based on the assumption that given an experiment E, and the 

result ? of that experiment, there is a well defined object ?? (?,?). The 

nature of the object ?? (?,?) is not described explicitly. This is not the 
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problem. What matters is the assumption that there is such an object, or more 

specifically a function (?,?) -?. ?? (?,?). Starting from such an assumption, 

and adding a few other "principles", one can prove that the function Ev must 

have certain properties. 

(I am reminded here of the standard "proof" that 1 = (-1), assuming 

that J is a function: certainly /l/(-l) = /(-1)/1 and by multiplication 

(/?) = (/^T) . I am also reminded of Spinoza's "Theologia more geometrico 

demonstrata"). 

The very existence of the function Ev is not clear to this writer. 

Even if it exists in a strictly mathematical abstraction of "experiments" and 

results, the relevance to practical applications is not directly-evident. 

Several years ago a problem of this nature was raised during the 

conference on the Future of Statistics held at Madison. Someone asked the 

panel how they would report the evidence in a clinical trial of a drug intended 

to suppress renal calculi. The answer, given by G. Barnard, was "report the 

likelihood function". That may be, but one should also report the age, 

ancestry, health status of the participants, the presumed mode of action of the 

drug, its manufacturer, ideas about whether calculi occur in clusters or 

bunches, their size distribution, whether their formation may be spurred or 

hindered by nutritional factors, etc., etc., including whether the randomization 

used (or unused) led to apparent disbalance. 

There is no shortcut to reporting what was actually done and 

observed. In situations involving games of chance with definite rules, one 

might simplify the evidence report. It is also true that Savage could argue 

that anyone playing games according to Savage's rules need only report (to 

himself) the resulting posterior distributions. 

It does not follow from such mathematical theorems that one must 

necessarily frame practical questions in terms of Savage's games or in terms 

of the Berger-Wolpert rules of evidence, even if these authors eventually 

argue themselves into a Bayesian framework. 
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Here the situation is complex because "type 1" theories have given 

proofs that "experiments" are characterized by the distributions of their 

likelihood functions. Also it is a standard result of "type 1" theories that 

Bayes procedures, or their limits form complete classes. A main difference is 

that the "type 1" theories insist that they are about risk functions, not 

possible interpretations of single posterior distributions. 

The passage from advocation of the likelihood principle to Bayesian 

theory is described by Berger and Wolpert but not as a strictly logical 

consequence of the L. P. principle and other explicitly stated axioms. It is 

weak compared to the rest. However, in the process, they also demonstrate that 

they do not abide by their own L. P. prescriptions. 

This occurs in the discussion of an example of C. Stein. The 

authors say 

"note that it was assumed that ? = y = ad in the above conditional 

analysis, and since it can be shown that Y is almost certain to be enormous...." 

(emphasis added). 

That seems to be a very direct appeal to a frequency evaluation of 

the situation, and not even a conditional one at that. Such an appeal does not 

fit with the logic of the rest of the paper. 

There are other matters that should be discussed, but it would take 

too much space. One of them has to do with approximation. Assuming that the 

function Ev exists and that if (E,, x,) and 
(E2, x2) give the same likelihood 

function, then the evidences are the same, is one entitled to presume that if 

the likelihood functions are 'approximately' the same then the evidences are 

also "approximately" the same? 

Here we have two "approximately" with undefined, but perhaps defin- 

able meaning in the first instance and an apparently undefinable meaning in the 

second occurrence since ?? (?,?) itself is an undefined object. 

For instance it is a classical result that if one takes a very 

large sample (x1,...,xn) 
from the standard Cauchy {p[1+(?-?) ]}" , for "most" 

samples the likelihood function will be "close to" one obtainable from a single 
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2 
observation y from 7??e, -). Does that have any "evidential" meaning for the 

L.P.? Must one necessarily interpret it only through a computation of poster- 

ior distributions? If so, for what priors? 

To summarize Berger and Wolpert have given us a valiant defense of 

the L.P. However it does depend on a basic assumption of existence of the 

evidence function Ev. This function, if it exists, does not conform to the 

tradition of reports in scientific journals. The theory does not actually 

conflict with the so-called "classical" one because their domains of existence 

are separate and their aims different. 

This author presumes that there is some value in some of "classical 

statistics" and also in the likelihood principle, but feels that one cannot 

support the practical application of either (or of other theories) on purely 

mathematical grounds. One should keep an open mind and be a bit "unprincipled". 

DISCUSSION OF THE SECOND EDITION BY PROFESSOR LE CAM 

In order to avoid any misunderstanding, let me repeat two of the 

criticisms made above: Using "evidence" as a function of a pair (E, x) and 

using "approximate" likelihood functions. The two points are highly inter- 

connected. 

For simple experiments Professors Berger and Wolpert use a mathe- 

matical entity E that consists of a set ? and a family {P_, ? ? T) of probabl- es 

lity measures on a given s-field. 

"Evidence" is undefined, but it is supposed to be a function of the 

pair (E, x) where ? is the observed value. This may seem innocuous, but it is 

definitely not. It rejects a part of the data usually considered as part of 

the evidence in the common language use of the term, namely the thinking that 

went into the selection of the mathematical entity called E. 

Except perhaps in those cases where the randomization is man-made 

on purpose and perhaps also in the Poisson formulas for radioactive decay, the 

selection of the "model" E is based on rather loose arguments that are not 

themselves representable by pairs (E1, x'). Here, by "model" I do not mean 
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something like "linear models" but more a mathematical construct that attempts 

to catch the important features of a physical or biological phenomenon. I 

have, of course, no objection to a theory of "evidence" based on a function of 

pairs (E, x). It just fails to connect properly with my own intuitive notion 

of what evidence is. Therefore I do not feel bound in practice by the theorems 

derived from such a theory. 

Even if one tries very hard to put the information in the form 

(E, x) one will almost always put in E certain formulas for the sake of conven- 

ience, simplicity or plain laziness. Thus (E, x) will only be our approxima- 

tion to a "better" (E1, x'). It is my feeling that, if one wants to take into 

account the fact that such approximations are the rule, one must also explain 

what differences they may make in the use of the undefined "evidence" ?? (?,?). 

I am not too sure that this can be accomplished without introducing in the 

system a variety of concepts that go beyond pairs (E, x). 

In summary I remain opposed to the apparent normative aspect of a 

theory that says that I must abide by the LP when I am unable to put my emo- 

tions and various bits of knowledge, or lack of knowledge, into it. 
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Reply To The Discussion 

We are very grateful to the discussants for their stimulating com- 

ments. Besides describing interestingly different perspectives, the comments 

serve to highlight a number of important issues we inadequately discussed in 

the text. 

REPLY_ TO PROFESSORS BAYARRI AND DEGROOT 

It is indeed a pleasure to thank Professors Bayarri and Degroot for 

their careful reading of our manuscript and the deep insight reflected in their 

discussion. In the manuscript we tried to explore the implications of the LP 

and the issues it raises without endorsing any particular mode of inference 

(until the final chapter); in particular we tried hard not to let our Bayesian 

point of view color the basic arguments enough to make them unpersuasive to 

followers of the frequentist tradition. Thus our emphasis was not on "what is 

the likelihood function?" Rather, we took the likelihood function as given, 

and argued that the LP would follow no matter what reasonable definition of the 

likelihood function is used. The definitions in (3.5.1) and (3.5.2) are both 

reasonable, and serve different purposes. 

But we are Bayesians, and are in essentially complete agreement 

with the basic issues raised by Bayarri and DeGroot. We agree that there is no 

clear distinction between "parameters" and "variables", and that definition of 

the likelihood function is ambiguous. As Bayarri and DeGroot observe, any 

partition of the parameters and variables into two disjoint sets s, and s2, 

with s1 containing the observed quantity x, leads to an acceptable likelihood 

function ?x(s2) 
= 

f?s^|s2) (providing this function is accepted as "known"). 

As long as one also keeps track of all known marginal and conditional informa- 

tion about the variables and parameters, any such partition leads to a likeli- 

hood function which contains all evidence from the experiment (at least to a 

186 
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Bayesian). But the need to keep track of this marginal and conditional infor- 

mation, and to treat unknowns in s, differently from unknowns in s?, should be 

sources of concern to non-Bayesians. 

Bayarri and DeGroot suggest that the choice s? = "observed" and 

s2 
= "unobserved" (which they and Professor Kadane call LF . in BDK) has logi- 

cal preeminence as a definition of likelihood; then ?x(s2) represents precisely 

what was learned from the observation of x, unconfounded by any given informa- 

tion about s2. We again agree; it was only the sociological concerns mentioned 

in our first paragraph above that kept us from so defining the likelihood 

function in general. 

Further repetition of the insights of Bayarri and DeGroot would be 

unnecessarily duplicative. Suffice it to say that we agree that non-Bayesians 

can have a very difficult time defining and interpreting the likelihood 

function; and once they pass this hurdle, they still must contend with the LP. 

REPLY TO PROFESSOR HILL 

It would seem rather foolish of us to question Professor Hill's 

interesting discussion at all, because he seems to feel that we do not go far 

enough in our support of the LP. First we would like to clear up that 

misimpression (we are fully as enthusiastic as he is concerning the applica- 

bility of the LP), and then proceed to the deep issue he raises concerning use 

of improper, or proper but finitely additive, priors. 

From Professor Hill's comments (and also those of Professor Le Cam) 

it is clear that we did not express ourselves clearly in the Monette-Fraser, 

Stone, and Stein examples, with regard to the role of frequentist measures 

and our own conditional perspective of statistical analysis. (This lack of 

clear expression was primarily due to our concentration on using the examples 

to indicate the necessity for some type of Bayesian processing of likelihood 

functions.) Our discussion of frequentist measures was motivated partly by the 

fact that the examples were historically developed in that fashion, and partly 
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to indicate that conditional (proper) Bayesians will naturally overcome the 

difficulties involved, even from the frequentist perspective. We also do 

believe that there can be value in frequentist measures as possible warning 

signals that care must be taken in the Bayesian analysis. However, we by no 

means meant to imply that (because of a Bayesian-frequentist conflict) one 

must necessarily change the Bayesian analysis. 

These points are, perhaps, best illustrated by the Stein example, 

in that it is well recognized that (for data from uni variate normal models) the 

uniform improper prior is typically quite satisfactory. It is typically satis- 

factory, however, only because s is usually small enough that true prior beliefs 

can be approximated by the uniform prior. The bad frequentist performance of 

the uniform prior in the model (5.3.3) should be a warning that the adequacy of 

the uniform approximation to prior beliefs should be investigated, and indeed 

such an investigation would usually indicate that the approximation was bad; 

this would be the conclusion unless y was very small. The frequentist measure, 

here, is actually superfluous, however. The conditional Bayesian would 

naturally use a uniform prior (as a good approximation) when y/d was very small, 

and would recognize (if he had any prior information whatsoever) its inadequacy 

for typically large y/d, simply because the likelihood function would then be 

much more diffuse than even very vague prior information. No knowledge of 

frequentist properties, or of differing properties of scale and location 

parameters, is necessary to behave sensibly. Also, we in no sense recommend 

changing the prior as the model changes. If one's prior opinions truly are 

diffuse over the range of the likelihood function, by all means use the uniform 

prior, no matter what the model. We simply do not feel that this will be the 

case for the model in (5.3.3), however, unless y happens to be exceptionally 

small. (Likewise, we judge that the uniform prior will usually be inappropri- 

ate for normal models which have monstrously large variances.) There is no 

incompatibility with the likelihood principle here, since the "adequacy of the 

approximation" can be judged simply by looking at the likelihood function. 
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The major issue raised by Professor Hill concerns the need for 

conglomerability, or alternatively the concern that need be felt when the 

frequentist answer completely contradicts the posterior Bayesian answer. 

Specifically, in the Monette-Fraser example Professor Hill argues that the 

uniformly bad frequentist performance of analysis based on the finitely addi- 

tive uniform prior is not operationally meaningful, because the sample space is, 

in reality, always bounded. The issue here is not directly related to the 

likelihood principle, but is another aspect of the possible problems caused by 

the use of infinite models to approximate reality. If the sample space in the 

Monette-Fraser example is bounded by N, then certainly the uniform prior be- 

comes permissible, since one can actually simply choose the proper discrete 

uniform prior on 0 to 2N. We do feel, however, that the subjective assessment 

of uniformity on 0 to 2N would rarely be reasonable in practice, precisely 

because the use of the infinite model as an approximation would typically be 

due to the belief that no X, so large as to be unmeasurable, would actually 

occur; this implies a prior belief that ? could not be extremely large. In 

general, we would view a uniform conflict between frequentist and Bayesian 

measures as an indication that either the approximation of an infinite model 

was inappropriate, or the use of the finitely additive prior was inappropriate. 

We do, of course, feel that all sample spaces are actually finite, 

and that (for virtually any problem) one could actually provide a (perhaps 

overly large) finite sample space. Do examples of the type we are discussing 

exist for finite sample spaces? If so, such would seem to provide a counter- 

example to Professor Hill's argument. If not, one could indeed not object, 

philosophically, to the use of finitely additive measures. There would, how- 

ever, remain pragmatic questions concerning the practicality of using finitely 

additive priors (as opposed to countably additive priors) to approximate prior 

beliefs, but that is an issue for another time and place. 

We have long been admirers of Professor Hill's careful treatment 

of the random effects analysis of variance model, and do not really disagree 

with his comments here. If we observed a likelihood function, over the range 
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of which our prior was very diffuse, we would have no qualms about using the 

uniform improper prior. If, however, the uniform prior leads to a procedure 

with bad frequentist properties, we would infer that the uniform prior was a 

poor approximation to our prior beliefs for most of the likelihood functions 

that could be encountered, and would be loathe to implement it in, say, a 

"routine" computer package. 

Our view on this matter is partly tied to the discussions surround- 

ing Examples 16 and 37. Good frequentist performance will often give some 

assurance that a type of conditional Bayesian analysis is moderately robust, 

while bad frequentist performance of such an analysis is often an indication of 

nonrobustness. Such implications are by no means certain, and use of frequent- 

ist verification may often be an inefficient way of investigating robustness, 

but we should not dismiss any available aids. In this we also perceive at 

least partial agreement with Professor Hill, as witnessed by his numerous 

papers on the matter (referenced and discussed in Berger (1984e)). 

REPLY TO PROFESSOR LANE 

Before considering the two deep issues raised by Professor Lane, 

we would raise one minor quibble. His second paragraph consists of a listing 

of "bail-out options" for statisticians who choose not to follow the LP. A 

major purpose of the monograph was to argue the inadequacy of such bail-outs. 

Professor Lane does not make his views on such bail-outs clear, although 

presumably, as a Bayesian, he does not accept their validity (for perhaps 

reasons other than those given in the text). 

The two main issues raised by Professor Lane are (i) the adequacy 

of the model paradigm and usefulness of the LP within it, and (ii) the fact 

that the LP ignores the Basic Tenet of Bayesianity, namely that inference 

should consist of the quantification of uncertainty. In our analyses of these 

issues it is particularly important to realize that we perceive little, if 

any, disagreement between us and Professor Lane concerning the correctness of 

the Bayesian pardigm for statistics. We do differ, however, in our opinions 
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concerning the most convincing and practically useful way in which this 

paradigm should be presented. We emphasize the basic agreement because, all 

too often, non-Bayesians use these rather mild disputes between Bayesians to 

reject the entire Bayesian paradigm. 

Professor Lane only briefly mentions the second issue, that 

quantification of uncertainty should be the goal of inference. This tenet 

seems almost self-evident (even though it is not accepted by the bulk of the 

advanced statistical community), and indeed the LP does not directly incorpor- 

ate it. An alternate phrasing of the tenet, however, is that statisticians 

should treat known quantities as fixed and treat unknown quantities probabilis- 

tically. The LP does deal with the first half of this phrasing, treating the 

known data, x, as fixed for inference, while at least treating ? as variable 

(if not as a random quantity). Hence the LP embodies a major part of the Basic 

Tenet of Bayesianity. 

We have several reasons for approaching the Bayesian paradigm 

through the LP, rather than through acknowledgment of the Basic Tenet. The 

first is sociological, and is partly due to the current state of statistics. 

Two prevelant notions in this "current state" are that the frequentist paradigm 

provides a satisfactory underpinning for statistics, and that Bayesian analysis 

is unacceptable because of its prior inputs. It is because of these notions 

that the majority of statisticians would reject the Basic Tenet, and that 

direct arguments for Bayesianity often make little headway. Note, however, 

that the LP directly impunes the first notion, while avoiding the biases of 

the second notion. 

Of course one can argue that transient sociological concerns should 

not be the basis for judgement, but even from a strictly scientific perspective 

there is some doubt as to the correct route to take to the Bayesian paradigm. 

Direct arguments for the Basic Tenet involve some variety of coherency argu- 

ments, based on axioms of rational behavior. Such axioms are by no means 

above criticism. For instance, the arguments listed in Section 3.7, that have 

been raised against the common "betting scenario," are not easy to dismiss (see 
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also Le Cam (1977)). Also, even if all such axioms are accepted, the fact 

that the only "rational" analyses are those compatible with some Bayesian 

analysis does not logically imply that the only acceptable way to do statistics 

is to write down a prior distribution (which can never be more than an 

approximation to prior beliefs) and perform a Bayesian analysis. 

Although the LP is also subject to axiomatic and operational 

criticism, it has several advantages in these regards. The first is that its 

axiomatic basis is compelling to most people. The WCP is compelling to almost 

everyone, and the SP is an integral part of most existing statistical paradigms. 

We do acknowledge that the SP is not really "obvious," and indeed went to 

considerable effort in Sections 3.6 and 3.7 to justify the principle (and not 

just for the "betting scenario"). The simple fact remains, however, that very 

few statisticians will reject either of these axioms, while most seem unmoved 

by the coherency axioms. 

As to the operational criticism, the LP would again seem to have 

an edge, precisely because it does not provide a final answer and can hence be 

more specific in its partial answer. The coherency approach provides only the 

vague general requirement that substantial inconsistency with some Bayesian 

analysis should be avoided. The LP is, on the other hand, specific in its 

recommendation to utilize only the observed likelihood function, even though it 

does not address the question of how this is to be done. And from a purely 

pragmatic viewpoint, this first step may well be the most important step of 

all. The reason is that, in practice, one often spends the greatest effort in 

model selection and verification; the knowledge that one need only consider 

the observed likelihood function can simplify this task enormously. Indeed, 

it is not unusual for the choice of a prior on model parameters to be of such 

secondary importance that one never gets beyond "playing with likelihoods." 

Professor Lane does point out that the "standard" decomposition in- 

to model and prior is often artificial, and so should not be a part of statis- 

tical foundations. While sympathetic, we view such decompositions as 
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essential practical simplifying devices, necessary to achieve progress. One 

usually progresses on a hard problem by identifying simple components that can 

first be analyzed separately, and then combined together. Although we agree 

that such decompositions are not always appropriate, their pragmatically 

central role to statistics is hard to deny. And the fact that the LP provides 

so much insight into what is probably the most crucial component of the decom- 

position, gives it considerable appeal. 

In summary on this issue, the coherency approach to the Bayesian 

paradigm has many admirers (ourselves among them) and can perhaps claim a 

logical ascendancy over the LP approach, but (for the reasons mentioned above) 

we feel that the LP approach has had, or at least can have, a larger impact. 

The quotation on p. 2 from L. J. Savage is revealing in this regard, coming 

from an ardent admirer of coherency. (More complete discussions of this 

issue can be found in Berger (1984b) and Berger (1984e).) 

It was perhaps unfair to spend so much time on this issue, given 

that Professor Lane only briefly mentions coherency. However, we feel that it 

is important to view Professor Lane's objections to the LP in the larger per- 

spective of alternative approaches to the Bayesian paradigm. 

Let us now turn to Professor Lane's second issue, specifically 

the criticisms about the "model" paradigm and the applicability of the LP 

within it. The first issue Professor Lane raises is that of the interpretation 

of ?, and the question of applicability of the LP unless ? is a "real" 

physical parameter. We wanted to avoid the philosophical problems inherent in 

any discussion of the meaning of parameters, but in retrospect should have 

spent more time on the issue. The reason is that, while of course the LP will 

apply if ? is a real physical parameter (in some sense), it also applies in 

the much more common situation where ? is only defined by some aspect of the 

experiment. For instance, a very large part of statistics deals with situa- 

tions involving a series of (approximately) i.i.d. observations X... The 

parameter ? is often implicitely defined by the assumed density (say), fe(Xj)? 

for the observations, and is not, as Professor Lane implies, necessarily 
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identified with the overall ???>, which could also involve other aspects of the 

experiment such as the stopping rule, possible censoring, and so forth. We 

could consider any number of experiments with the same implicitely defined ?, 

but with different {PJ9 and apply the WCP and SP to deduce the LP. Indeed a 
o 

major purpose of the LP is to show that features of {P.} which are irrelevant 
? 

to the implicit definition of ? are ignorable in the analysis. Professor 

Lane's three interpretations of ? do not cover this case, which we would call 

the case of major practical interest. 

Of course, we did not mean the LP to apply in Professor Lane's 

case b), where T is just an index set, and specifically warned against this on 

several occasions. (The entire mixing setup makes no sense if the parameters 

in the two experiments can differ.) Our failure to carefully define ? in 

examples was admittedly sloppy, but was based on the desire to avoid complex 

philosophical issues that are of uncertain practical import. (Convincing a 

practicing statistician, who routinely uses models, to base his analysis on 

the observed likelihood function is a significant practical step. Informing 

him that his model parameters really have no meaning is unlikely to cause much 

improvement in his statistical practice.) 

Professor Lane next questions the value of inference about model 

parameters, arguing that predictive inference about future observables is of 

most concern. We do not dispute this point, but, as Professor Lane acknow- 

ledges, we do handle predictive inference by incorporating the future observ- 

able in ?. The complaint that the LP does not then say how to eliminate ? is 

one of the arguments we use for Bayesian implementation of the LP, but the 

complaint in no way limits or casts doubt on the LP. Professor Lane may prefer 

the de Finetti approach, which allows direct dealing with predictive inference, 

but, as discussed earlier, we feel the model-based "half-way house" is general- 

ly a pragmatic necessity. It is enormously difficult to attempt directly to 

ascertain such complicated things as predictive distributions. Even inventing 

crude models and artificially creating model-prior separations will, we feel, 
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serve predictive statisticians best in the long run. Professor Lane does 

raise the valid point that our emphasis throughout the text on model parameter 

inference, itself, may be misleading. Our only defense is the essential 

impossibility of sensibly discussing predictive inference outside a Bayesian 

framework, combined with our desire to minimize Bayesian involvement (for 

already mentioned sociological reasons). 

We have tried to describe accurately the reasons for our prefer- 

ence for the LP approach to Bayesianity. Admittedly this preference may be 

due to our traditional probabilistic and statistical background (with its 

model orientation), but, on the other hand, the alternative developments 

have not managed to produce any broadly useful new practical methodology. 

There is real danger in letting philosophical games obscure the practical 

realities of the situation. (For instance, the coherency game of "betting" 

serves to give various sound meanings to probabilities, but it seems completely 

backwards in its application: people decide how to bet by first determining 

probabilities, usually through some comparative likelihood method.) A 

philosophical game that can be played to support the LP, foundationally, is 

the "finite sample space" game (see Section 3.6.1). Reality always has a 

finite sample space, and the LP always applies to the implied "model." This 

formulation has little operational significance, however, and so we do not 

view it as a serious argument for the LP approach. 

In conclusion, although we certainly support, and indeed find 

philosophically enlightening, approaches to Bayesianity based on coherency, 

our own preference is for the LP approach. 

REPLY TO PROFESSOR LE CAM 

The major and probably most important point made in Professor 

LeCam's interesting discussion is that we should be "a bit unprincipled." He 

sees value in both classical methods and the LP. As "tools" in the statisti- 

cian's toolkit, we agree that there is possible value in classical methods, 

although we would tend to prefer Bayesian tools, if available. The choice of 
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a tool is, however, not really the question addressed in the monograph. The 

purpose of the monograph was to attempt to clarify the more fundamental 

question: What should the statistician be using his tools for? We believe 

the vast majority of statistical users want to know "the evidence about ? from 

E and x," and indeed will likely be unable to assign any other meaning to a 

statistical conclusion. Because of the demonstrated conflict between this 

goal and the frequentist goal of procedure performance (except, of course, for 

the various discussed exceptions, such as experimental design), we feel that 

this question of purpose can not be ignored. And while a variety of tools 

may be useful in reaching our stated goal of the determination of conditional 

evidence (even frequentist tools may be useful - see Section 5.4 and also 

Berger (1984b) and Berger (1984e)), we would argue that the value of the tool 

must be related to this ultimate goal. The big stumbling block in the long- 

running controversy in statistics has been the lack of separation of purpose 

and method. 

A recurring theme in Professor LeCam's discussion is the issue of 

communi cation of statistical evidence. Indeed, because we briefly indicate 

in Chapter 5 that we feel it necessary to be Bayesians (and hence produce 

priors and posteriors), Professor LeCam intimates that we have "argued...into 

a corner." Our interpretation, however, is that, even if communication of 

evidence through Bayesian measures is deemed unappealing, it is a scientific 

necessity, unless one is willing to sacrifice the goal of communicating the 

actual evidence obtained about ?. Of course, the Bayesian situation (as 

regards scientific communication) is not nearly as bad as many non-Bayesians 

think; the spectre of being forced to accept someone's unreasonable prior 

distribution is not really an issue. Good Bayesian reporting can be done 

with a variety of strategems involving the presentation of the conclusion for 

a wide variety of priors (cf. Dickey (1973)). And simply presenting likeli- 

hood functions or, perhaps somewhat better, posterior distributions for 

noninformative priors can be viewed as a reasonable conditional communication 

device. Of course, such are not traditional in scientific journals, but 
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we all know of a number of "traditions" concerning statistical reporting in 

scientific journals that we would all gladly retire. 

As to Professor LeCam's feeling that one should report all possibly 

relevant data about an experiment, no subjectivist would think of disagreeing. 

After all, a subjectivist is (theoretically) responsible for producing his 

likelihoods (as well as priors), and all data about the experiment could be 

relevant to this enterprise. Of course, the LP does say that in processing 

all this information the conditional viewpoint should have primacy. 

Professor LeCam feels that a major flaw in the LP axiomatics is the 

assumption that Ev(E,x) exists. Since we allowed Ev(E,x) to be anything* any 

collection of conclusions or reports,we are unclear as to the exact objection. 

(One surely must make some report.) All the axiomatics say is that if one 

processes information in violation of the LP, perhaps by reporting frequentist 

error probabilities, then one is behaving in violation of either the WCP or SP 

or both. It is, perhaps, conceivable that, for each experiment, one could 

process information in a completely new way, so that one's Ev(E,x) would be 

continually changing, and so that no violation of the WCP or SP could be 

established. This, however, is not realistic: as statisticians we are bound 

to standardize many of our analyses, or at least parts of many of our analyses. 

The text argues that any such standardized methods of processing information 

should be in accord with the LP. 

Professor LeCam is certainly correct in his comment that our 

passage from the LP to Bayesianity is much weaker than the argument for the 

LP. We felt little need to rigorously justify this final step, mainly because 

we feel that it is belief in the LP that is the major hurdle; it is hard to 

avoid becoming a Bayesian after fully accepting the LP. 

Professor LeCam feels that we make a direct appeal to frequentist 

ideas in our attempt to resolve the Stein example. We clearly did a bad job 

in the example, of explaining our position, because Professor Hill likewise 

sees us as resorting to frequentist reasoning. The passage to which 

Professor LeCam refers was an attempt to explain to frequentaste why, as 
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197.1 THE LIKELIHOOD PRINCIPLE 

Bayesian conditionalists, we would not suffer from a frequentist perspective. 

The conditional Bayesian analysis we discussed in no way depended on frequent- 

ist evaluations, however. For a more lengthy discussion of this point, along 

with a brief description of the role conditional Bayesians can ascribe to fre- 

quentist measures, see our reply to Professor Hill. 

The final issue raised by Professor LeCam is that of application of 

the LP when only "approximate likelihoods" are available. We have seen no 

evidence to indicate that the need to use approximations with the conditional 

approach causes any more problems than the use of approximations with any other 

approach. In the example of ? independent Cauchy observations, we would of 

course prefer use of the exact observed likelihood function, but if ? were 

enormous and we had technical problems in calculating and using the exact 

p 
likelihood, we would certainly consider using the 7<(?, -) approximation. But 

we would use the observed likelihood function from this approximation as the 

experimental input to evidence, not frequentist measures calculated by 

averages over the normal approximation. Without knowing the specific problem 

one cannot safely recommend specific priors. When ? is large, however, prior 

information will typically be vague compared with the likelihood function, so 

use of the noninformative uniform prior would be a reasonable first approxima- 

tion. 

REPLY TO PROFESSOR LE CAM'S SECOND EDITION COMMENTS 

We are sympathetic to Professor LeCam's position, that attempting to 

summarize a complex situation by the pair (E, x) may omit much that is relevant. 

Thus we have always been interested in attempts to depart from the usual statis- 

tical framework of probabilistically-modelled experiments (though we have yet 

to see an alternative framework that works better). Note, however, that virtu- 

ally all of classical statistics is based on considering particular notions of 

?? (E, x). Thus Professor LeCam's observations would seem to apply equally 

well to all standard statistical concepts. He does mention the possible need 

for "introducing in the system a variety of concepts that go beyond pairs 

(E, x)"; the argument to abandon (or at least extend) the usual statistical 
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REPLY TO THE DISCUSSION 197.2 

framework is too big for us. 

Perhaps Professor LeCam is making the smaller logical point that 

principles (e.g., the LP) that are deduced within a too narrow framework are 

not necessarily valid in the correct framework. The constructive side of the 

LP 
Ux(e) summarizes what is needed from (E, x)) may thus be questioned; but 

the destructive side of the LP, that measures based on (E, x) which are 

incompatible with the LP (such as frequentist measures) are contraindicated, 

seems intact. After all, a frequentist measure based on (E, x) should certain- 

ly be able to pass an evaluation in its own domain. If it fails there, it is 

hard to imagine that it would be good in an enlarged domain. 

We have been a bit overly dogmatic to emphasize our basic views. 

At the same time, our position, stated in Sections 5.4 and 5.5, bears a certain 

similarity to LeCam's, in that we also do not feel that all our actions "must 

abide by the LP." Our own summary position, however, is that abiding by the LP 

is a generally good guideline, and that major deviations from the LP are highly 

suspect. 
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