
Topical Lectures Statistics –
Exercises Set 3

Wouter Verkerke (Dec 2020)

General Instructions
Input files
Input files for exercises can be found in three places

1. At nikhef (stbc-i5.nikhef.nl) in directory ~verkerke/stats2020/
2. At CERN (lxplus7.cern.ch) in directory ~verkerke/public/stats2020
3. On the web at http://www.nikhef.nl/~verkerke/stats2020

Running ROOT
All exercises are based on ROOT. You are recommended to use version 6.14.04,
in which all prepared material has been tested. To pick up a pre-installed ROOT
version please execute the following setup script

source /cvmfs/sft.cern.ch/lcg/app/releases/ROOT/6.14.04/x86_64-
centos7-gcc48-opt/root/bin/thisroot.sh

This release will work both at Nikhef and at CERN

Where to work
If you have an account at Nikhef, please work on stbc-i1.nikhef.nl or
stbc-i2.nikhef.nl only (these run CentOS7 – required for above ROOT version)

If you have an account at CERN, please work on lxplus7.cern.ch,
this will select an CentOS7 node (required for above ROOT version)

You can also work directly on your laptop if you have ROOT installed yourself

Exercise 14 – Template sum models

In this exercise we will explore binned shape models that use simulation
histograms as shape functions, these are then added together to form a model
that predicts a variable amount of signal on top of background

Copy file ex14_build_binned.C. This macro performs the following steps

• Generate template histograms for signal and backgrounds on the fly, so that

this exercise does not need an input file (Normally these histograms would be
produced from full simulation and would be read in from a file)

• Constructs an ‘amplitude sum’ model that adds histograms together into a
probability density model, where the signal strength is multiplied with a scale
factor μ.

• Generates a binned dataset from the template model with μ=1.5
• Fits template model to the binned dataset (thus performing a binned

likelihood fit)

The main difference between a sum of pdfs (RooFit operator SUM) and a sum of
amplitudes (RooFit operator ASUM) is that the latter retains the information on the
event count in the histogram. (In other words in ASUM the normalization to a unit
probability happens after the summation, whereas in SUM it happens to each pdf
before the summation).

It is also important to note that the event count that is associated with a histogram
is equal to the integral over that histogram. If the bin width is not 1, then this
integrals is not equal to the number of entries that was used to fill the histogram,
and we should correct interpretation of the yield parameters with the bin width.

Furthermore, if the simulation templates correspond to a luminosity that is different
from that of the data, an additional correction factor is needed for that in the
interpretation of yield parameters.

• Study the macro, and try to find the places where correction factors for the

bin with (variable binw) and the luminosity ration (variable L) are introduced.
• Run the macro through your favorite RooStats limit calculators

In the initial configuration the Luminosity of the ‘simulation data’ is identical to that
of the data.

• Change the macro so that the luminosity of the simulation is increased by a

factory 10 (look for the lines ‘wsim.pdf()->generateBinned()’.
• Run the fit again and observe that the fitted signal strength μ now is reported

a factor 10 too low. Fix this by adjusting the luminosity ratio parameter L in
the fit model.

Exercise 15 – Template morphing models

In this macro we explore the concept of template morphing to take a set of three
simulation signal histograms, sampled at masses of 123, 125 and 127 GeV, and
construct a morphing interpolation model out of these templates that predicts the
signal distribution for any mass, as function of a newly introduced morphing
parameter α.

Copy ex15_build_binned_morphing.C. This macro performs the following steps:

• Generate template histograms for signal (at 3 mass points) and background
• Construct a morphing interpolation signal model from the three mass

templates
• Construct a signal+background model
• Multiply the summed model with a subsidiary measurement for the morphing

parameter alpha (which is a unit Gaussian)

After the morphing signal model construction, the macro largely follows the code
of ex14_build_binned.C.

Questions & explorations

• Run the macro and study its output. Is the NP alpha that expresses the

uncertainty on the signal mass overconstrained?
• How does the fit behave if you (strongly) increase or decrease the template

statistics?
• Study the effect of turning off the interpolation feature that zeros event yields

that come out negative in the extrapolation. You can best see this if you
create a 2D ROOT histogram sampling the morphing model sig in mgg vs
alpha (sig->createHistogram(“mgg,alpha”))

Optional extra steps

• Modify the macro so that the signal width is a free parameter.
• Modify the macro to have both width and mean as free parameters.

Note that with multiple interpolation directions and parameters the syntax of
the interpolation class becomes

 PiecewiseInterpolation::sig(nom,{loA,loB},{hiA,hiB},{alphaA,alphaB}) ;

Exercise 16 – Building a combined workspace

In this exercise we explore how to build likelihood-level (‘perfect’) combination out
of previously performed measurements for which the likelihood was saved in a
RooFit workspace.

The inputs we will combine for the demonstration combination is the Poisson
counting experiment of exercise 12 and the template morphing model of the
exercise 15. To prepare for this exercise you must first do the following

• Run ex12_build_PoissonGaussGlobs.C and rename its workspace output
file model.root to model_ex12.root

• Run ex15_build_binned_morphing.C and rename its workspace output file
model.root to model_ex15.root

Open each of the renamed output files in a clean ROOT session, and inspect the
workspace contents (‘w->Print(“t”)’) . The “t” option (for ‘tree’) will organize
components of each likelihood expression in the form of a dependency tree so it is
easier to understand their structure.

Now copy ex16_combined.C and inspect it’s contents. This macro performs the
following steps

• It constructs a joint likelihood of two previously constructed models by

reading their workspace
• To be able to join workspaces and datasets, a discrete observable

(like a C++ enum) must be introduced to label the parts of the pdf
and the dataset that belong to each channel.

• After a fit to the joint model, the joint data and models are written
to a new joint workspace file

Questions & explorations

• The default strategy of the workspace commands (as specified in the macro)

is to rename all component functions of in an imported pdf with a suffix so
that there are no naming collisions when multiple functions are imported. By
default parameters are not renamed, so that any parameter that occurs in
more than one model becomes a common parameter of those models.

In the macro this default behavior is explicitly overridden, initially. The signal
strength parameters of each likelihood are also renamed so that the
combined model has two strength parameters mu_ex12 and mu_ex15. Since
the models of ex12 and ex15 share no other parameters the likelihood are
completely orthogonal, so a minimization of the combined likelihood should
give the same results as the minimization of the individual likelihoods. Run
both the joint fit and the individual fits (macros bellowing to ex12 and ex15)
and confirm that this is the case (within numeric precision, which is about 4%
of the fitted uncertainty of each parameter)

• Modify the macro so that the mu variables of the input workspaces are joined
as a common parameter. To this simple remove the “RenameVariable()”
command options from the import commands. Run the combined fit and
observe how the fitted μ is now the weighted average (to good
approximation) of the μ values of the individual fits.

• Now copy input file model_ex12_highstats.root to model_ex12.root. This
file is identical to the standard output of ex12 except that signal and
background counts have been increased by a factor 10 so that the
uncertainty on μ from this standalone model is now comparable to that of
ex15. Run the combination again and try to interpret the combined μ value.

• Write a ModelConfig file for the joint model and store it in the workspace,

then run the RooStats PLR calculator on the joint model with a single μ
parameter

Exercise 17 – Fourier Convolution models

In ths final macro we return to unbinned likelihood models and explore convolution
models based on discrete FFT transformation.

Copy file ex16_convolution.C. This macro performs the following steps

• Construct a Landau physics model and a Gaussian resolution model, then

construct a FFT-based convolution of these two
• Generate 1000 events and fit the model to this data
• Plot the fitted convolution model on the data, and also make separate plots

of the fitted shapes of the physics truth model (the Landau) and the
resolution model

Questions and explorations

• Run the macro. Change number of events to different counts (e.g. 100k

events) and observe how little CPU time is needed to perform the convolution
calculations.

• Change samples size back to 1000 and hen change the value of the mean of
the Landau from 30 to 80. Rerun the macro. Do you see any signs of cyclical
spillover?

• Now uncomment the line that sets the overflow buffer fraction to zero and
rerun. Do you see signs of cyclical spillover?

• Try to calculate some other convolutions numerically

For example a convolution of a Gaussian with Gaussian should be another
Gaussian where the width/mean is the sum of the two input Gaussians
width/mean (note that you may need to fix one of the Gaussians width
parameters as only the sum of the width can be constrained by the fit).

Next try a convolution of an exponential distribution with Gaussian and see
how well the fit can resolve the Gaussian smearing versus the exponential
slope of the convoluted distribution. To successfully fit this convolution you
should increase the spillover buffer size of the FFT convolution to 1.0 (as the
exponential takes on large values close to the boundaries).

