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Max Baak - data scientist /
statistician / physicist

Background in HEP (2002 - 2015)
e 2007: PhD @ Nikhef, on research at BaBar experiment (SLAC)
e 2007 - 2015: ATLAS experiment
o 2008 - 2015: research fellow then staff at CERN
o DQ, SUSY searches, Gfitter, statistics
e Soft spot for statistical methodology

KPMG Advanced Analytics & Big Data team (2015 - 2018)
e Data science consultancy
e Chief Data Scientist, then team lead (2017).

ING Wholesale Banking Advanced Analytics (2019 - now)
e Chapter lead data science (18 data scientists)



ING WBAA

e WBAA: Wholesale Banking Advanced Analytics

 Wholesale Banking: caters to (big) companies.

* We build data-driven Al products that benefit these clients and generate
revenue / save costs for the bank.

e |n terms of data science, our projects are very diverse.

e Qur team:

e 120 people, 18 data scientists.

e 4 countries (NL, UK, Poland, Romania) WHOLESALE BANKING

advanced
analytics

e 11 project teams




Harvard: “data scientist the
sexiest job of the 21st century”

What my customers think I do What I think I do B What I really do

“We solve complex data puzzles”



Executive summary

In case you’re considering to become a data scientist:
* Computer science: focus is often on highest performing algorithm.
* |n physics you learn to extract insights from (complex) data.

* Thorough: data understanding, covering systematic effects,
completion of evidence gathering, defending your results.

 Complementary. Both are important!

Strong background in statistics & methodology is very useful!



Project examples



The bond market

e Bonds are loans issued by companies. Bonds can be traded.

e Every company can issue multiple bonds with different
characteristics (like maturity, rate, seniority).

 The bond market is a traditional market
e $700 billion traded daily, 3 times more than stocks
e 50% of the value is voice traded.
e Market can be inefficient and illiquid

e Bonds are grouped into “universes”.



Bond pair trading

Bonds can move together
e Therefore market anomalies can appear between bonds.

Look for a pair of bonds that are correlated and/or related to each
other.

Wait for an anomaly to appear, meaning that suddenly the
difference between the two bonds increases.

Assumption is that bonds will converge to each other again.

e (Called: mean reversion.
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Katana Labs: detecting
anomalies In relative value

We built a tool that gives trading suggestions to asset managers
based on relative value of bond pairs.

e |tis not (!) a pure auto trading.
There is trade-off between the number of alerts and profitability

The trick is: alerting enough in advance.

Katana Labs spun out into a separate company last year.



A filtering exercise
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Data science problem
statement

How to perform:
1. ldentifying relevant pairs of bonds
2. Detecting anomalies

3. When to open position

4. When to close position, after mean reversion happened



Name matching

e Wholesale banking deals with corporate clients.

e Bank wants a holistic view of these clients.
e One way to enrich: look at names on in-/outgoing transactions
* Two use cases:

e Match external bank accounts to ING accounts

e Match (high-risk) names to international watch list(s)



Reality

e Significantly different names used
for same entity

e company names / owner
names

e abbrev./ wrong field / generic
name

e entities in different countries

e different companies under
same entity

e Mismatch with ground-truth names
when doing entity matching on full
set.
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Why name matching at scale?

Ground truth, G Transaction, NM
~13 million ~3 million
20 23
330 366

This is a quadratic problem, i.e. 13M x 3M =39*10"* record pairs




Data science problem
statement

How to perform:
1. Preselection of relevant name pairs - lot of filtering.
2. ldentifying correct name pairs.

3. Correct for differences between ING and non-ING data.



popmon - population shift
monitoring made easy

pip install popmon
Use popmon to monitor the stability of a pandas or spark dataset

Automatically detect changes over time from trends, shifts, peaks,
outliers, anomalies, correlations, etc.

e Supports numerical, ordinal, categorical features.

Alerting based on static or dynamic business rules.



00
import pandas as pd

import popmon

# open fake car insurance data
df = pd.read_csv('car_insurance.csv.gz')
df['date'] = pd.to_datetime(df['date'])

# generate stability report using automatic binning of all encountered features
report = df.pm_stability_report(time_axis='date')

# to show the output of the report in a Jupyter notebook you can simply run:
report




Example

//crclz.com/popmon/reports/flight delays report.html

https

©
z
=
&
o
Q.
—
x
z
o
=
a
o
a

Feature: airine

Histograms

)
2
8
g
]
8

Faatur

Comparisons

Feature: AIRUNE ~

Profiles

s (Cefeult: 2).

2
i
3
2
g
=
2
g

ach time penod (one bin) to the raferenc

Statist cal comparisons of e

Basic statistics of the data (profiles) calculsted for each tima panod (8 pennd is rapresanted by ana bin). Thi ylow and e linas rapresant the carrasparding tr

beunds (defaut: 4 2nd 7 standard devistion

with respact to the reference catz).

00:00

2016-01-0312

00:00

2015-12-2712

previ_chi

Chi-ezusred test £2a1Is7, CXMESTIND 62C7 tine ot W the preced

mean_trend10_zscore

00:00:ZT £0-10-9T07
00:00°ZT 0T-TT'STOL
00'00°2T 90-ZT-5T0Z
00:00:21 22-TT-4102

00°00:2T TT-0T'ST0C
00°00°2T £2-60-5T07
00:00:21 £1-60'ST0L
00:00°ZT C€-80'STOZ

0:00°ZT 12-90'STOL
20:00:21 LO-00-510Z

o
00:00°ZT 01-60-5T0Z
0:00°ZT $TH0'STOL
00'00°2T Z1-b0-5T0Z
00:00:2T £2-€0-5T0Z

LS1H0-5102

00:00:21 §1-20°5102
00:00°2T 10205107

21 81-10-5102
00:00°ZT $0°10'ST0C

00:00°ZT £0-10-9T0Z
00:00:2¢ OZ ZT-ST0Z
00:00°ZT 90-ZT-510Z

00:00°ZT SZ-0T-5T0Z
00:00°ZT T1-0T:5107

00:00°ZT OF-BO-5T
00:00:2T 91°80°510C
00:00:28 €005

00:00:28 §0-20-5102
00:00:ZT 1Z-00-510Z
00:00°ZT L090-510Z
00:00-LT $C50°5
00:00:2¢ O1-60-%
00:00°2T 9Z-

00:00°2T £1-20-410Z
00:00°-ZT T0-20-5T07
00:00:21 81-10-5107

distinct

count

13

H
E

2500

2000

1500

1000

00:00:2T #O-10-510Z

£0-10-910¢
00°00:ZT 0T TT'STOL
00'0012T 90-TT-5T0Z
00:00:2T 22-1T-4102
0021 BOTT'S 0L
00°00:2T SZ0T-5T0Z
00021 11-01-5102
00:00:21 (2-60-5T02
00°00:ZT £1°60'5102
00:00:21 CE-80°510C
0000°ZT 91-80-5107
00:00:2T 20-90-5102
000021
00:00:21 $0°£0'STOL
00°007ZT 12-90-5102
00:00:2T £0-00-5T0Z

00:00:21 1O£0/5T02
00°00:ZT §1-20-5T0Z
00:00:2T 10-20-5102
000021 §1-10°510C
00°00:ZT $0-10:5102

00:00:21 £0-10-9T07
00°00:ZT 0Z-TT'ST0Z
00°00°2T 50 ZT'STOL
00:00:21 22- 115102
0000ZT SOTT'STOL
00:00:2T STOT'ST0C
00021 L1-01-5102
000021 £260'510L

00:00:21 61-£0-5102
00'00:2T §0-£0-5102
00:00:2T TZ-00-$102

00'00°ZT 92-00-5T0Z
00°00:ZT Z1-60-5T0Z
00:00:2T 6L-E0'S10L
00°00:ZT ST-€0-5T0Z
00:00:2T TO£0 STOZ
stoz
00:00:Z1 10-T0'STOZ
000021 §1-10'5T0C
00:00:21 $0-10-5102

%o

Alerts

Traffic Lights

X each festure

d by al traffic ligh

-]
2
z

®
g

. pull) fer

Latistcs (oesed on the calculatec normalized resdual, 8,

lcuation for different

Traftic light cal

n_red

n_green

filled_pull

count_pull

Tetds rurmbir of rod walliz byhts (cbaormist lor 4l studstics]

]
3
z
3

00:00°ZT £0-10-9101

00:00°ZT £0-£0-5107
00i00:ZT TZ-00-510Z
00:00-ZE LOPOSLOC

00:00:ZT 9Z-40-510Z
00:00°ZT Z1-b0-5107
00:00ZT 62-60-5T0Z
00:00°LT STE0STOC
00:00°ZT T0-€0-5T0T
00:00°ZT &
00:002T T
00:00°2T ¥
00:00°ZT #0

021 02215102
00:00°ZT 90-ZT-510Z
00:00:28 22115102
00100°ZT 80114107
00:00°ZT £2-01-5107
00:00°ZT T1-015

00:00°ZT OF-RO-5TOZ
00:00:21 91-90-510C
00:00:ZT 20-00-5107
00:00°ZT 61-L0-5T07

00:00°ZT $1°€0°510C
00:00:2 1O-£0-5TOZ
00:00°ZT $1-20-5107
00:00°Zt 10205100
00:00:2T @1-10-510Z
00:00°ZT $O-T0-5T0Z

£ xa8ge v~ e
N ETEEREER
3338833

00021 £0-10-9T0Z
000021 0Z-TT-5T0Z
C000:21 SO-Z1-5102
00021 22115102
CO00ZT BO-TT-510Z
00:00:21 SZOT-5102
CO00:ZT TT-0T-5T0Z
0000:ZT £2-60-510Z
CO0D:LT E160-510C
0000iZT 0€-80-5T0Z
CO00:ZT ST-80°5T0C
0000:¢1 LOB0-S10C
000071 61-20-5T0Z
©0:00:21 SO°L0°S10L
£000:21 12-00-5102
00:00:21 £090-510Z
000021 $2-60-5102
0000:2T 01-60-$T0Z
0000:21 SCH0-ST0C
0:21 21 oz
000021 62-60-5T0Z
©0:00:21 S1E0°510C
0000:21 10-€0-5102
0000121 §1-20-510Z
000021 10205102
000121 6T-10-5T0Z
000021 $0-10:510Z

0000121 £0-10-9T07
0000721 0ZT-TT-5TOZ
00021 90T

000021 ZZ-TT-510
CO00°ZT 8O- TT-ST0Z
00:00:21 SZ 0T 5107
CO007ZT T1-0T-510Z
000021 £2-60°5102
CO00:2T £1-60-5107
00'00:ZT CE-B0-5T0Z
CO00:LT STB0°S10C

CO00:TT 61-20'STOL
©0:00:21 §0-20-5108
€000:21 12-00-5102
00:00:21 £090 5107
00:00:2T $2-60-5107
0000:2T 01-60-5T0Z

000021 2T

000021 6Z-€0-5T0Z
0000:21 S1-L0-510¢
0000121 10-€0-510Z
0000721 §1-20-510Z
©0°00:2T 10 20'5T0Z
CO0:ZT BT-10-510Z

0000721 $0-10:510Z


https://crclz.com/popmon/reports/flight_delays_report.html

Data modelling and synthesis



Data science problem
statement

e Want to synthesize fake data that is indistinguishable from real
data.

e (Generating pseudo-experiments
e Sharing sensitive data.

e |In order to synthesize fake data, we need to model the actual data
first.



Modelling problem

e Modelling of high-dimensional datasets is complex due to
correlations.

e High-dimensional: 3+ features.

e Several technigques for that, e.g. histograms, tabular-GAN,
bayesian networks, but not directly applicable.

e For example, hard to train, very slow.

e We had an interesting new idea we wanted to try out ...



General proposition

A. Transform all features to a “uniformly” filled hypercube.
e All transformations are inverse-able.

e As much structure/modes/correlation is taken out of
data already, put into transformers.

B. Then, the residual structure in data is modelled.



Variable types

e Modelling method works for all variable types.

 Will focus here on continuous variables only.



The method

. Quantile transformation to normal distribution

Linear decorrelation (PCA)

. Quantile transformation to uniform distribution

Non-linear feature ordering

Machine learning classifier



Quantile transformation

The cumulative distribution
function (CDF) of a real-
valued random variable X
evaluated at x, is

the probability that X will take a
value less than or equal to x.

|.e. the CDF is the integral of the
PDF.

When transforming each value X
to its CDF value, one gets a
uniform distribution b/n 0 and 1.

Transformation is invertible.
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CDF of exponential
distribution.


https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Probability

1. quantile transformation to
normal

500

e Each feature is quantile
transformed to a normal 400 |
distribution.

300 A

e Can apply smoothing is needed. 2007
e Per feature, describe the
transformation mathematically with
a Jacobian:

* |nverse Jacobian = 800 -
(marginalized 1-dim pdf) / o
(normal distribution)

600 A
500 A

400

 We have now entered the “Copula” 00
Space. 200 -

100 -




2. Linear decorrelation (PCA)

In theory, PCA works best for
normal distributions.

Apply PCA to Copula
distributions.

# components = # features

This takes out the linear
correlations.

PCA applies a rotation, so
(inverse) Jacobian = 1.
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3. quantile transformation to
uniform

* For normally distributed input
features with non-linear
correlations, applying PCA
rotation gives as output
normal-like, “distorted”
distributions.

* | apply another KDE quantile
transformation to make each
PCA-feature uniformly
distributed.

e Inverse Jacobian =
(marginalized 1-dim pdf after
PCA)
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4. non-linear feature ordering

e \We can order the transformed features in two ways:
1. Based on PCA importance (eg. > 99%)).

2. Based on ranking of mutual information of feature pairs.
(eg. Ml > 0.05)

e |f so desired, only consider top-n features for further non-
linear modelling.

e Or keep all of them.



Intermezzo

e Dataset is transformed into
“uniformly” filled hypercube.

* Each marginalized
distribution is uniform.

* No more linear correlations.

e Dataset still contains residual
non-linear correlations.

 Seen as local pockets of non-
uniform density.

e How to describe these?



5. Adversarial training

* Generate uniform sample of same
size (= class 0).

e Train a ML classifier to distinguish

between the transformed dataset

(class 1) and a uniform dataset (class
O) 10* 1

* Many non-linear classifiers will do.

10° 1

* |Important not to overtrain —
need well-calibrated
probabilities.

0.0 0.2 04 0.6

e cube density(x) = prob(x|1) / prob(x|0)

* Note that classifier focusses fully on
non-linear structures.
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KDECopulaNNPdf

o Sklar’s theorem:

_ P(Zuniform |transformed data)

— i -1-kq2 ca,l
o pdf(z) 1:[ G(Znorma 1) Lkq2(Tpeai) P(Zuniform [Uniform data)



Synthesizing fake data

1. Generate data points {x} uniformly in hypercube.
2. Give weight to each data point: w(x) = prob(x|1) / prob(x|0)

3. Apply inverse transformations to each data point.
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MIT Leaderboar

On (simulated) datasets with
numeric variables

CLBNSynthesizer
CTGANSynthesizer
IdentitySynthesizer [Reference]
IndependentSynthesizer
MedganSynthesizer
TableganSynthesizer

TVAESynthesizer
UniformSynthesizer
VEEGANSynthesizer

KDECopulaNNPdf_RoundCategorical

-3,885928
-9,162882
-3,476662
-3,544136
-6,833268
-6,777964

-3,388274
-7,294052
-8,646858

-3,460550

-5,274841
-5,066747
-3,503242
-3,469971
-84,380587
-4,931756

-5,190146
-4,534827
-423,573276

-3,424869

(also doing very well on categorical variables)

-4,066210
-8,653293
-3,607534
-5,033312
-7,747477
-7,080974

-3,820569
-7,227006
-11,458546

-4,969674

-10,287411
-5,086304
-3,635514
-4,037670

-160,899159
-5,047245

-3,724633
-4,549560
-8,908475

-3,971349

-1,750592
-7,056122
-1,713405
-2,465557
-2,769543
-3,898531

-1,654247
-5,343589
-16,830634

-1,992792

-18,904815
-2,737149
-1,704359
-1,965117

-133,462900
-2,307308

-1,933056
-2,520734
-6,354960

-1,825358




Algorithm speed

* Very fast compared
with competition!

TVAE (default=300 epochs) KDECopulaNNPdf RoundCategorical

grid 199,37 (s) 2,65 (s)

gridr 151,27 (s) 1,32 (s)

ring 177,41 (s) 1,32 (s)
TVAE (default=300 epochs; GPU acceleration)

grid 71,20 (s)

gridr 74,26 (s)

ring 73,86 (s)



Research paper

° A|gor|th m: A fast and high fidelity non-Deep Learning synthetic
. data generator for tabular data
transformations & a

binary classifier.

Szymon Adamala Simon Brugman Federico Calore

Lorraine D’Almeida Ilan Fridman Rojas Mariusz Gorski Mykhailo Grytsai

 Would have been happy
to S h a re th e COd e y b ut Wholesale Banking Td(i(ﬁ‘ég; Analytics (WBAA)

Bijlmerdreef 106

not yet in a good enough
state :-)

Abstract

Current state-of-the-art approaches towards generating synthetic versions of real,
. tabular, approximately i.i.d. data by and large make use of the immense progress
® H O e O u C a n u S e It ' and representational power of Generative Adversarial Networks and Variational
p y . AutoEncoders. We present an approach to the problem which generates results
comparable or superior to the existing approaches, with a lower computational
cost.



Contact

e max.baak@ing.com

e Or contact me on LinkedIn


mailto:max.baak@ing.com

