Quaternions in Jpp

M. de Jong

Introduction

JQuaternion3D

- defined as a rotation with angle heta around axis \hat{u}
 - $Q \equiv \left(\cos\frac{\theta}{2}, \sin\frac{\theta}{2}\hat{u}\right)$
- basic mathematical operations
- geodesic distance
- conversion to and from rotation matrix
- interpolation
- averaging

Here as he walked by on the 16th of October 1843 Sir William Rowan Hamilton in a flash of genius discovered the fundamental formula for quaternion multiplication $i^2 = j^2 = k^2 = i j k = -1$ & cut it on a stone of this bridge.

String

orientation of optical module

- measured by AHRS or LSM device
 - yaw, pitch and roll
- related through string mechanics
 - tilt
 - twist

Model

- Orientation of floor i at height z_i is defined as
 - $Q_i = Q_0 Q_1^{z_i}$
 - $Q_0 \Rightarrow$ tilt of the string
 - $Q_1 \Rightarrow$ twist of string

Simulation

• Gaussian smearing (arbitrary)

•
$$\sigma_x = 1^\circ$$

 $\sigma_y = 1^\circ$
 $\sigma_z = 3^\circ$

• Applied as random rotations to each floor

• $Q \equiv Q_z Q_y Q_x$

Fit

• Resolution (for χ^2 evaluation)

•
$$\sigma \equiv \frac{1}{2} \sqrt{\sigma_x^2 + \sigma_y^2 + \sigma_z^2}$$

- Metric
 - geodesic distance between two quaternions
- Minimiser
 - JSimplex works out-of-the-box
 - step corresponds to multiplication (
 - scaling corresponds to power

 $\begin{array}{ccc} Q \pm \Delta Q & \Rightarrow & Q \ \Delta Q^{\pm 1} \\ Q \times y & \Rightarrow & Q^{y} \end{array}$

Conclusions & Outlook

- Quaternions are part of Jpp
 - can be used to apply rotations
 - allow for (basic) mathematical operations
 - allow for fits