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General Instructions 
Input files 
Input files for exercises can be found in three places 

1. At nikhef (stbc-i5.nikhef.nl) in directory ~verkerke/stats2020/ 
2. At CERN (lxplus7.cern.ch) in directory ~verkerke/public/stats2020 
3. On the web at http://www.nikhef.nl/~verkerke/stats2020 

 

Running ROOT 
All exercises are based on ROOT. You are recommended to use version 6.14.04, 
in which all prepared material has been tested. To pick up a pre-installed ROOT 
version please execute the following setup script 
 
source /cvmfs/sft.cern.ch/lcg/app/releases/ROOT/6.14.04/x86_64-
centos7-gcc48-opt/root/bin/thisroot.sh 
 
This release will work both at Nikhef and at CERN 
 

Where to work 
If you have an account at Nikhef, please work on stbc-i1.nikhef.nl or 
stbc-i2.nikhef.nl only (these run CentOS7 – required for above ROOT version) 
 
If you have an account at CERN, please work on lxplus7.cern.ch, 
this will select an CentOS7 node (required for above ROOT version) 
 
You can also work directly on your laptop if you have ROOT installed yourself 
  



Exercise 14 – Template sum models 
 
In this exercise we will explore binned shape models that use simulation 
histograms as shape functions, these are then added together to form a model 
that predicts a variable amount of signal on top of background 
 
Copy file ex14_build_binned.C. This macro performs the following steps 
 
• Generate template histograms for signal and backgrounds on the fly, so that 

this exercise does not need an input file (Normally these histograms would be 
produced from full simulation and would be read in from a file) 

• Constructs an ‘amplitude sum’ model that adds histograms together into a 
probability density model, where the signal strength is multiplied with a scale 
factor μ.  

• Generates a binned dataset from the template model with μ=1.5 
• Fits template model to the binned dataset (thus performing a binned 

likelihood fit) 
 
The main difference between a sum of pdfs (RooFit operator SUM) and a sum of 
amplitudes (RooFit operator ASUM) is that the latter retains the information on the 
event count in the histogram. (In other words in ASUM the normalization to a unit 
probability happens after the summation, whereas in SUM it happens to each pdf 
before the summation).  
 
It is also important to note that the event count that is associated with a histogram 
is equal to the integral over that histogram. If the bin width is not 1, then this 
integrals is not equal to the number of entries that was used to fill the histogram, 
and we should correct interpretation of the yield parameters with the bin width.  
 
Furthermore, if the simulation templates correspond to a luminosity that is different 
from that of the data, an additional correction factor is needed for that in the 
interpretation of yield parameters.  
 
• Study the macro, and try to find the places where correction factors for the 

bin with (variable binw) and the luminosity ration (variable L) are introduced. 
• Run the macro through your favorite RooStats limit calculators 

 
In the initial configuration the Luminosity of the ‘simulation data’ is identical to that 
of the data.  
 
• Change the macro so that the luminosity of the simulation is increased by a 

factory 10 (look for the lines ‘wsim.pdf()->generateBinned()’.  
• Run the fit again and observe that the fitted signal strength μ now is reported 

a factor 10 too low. Fix this by adjusting the luminosity ratio parameter L in 
the fit model. 

 
 



Exercise 15 – Template morphing models 
 
In this macro we explore the concept of template morphing to take a set of three 
simulation signal histograms, sampled at masses of 123, 125 and 127 GeV, and 
construct a morphing interpolation model out of these templates that predicts the 
signal distribution for any mass, as function of a newly introduced morphing 
parameter α. 
 
Copy ex15_build_binned_morphing.C. This macro performs the following steps: 
 
• Generate template histograms for signal (at 3 mass points) and background 
• Construct a morphing interpolation signal model from the three mass 

templates 
• Construct a signal+background model 
• Multiply the summed model with a subsidiary measurement for the morphing 

parameter alpha (which is a unit Gaussian) 
 

After the morphing signal model construction, the macro largely follows the code 
of ex14_build_binned.C.  
 
Questions & explorations 
 
• Run the macro and study its output. Is the NP alpha that expresses the 

uncertainty on the signal mass overconstrained? 
• How does the fit behave if you (strongly) increase or decrease the template 

statistics? 
• Study the effect of turning off the interpolation feature that zeros event yields 

that come out negative in the extrapolation. You can best see this if you 
create a 2D ROOT histogram sampling the morphing model sig in mgg vs 
alpha (sig->createHistogram(“mgg,alpha”))  

 
Optional extra steps 
 
• Modify the macro so that the signal width is a free parameter. 
• Modify the macro to have both width and mean as free parameters.  

Note that with multiple interpolation directions and parameters the syntax of 
the interpolation class becomes  
 

  PiecewiseInterpolation::sig(nom,{loA,loB},{hiA,hiB},{alphaA,alphaB}) ; 

   



Exercise 16 – Building a combined workspace 
 
In this exercise we explore how to build likelihood-level (‘perfect’) combination out 
of previously performed measurements for which the likelihood was saved in a 
RooFit workspace.  
 
The inputs we will combine for the demonstration combination is the Poisson 
counting experiment of exercise 12 and the template morphing model of the 
exercise 15. To prepare for this exercise you must first do the following 
 

• Run ex12_build_PoissonGaussGlobs.C and rename its workspace output 
file model.root to model_ex12.root 

• Run ex15_build_binned_morphing.C and rename its workspace output file 
model.root to model_ex15.root 

 
Open each of the renamed output files in a clean ROOT session, and inspect the 
workspace contents (‘w->Print(“t”)’) . The “t” option (for ‘tree’) will organize 
components of each likelihood expression in the form of a dependency tree so it is 
easier to understand their structure. 
 
Now copy ex16_combined.C and inspect it’s contents. This macro performs the 
following steps 
 
• It constructs a joint likelihood of two previously constructed models by 

reading their workspace 
• To be able to join workspaces and datasets, a discrete observable 

(like a C++ enum) must be introduced to label the parts of the pdf 
and the dataset that belong to each channel.  

• After a fit to the joint model, the joint data and models are written 
to a new joint workspace file 
 

Questions & explorations 
 
• The default strategy of the workspace commands (as specified in the macro) 

is to rename all component functions of in an imported pdf with a suffix so 
that there are no naming collisions when multiple functions are imported. By 
default parameters are not renamed, so that any parameter that occurs in 
more than one model becomes a common parameter of those models.  
 
In the macro this default behavior is explicitly overridden, initially. The signal 
strength parameters of each likelihood are also renamed so that the 
combined model has two strength parameters mu_ex12 and mu_ex15. Since 
the models of ex12 and ex15 share no other parameters the likelihood are 
completely orthogonal, so a minimization of the combined likelihood should 
give the same results as the minimization of the individual likelihoods. Run 
both the joint fit and the individual fits (macros bellowing to ex12 and ex15) 
and confirm that this is the case (within numeric precision, which is about 4% 
of the fitted uncertainty of each parameter) 
 



• Modify the macro so that the mu variables of the input workspaces are joined 
as a common parameter. To this simple remove the “RenameVariable()” 
command options from the import commands. Run the combined fit and 
observe how the fitted μ is now the weighted average (to good 
approximation) of the μ values of the individual fits.  
 

• Now copy input file model_ex12_highstats.root to model_ex12.root. This 
file is identical to the standard output of ex12 except that signal and 
background counts have been increased by a factor 10 so that the 
uncertainty on μ from this standalone model is now comparable to that of 
ex15. Run the combination again and try to interpret the combined μ value. 

 
• Write a ModelConfig file for the joint model and store it in the workspace, 

then run the RooStats PLR calculator on the joint model with a single μ 
parameter  
 

   



Exercise 17 – Fourier Convolution models 
 
In ths final macro we return to unbinned likelihood models and explore convolution 
models based on discrete FFT transformation.  
 
Copy file ex16_convolution.C. This macro performs the following steps 
 
• Construct a Landau physics model and a Gaussian resolution model, then 

construct a FFT-based convolution of these two 
• Generate 1000 events and fit the model to this data 
• Plot the fitted convolution model on the data, and also make separate plots 

of the fitted shapes of the physics truth model (the Landau) and the 
resolution model 

 
Questions and explorations 
 
• Run the macro. Change number of events to different counts (e.g. 100k 

events) and observe how little CPU time is needed to perform the convolution 
calculations. 
 

• Change samples size back to 1000 and hen change the value of the mean of 
the Landau from 30 to 80. Rerun the macro. Do you see any signs of cyclical 
spillover? 
 

• Now uncomment the line that sets the overflow buffer fraction to zero and 
rerun. Do you see signs of cyclical spillover? 
 

• Try to calculate some other convolutions numerically  
 
For example a convolution of a Gaussian with Gaussian should be another 
Gaussian where the width/mean is the sum of the two input Gaussians 
width/mean (note that you may need to fix one of the Gaussians width 
parameters as only the sum of the width can be constrained by the fit).   

 
Next try a convolution of an exponential distribution with Gaussian and see 
how well the fit can resolve the Gaussian smearing versus the exponential 
slope of the convoluted distribution. To successfully fit this convolution you 
should increase the spillover buffer size of the FFT convolution to 1.0 (as the 
exponential takes on large values close to the boundaries).  


