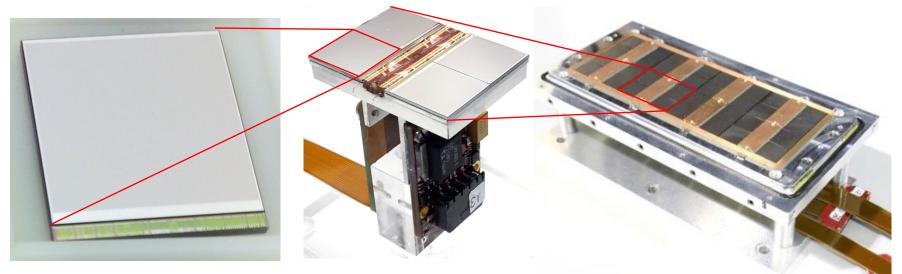


Pixel TPC R&D

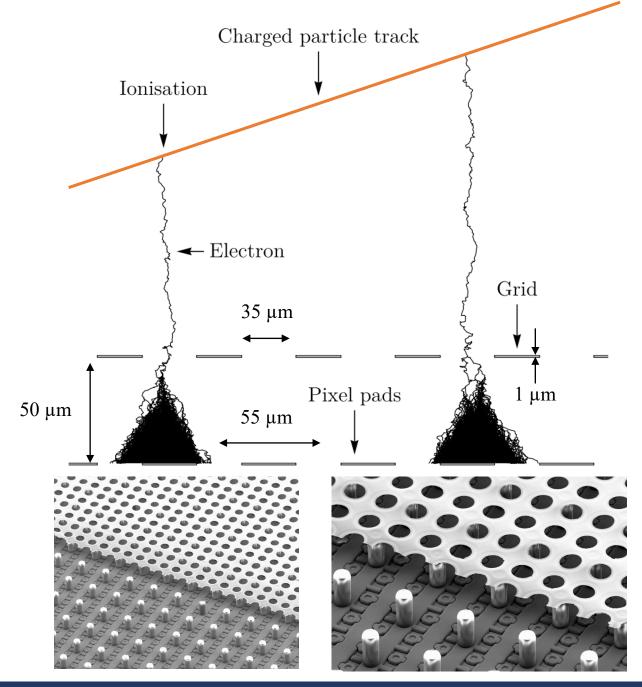
Cornelis Ligtenberg, Y. Bilevych, K. Desch, H. van der Graaf, M. Gruber, F. Hartjes, K. Heijhoff, J. Kaminski, **P.M. Kluit**, N. van der Kolk, G. Raven, T. Schiffer, J. Timmermans



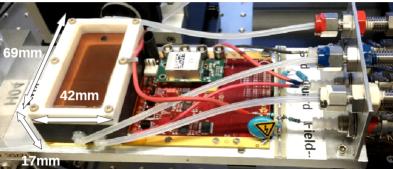
International Workshop on the High Energy Circular Electron Positron Collider Shanghai 2020

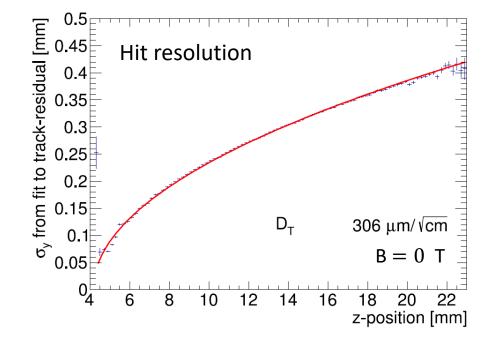
Introduction and outline

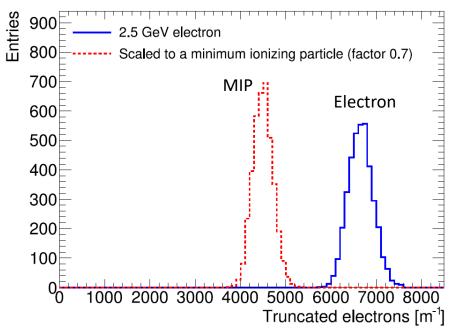
- GridPix is a 55 μ m × 55 μ m pixel readout for a gaseous TPC
- First Timepix3 based GridPix test beam (2017)
- Quad module performance from test beam (2018)
- Investigations of the 8 quad detector (2020)
- Future applications in a collider experiment e.g. CEPC

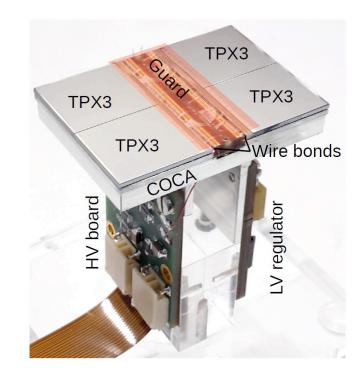

CEPC workshop Beijing 2019; Cornelis Ligtenberg

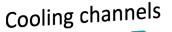
GridPix technology

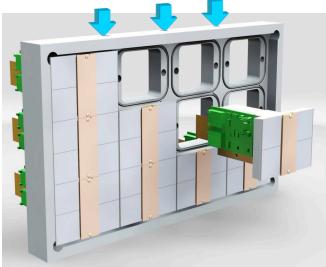

- GridPix is a type of micro-pattern gaseous TPC readout
- The GridPix based on a Timepix3 chip
 - 55 μ m × 55 μ m pixels
 - Digital simultaneous registration of Time of Arrival (1.56 ns) and Time over Threshold
 - An aligned Aluminium amplification grid is added by photolithographic postprocessing techniques
- Single ionisation electrons are detected with high efficiency
 - The maximum possible information from a track is acquired
 - dE/dx by cluster counting


Single chip results (2017)


- A GridPix based on the Timepix3 chip was reliably operated in a test beam setup with 2.5 GeV electrons at ELSA (Bonn)
- Flushed with T2K gas $(Ar/CF_4/iC_4H_{10} 95/3/2)$
- The resolution is primarily limited by diffusion
- Systematic uncertainties are small: < 10 μm in plane
- Energy loss resolution (dE/dx) by electron counting is 4.1 % per meter

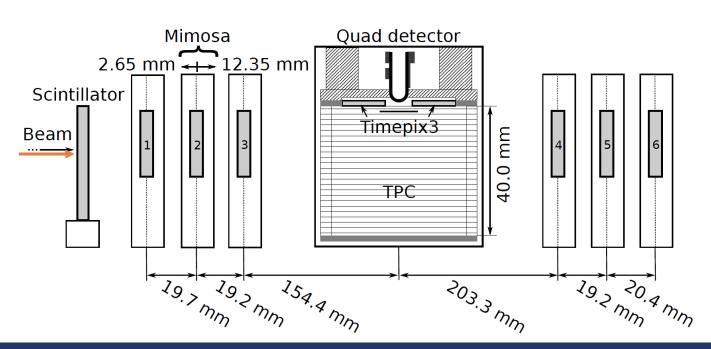

Published paper on this testbeam doi:10.1016/j.nima.2018.08.012





The quad module

- A four chip module sized 39.6 mm × 28.38 mm
- The quad module has all services under the active area
 - Can be tiled to cover arbitrarily large areas.
- Area for IO connections was minimised
 - Maximises active area (68.9%)
- To maintain a homogenous electric field wire bonds are covered by a central guard
- High precision < 20 μ m mounting of the chips and guard to limit E (xB) deformations

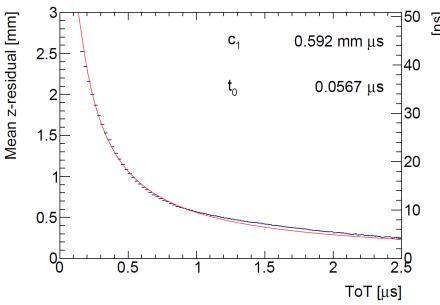


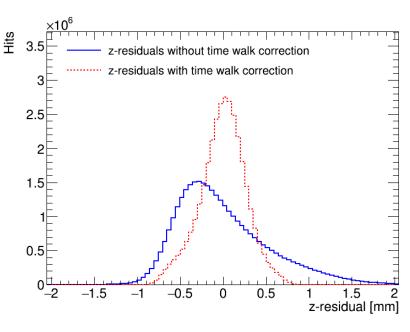


Published paper on quad testbeam: doi:10.1016/j.nima.2019.163331

Test beam measurements (2018)

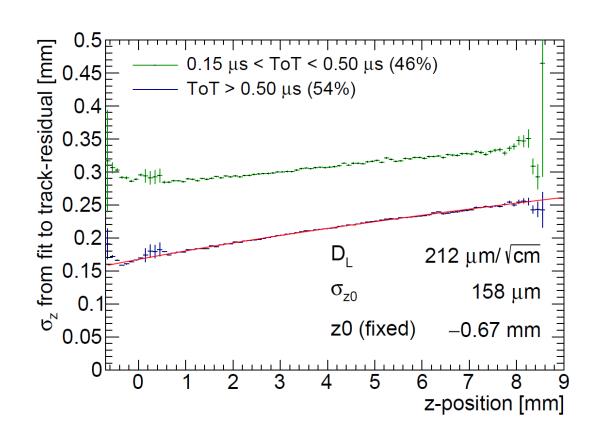
- 2.5 GeV electrons at the ELSA accelerator in Bonn, Germany
- T2K gas with $E_{drift} = 400 \text{ V/cm}$, $V_{grid} = -330 \text{ V}$
- Events are triggered by a scintillating plane
- 6 plane mimosa telescope with 18.4 μ m × 18.4 μ m sized pixels





26/10/2020 Pixel TPC R&D (Peter Kluit) 6 / 19

Time walk correction with the Timepix3


Time walk error: time of arrival depends on signal amplitude

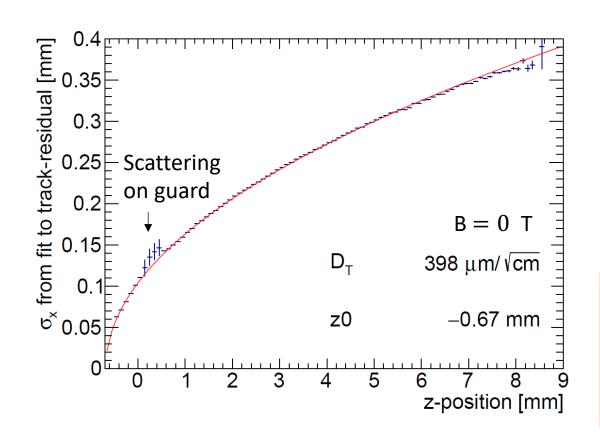
Time walk can be corrected using Time over Threshold (ToT) as a measure for signal strength First order correction fitted and applied:

$$\delta z_{\text{timewalk}} = \frac{c_1}{t_{ToT} + t_0} + z_0$$

Distribution of residuals becomese more Gaussian after the time walk correction

Hit resolution in the drift direction

Single hit resolution in drift direction


$$\sigma_z^2 = \sigma_{z0}^2 + D_L^2(z - z_0)$$

Depends on

- σ_{z0} from fit
- Diffusion D_L from fit

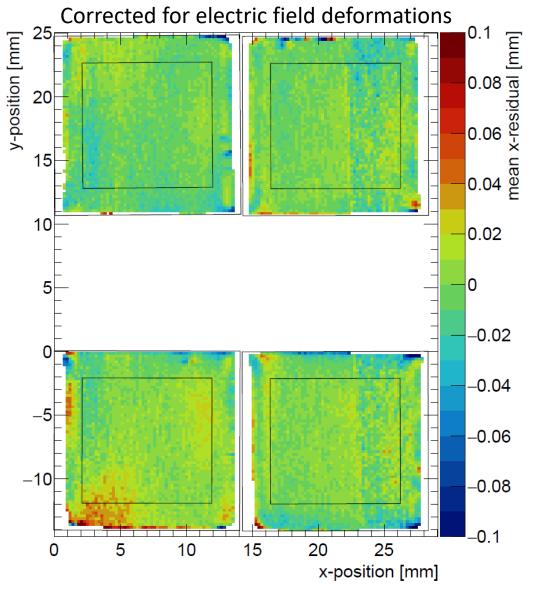
Because of a large time walk error in hits with a low signal strength, an additional ToT cut (> $0.50 \mu s$) was imposed

Hit resolution in the pixel (precision) plane

Single hit resolution in pixel (precision) plane:

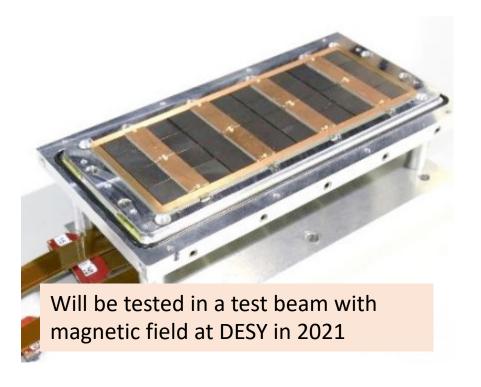
$$\sigma_y^2 = \sigma_{y0}^2 + D_T^2(z - z_0)$$

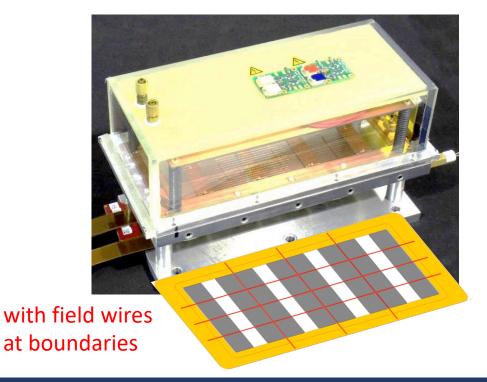
Depends on:


- $\sigma_{v0} = \text{pixel size } 55 \, \mu\text{m}/\sqrt{12}$
- Diffusion D_T from fit

Note that:

- A hit resolution of \sim 250 µm is \sim 25 µm for a 100-hit track (\sim 1 cm track length)
- At B=4 T, expected $D_T=25 \, \mu \text{m}/\sqrt{\text{cm}}$
- At $B=2\,\mathrm{T}$, expected $D_T=\sim 60\,\mathrm{\mu m}/\sqrt{\mathrm{cm}}$


Deformations in the pixel (precision) plane


- Investigation of systematic deviations over the pixel plane
- Each bin displays mean of residuals from 4 × 4 pixels
- After correction of the residuals for the distortions from the electric field
- The RMS is 13 μ m over the whole chip, and 9 μ m in the centre (black outline)

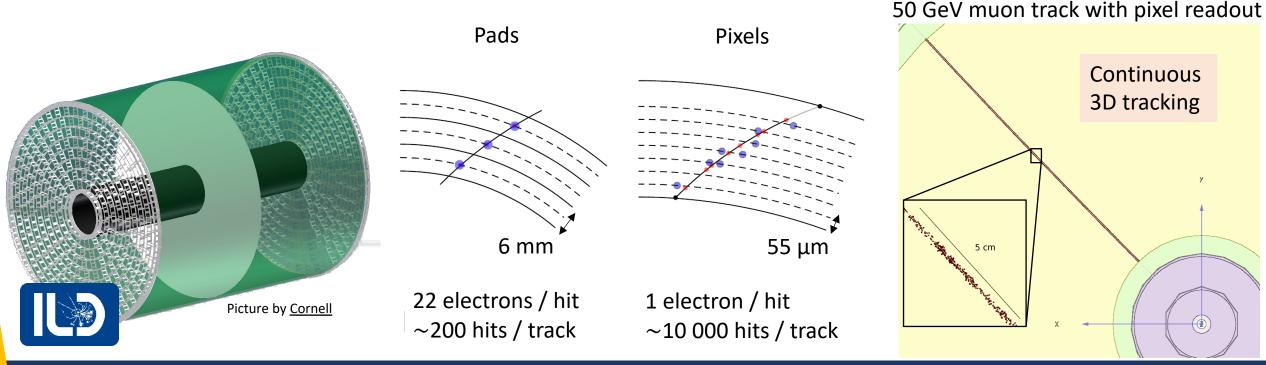
8 quad module development

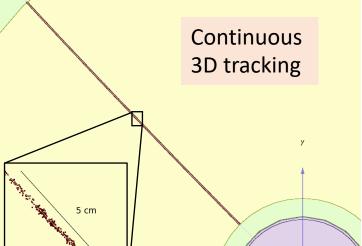
- The 8 quad test box has 32 chips in total
- Simultaneous read out through one SPIDR board using data concentrators
- Field wires added to improve electric field, and reduce deformations

A TPC at a future collider experiment

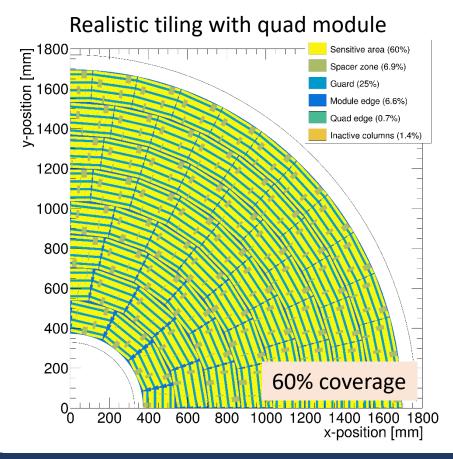
A collider experiment benefits from a TPC, because of the minimal material budget, continuous 3D tracking, dE/dx measurements, and cost-effectiveness.

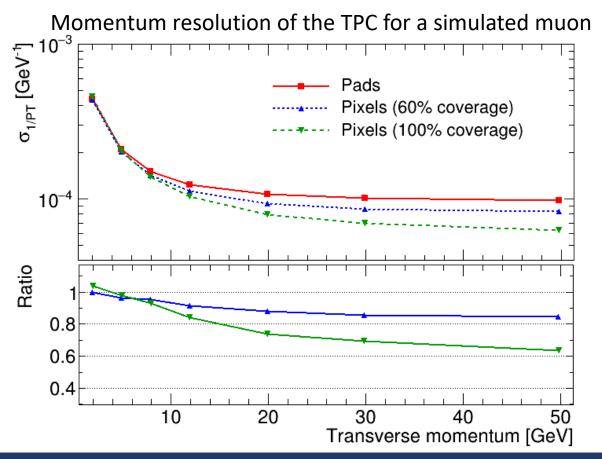
Currently there are three read-out technologies: Pads, MicroMegas and Pixels.


All technologies have the challenge to measure the track position in the bending plane with a distortions of less than $\mathcal{O}(10\text{-}20 \,\mu\text{m})$. With the modular quad detector we are close to realize this. R&D is done in the LCTPC collaboration.


In the context of ILC and the ILD experiment detailed simulations are performed and the tracking performance specifications – needed for the precision physics - can be reached. Also the performance of different technologies can be compared.

Simulation of ILD (ILC) TPC with pixel readout


- To study the performance of a large pixelized TPC, the pixel readout was implemented in the full ILD DD4HEP (Geant4) simulation
- Changed the existing TPC pad readout to a pixel readout
- Adapted Kalman filter track reconstruction to pixels



Performance of a GridPix TPC at ILC

- From full simulation, momentum resolution can be determined
- Momentum resolution is \sim 15% better (with realistic 60% coverage)

A TPC at a future collider experiment

Potential issues at future colliders for all read-out technologies:

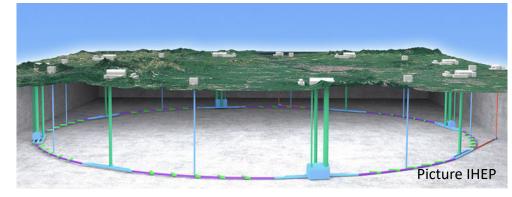
- Ions in the drift chamber from either primary ionisation or ion backflow cause distortions, which should be limited to about $\mathcal{O}(10\text{-}20~\mu\text{m})$
 - → Backflow ions can be captured by an active gate in front of the readout
- The readout occupancy should be sufficiently low for track finding (typically < 10% voxel occupancy)
 - → A pixel readout has a greatly reduced occupancy compared to a pad readout
- Other not critical R&D items are already (partially) addressed:
 - The material (X0) has to (re)optimized
 - The power consumption has to be reduced as much as possible
 - Adequate cooling has to be realised
 - The quad detector was already tested in a high rate beam environment

Prospects for a TPC at a future collider

Non-exhaustive list of potential issues with indicative expectations:

Potential issues →	Ions in drift chamber		Readout
Future colliders ↓	Primary ions	Backflow ions	Occupancy
ILC 1 TeV	Acceptable	GEM ion gate	Low (< 1% voxel)
CLIC 3 TeV	Requires investigation	Gating is possible	100% pads (30% voxel)
			40% pixel (lower voxel)
FCC-ee 91 GeV (L = $230 \cdot 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$)	Too high (distortions > 100 μm)	Too high (gating is not possible)	Most likely low
CEPC 91 GeV (L = $34 \cdot 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$)	Acceptable	~25% event loss if gated	Low (<< 1% voxel)
		Other solutions	

See backup slide for sources

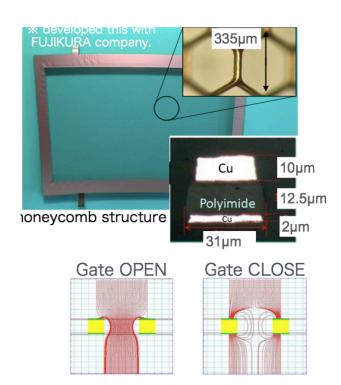

A Pixel TPC at the CEPC?

CEPC running above the Z (WW, Higgs) there are no critical issues

A Pixel TPC can deal with the high beam rates at the CEPC

- At the Z pole the CEPC with L = $34 \ 10^{34} \ cm^{-2} \ s^{-1}$ will produce Z bosons at $\sim 10 \ kHz$
- Link speed of Timepix3 (in Quad) is 80 Mbps: 2.6 MHits/s per 1.41 × 1.41 cm²
- Excellent time resolution: time stamping of tracks < 1.2 ns
- Power consumption ~2W/chip depends on hit rate
 - No power pulsing possible at the CEPC
 - Good cooling is important
- Ion backflow of the quad is measured to be 1.3% at a gain of ~2000. So IBF*Gain is ~25.

NB: to limit the distortions in de drift volume one needs to achieve < 4



■ LCWS 2019 Sendai Huirong Qi

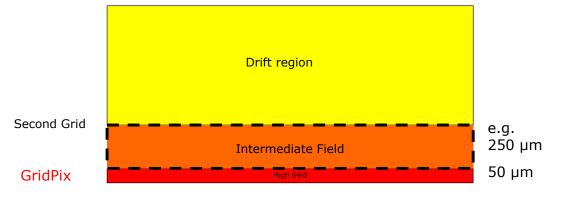
Reducing the Ion back flow in a (Pixel) TPC

The Ion back flow can be reduced – while running at the Z:

By installing a gating device and closing the gate after a trigger.
 E.g.the Gating GEM as developed in the contect of the ILD experiment

LCWS19 presentation ILD gating GEM by Yumi Aoki (KEK)

Can we apply gating in Z collisions? High luminosity CEPC $L = 32-50\ 10^{34}\ cm^{-2}s^{-1}$. Time between Z interactions 120-60 μs TPC drift takes 30 μs . So events are separated in the TPC; gating is possible. Gate length of 20-60 μs would stop the ions in triggered mode.


Problem is that the gating will lead to dead time and a data taking efficiency at high luminosities of \sim 85%-65% (for a 20 µs gate length).

Reducing the Ion back flow in a Pixel TPC

The Ion back flow can be reduced by adding a second grid to the device.

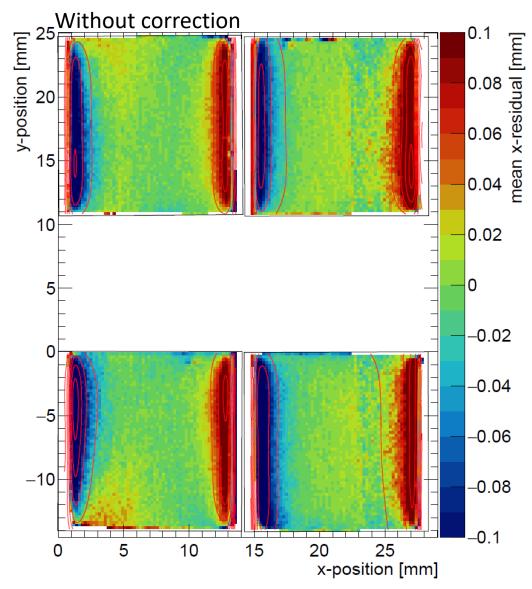
It is important that the holes of the grids are aligned. The Ion back flow is a function of the geometry and electric fields. Detailed simulations – validated by data - have been presented in LCTPC WP #326.

With a hole size of 25 μ m an IBF of 3 10⁻⁴ can be achieved and the value for IBF*Gain would be 0.6. Well below the specifications.

We plan to test this idea at Nikhef

Ion backflow	Hole 30 μm	Hole 25 μm	Hole 20 μm
Top grid	2.2%	1.2%	0.7%
GridPix	5.5%	2.8%	1.7%
Total	12 10-4	3 10-4	1 10-4
transparancy	100%	99.4%	91.7%

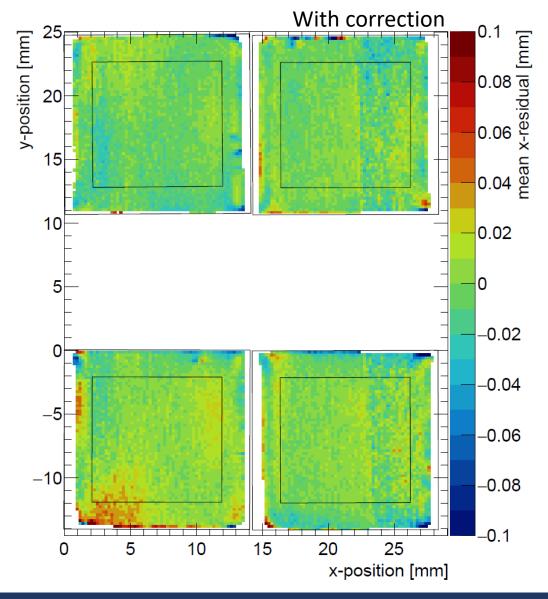
Conclusions


- A quad module with four Timepix3 based GridPix chips has been designed and built
 - The resolution is limited by diffusion
 - Systematic uncertainties are small: 9 μm in the pixel plane
- A 8 quad detector with 32 chips is operational and will be tested in a beam in 2021
- A Pixel TPC is a good option at the ILC (CLIC) and circular e⁺e⁻ colliders
- Simulations show an improvement in momentum resolution of a pixel TPC readout over a pad readout of $15-35\,\%$
- A GridPix readout will allow for dE/dx measurements through cluster counting
- The distortions in the TPC due to the ion back flow while running at the Z pole can be reduced significantly by applying a double grid in a Pixel TPC. There is no need for a gating device.

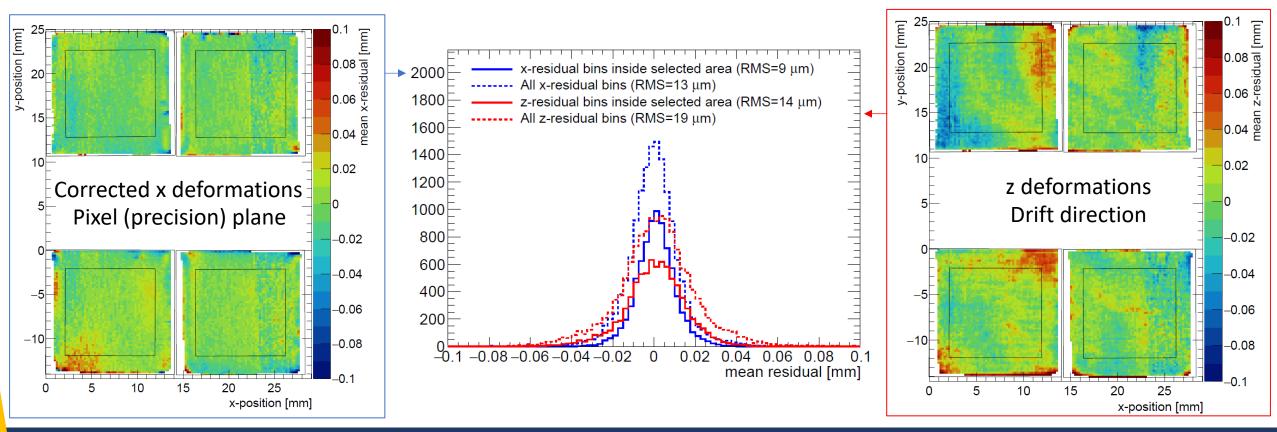
Backup

Deformations in the pixel (precision) plane

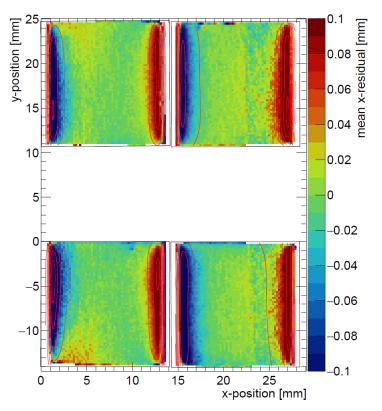
- Investigation of systematic deviations over the pixel plane
- Each bin displays mean of residuals from 4 × 4 pixels
- Primarily due to electric field distortions
- Correction of deformations with 4 fitted Cauchy functions per chip:


$$\delta x = \sum_{j=0}^{4} \left(\frac{1}{\pi} \frac{\gamma_j}{(x - d_j)^2 + \gamma_j^2} \sum_{i=0}^{4} (c_{ij} y^i) \right)$$

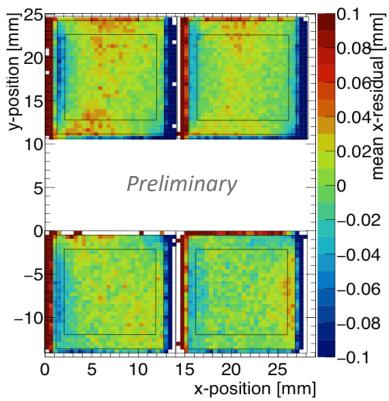
Deformations in the pixel (precision) plane


- Investigation of systematic deviations over the pixel plane
- Primarily due to electric field distortions
- Each bin displays mean of residuals from 4 × 4 pixels
- Correction of deformations with 4 fitted Cauchy functions per chip:

$$\delta x = \sum_{j=0}^{4} \left(\frac{1}{\pi} \frac{\gamma_j}{(x - d_j)^2 + \gamma_j^2} \sum_{i=0}^{4} (c_{ij} y^i) \right)$$


Deformations in pixel plane and drift direction

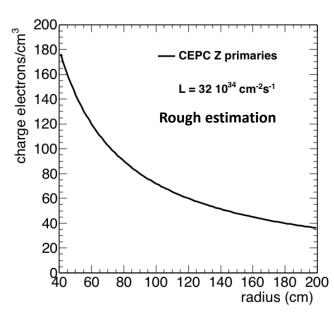
- Each bin displays mean of residuals from 4 × 4 pixels
- The RMS in the center of the chip is 9 μ m (pixel plane after correction) and 14 μ m (drift direction), which indicates small systematic errors

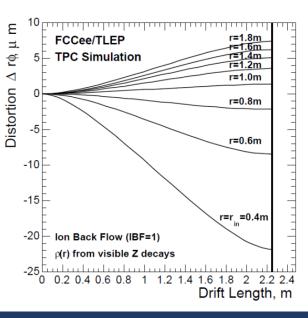


8 quad module development

- Laser test indicate a reduction in electric field deformations with field wires
- Early 2020 test beam planned at DESY with 1 T magnetic field

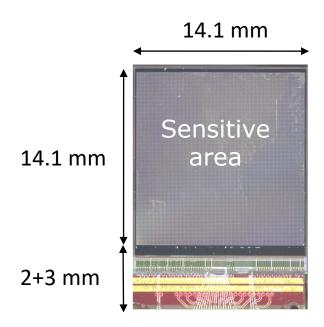
Uncorrected residuals from quad test beam


Uncorrected residuals from laser test with field wires


Ions in circular electron positron collider

- Rough estimations at L = $32 \cdot 10^{34}$ cm⁻² s⁻¹ indicate primary ionisation at a ILC250 level \Rightarrow < 5 µm distortions. See <u>Arai Daisuke</u>
- Simulation from CEPC CDR with Gain × IBF = 5 and L = $17 \cdot 10^{34}$ cm⁻² s⁻¹ \Rightarrow < 40 μ m distortions (This equals 16 μ m at Gain × IBF = 1 and L = $32 \cdot 10^{34}$ cm⁻² s⁻¹)
- FCCee/TLEP studies at Gain × IBF = 1 and 16.8 kHz hadronic Zs by Philippe Schwemling \Rightarrow < 22 µm distortions

Rough estimation of primary ionisation


- 10 kHz Z event rate; $L = 32 \cdot 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
- 500 ms will accumulate 5000 Z events
- 20 tracks / Z event and 10 000 e / track will make 10⁹ ions in volume
- Volume is ~4 10⁷ resulting in 25 e/cm³
- Similar to ILC250 accumulated charge

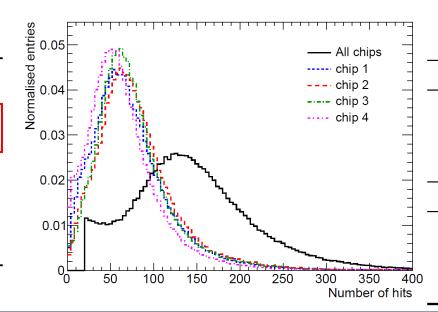
Timepix3 pixel chip

- 256 × 256 pixels with 55 μ m × 55 μ m pitch
- Sensitive area of 14.1 mm × 14.1 mm
- TDC with 640 MHz clock, resulting in a 1.56 ns time resolution
- Per pixel simultaneous measurement of arrival time (ToA) and signal amplitude (ToT)
- Readout using SPIDR
- Power consumption of 2W depending on hit rate
 - good cooling is important
- Wafer post-processed at IZM Berlin

Timepix3

Header	4 bit
Pixel address	16 bit
Course ToA	14 bit
ToT	10 bit
Fine ToA	4 bit
SDIDB	

12 bit


SPIDR SPIDR SPIDR

64 bit data packets

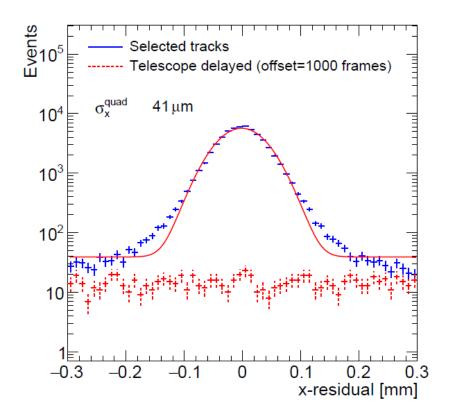
Run parameters and selections

- Used T2K (Ar:CF₄:iC₄H₁₀ 95:3:2) gas with a water vapor contamination
 - Drift speed 54.6 μm/ns (59.0 μm/ns expected by Magboltz)
- Most probable number of hits per 27.5 mm was 146 (225 expected)
 - This is due to the low effective grid voltage and possibly read out problems
- Use a stringent selection to get clean tracks

Runs duration	10 minutes
Triggers per run	$2.2 \times 10^6 \mathrm{triggers}$
$V_{ m grid}$	$330\mathrm{V}$
$E_{ m drift}$	$400\mathrm{V/cm}$
Threshold	$550 \mathrm{e^-}$
Temperature	$(300.5 \pm 0.13) \text{ K}$
Pressure	$(1011 \pm 0.16) \text{ mbar}$
Oxygen concentration	814 ppm
Water vapor concentration	$6000\mathrm{ppm}$

Telescope	
Number of planes hits ≥ 5 Reject outliers $(r_{x,z} < 50 \mu\text{m})$ Slope difference between sets of planes $< 1 \text{mrad}$	
GridPix hit selection	
$-500\mathrm{ns} < t_\mathrm{hit} - t_\mathrm{trigger} < 500\mathrm{ns}$ Hit ToT > 0.15 µs Reject outliers ($r_x < 1.5\mathrm{mm}, r_z < 2\mathrm{mm}$) Reject outliers ($r_x < 2\sigma_x, r_z < 3\sigma_z$)	
Event Selection	
$N_{\mathrm{hits}} \ge 20$ $(N_{r_x < 1.5 \mathrm{mm}} / N_{r_x < 5 \mathrm{mm}}) > 0.8$ $ x_{\mathrm{Timepix}} - x_{\mathrm{telescope}} < 0.3 \mathrm{mm}$ $ z_{\mathrm{Timepix}} - z_{\mathrm{telescope}} < 0.3 \mathrm{mm}$	

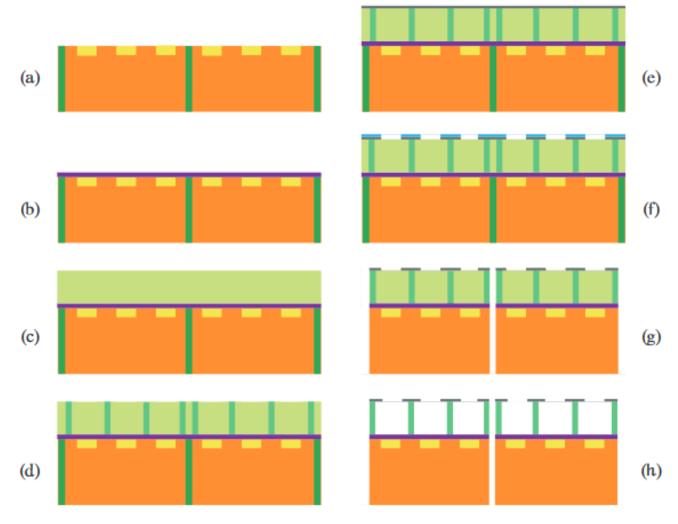
Resolution of quad module


Determine overall accuracy of a track position measurement by comparing the quad track with the telescope track

Subtract a background of unrelated tracks

Error contributions:

- Statistical error using hit resolution
- Systematic errors from RMS in pixel plane and drift direction
- Multiple scattering contribution from simple Monte Carlo simulation


In the end, an unidentified contribution remains

Observed standard deviation	41 μm
Statistical errors	25 μm
Systematic errors in the pixel plane and drift direction	19 μm
Multiple scattering	22 μm
Unidentified systematic error	14 μm

Production of GridPixes

- a) Cleaning
- b) Deposition of Protection layer
- c) SU-8 covering
- d) Exposure with mask
- e) Aluminium layer is deposited
- f) Another layer of photoresist is applied, exposer with a mask creates a hole pattern, and the holes are chemically etched
- g) The wafer is diced
- h) The unexposed SU-8 is resolved

Thesis Stergios Tsigaridas, Next Generation GridPix

Motivation for a pixelised TPC

- Improved dE/dx by cluster counting
- Improved measurement of low angle tracks
- Improved double track separation
- Much reduced hodoscope effect
- Lower occupancy in high rate environments
- Fully digital read out
- Reduced ion backflow by adding a double grid