Investigating protection layers

MIDIHV

Nikhef

Fred Hartjes NIKHEF

Nikhef/Bonn LepCol meeting October 19, 2020

Hg probe

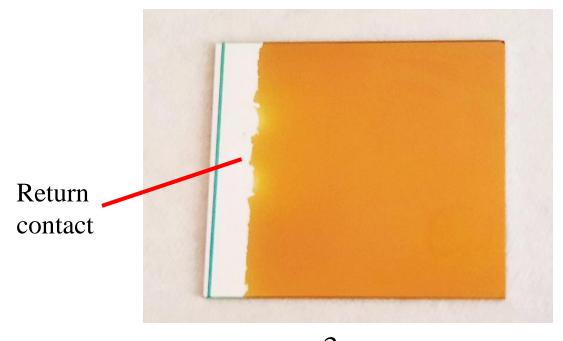
Nikhef/Bonn LepCol meeting, October 19, 2020

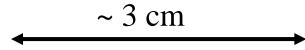
Conductivity of 11 samples of different SixNy protection layers

- Received from IZM (Yevgen) via Uni Bonn on March 2020
- Layer thickness 2 μm
 - For GridPix we normally use 4 μm
- Conductivity calculated from IV measurements
- Process parameters varied
 - **SiH** $_4/N_2$ concentration
 - Plasma **power**
 - Plasma **HF/LF**
 - **N10** is the **reference**, same process as used for 2018 production

				Plasma		Deposition
GelPak	SiH4/N2	SiH4	N2	power	Frequency	time
Nikhef	(%)	(sccm)	(sccm)	(W)	(HF / LF)	(s)
N10	2	50	2450	250	HF	263
N11	1	25	2475	250	HF	797
N12	4	100	2400	250	HF	578
N13	2	50	2450	450	HF	539
N14	1	25	2475	450	HF	662
N15	4	100	2400	450	HF	190
N16	2	50	2450	900	HF	369
N17	1	25	2475	900	HF	699
N18	4	100	2400	900	HF	269
N19	2	50	2450	250	LF	601
N21	4	100	2400	250	LF	428

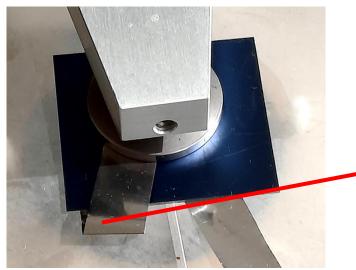
Experimental setup


- HP 4140B pA meter
- Mercury probe MDC MP-811
- Soap probe
- Nikhef MiniHV unit, tripping at 5000 nA
- HV control and current RO by PC with LabVIEW program
- Measurements due to **corona regulations** done at my **home**



The samples

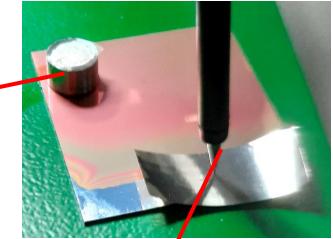
- Silicon substrate
- Metal layer
- Si_xN_y layer of 2 μ m
- Back side insulated
- The samples were covered by a wax like layer often preventing good electrical contact
- Cleaned using alcohol



The probes

- Hg probe
 - Mercury suck by vacuum to make contact under the sample
 - Contact surface 18.9 mm²
 - 10 μm SS contact foil needed
 - Sample is insulated at bottom side

Sample under Hg probe



Sample with soap probe

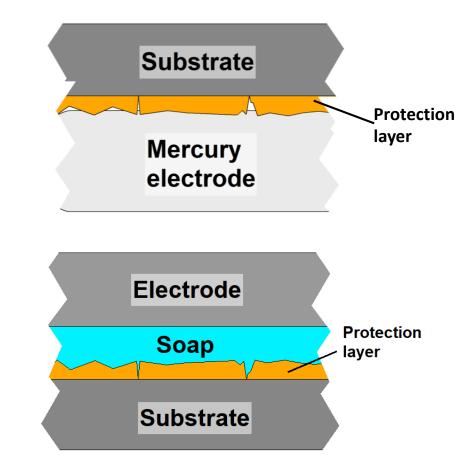
Soap water probe

- 8 mm SS disk as HV electrode
- **80** μm wire to miniHV
- A drop of soap water under it
- \blacksquare => contact surface 50.3 mm²

HV electrode

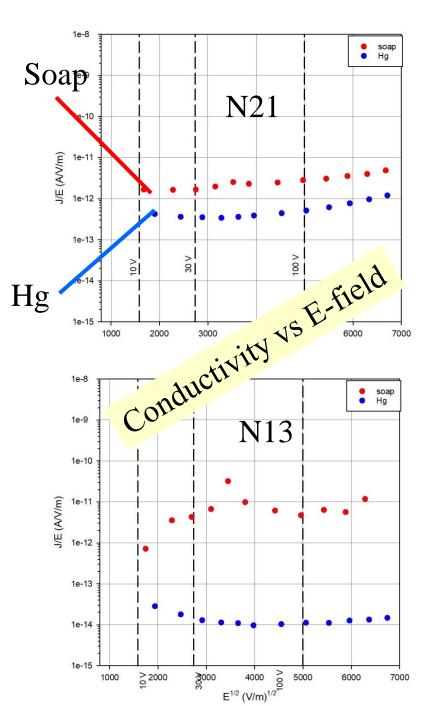
Return contact to pA meter

Mercury vs soap, which is best?


Mercury has high surface tension

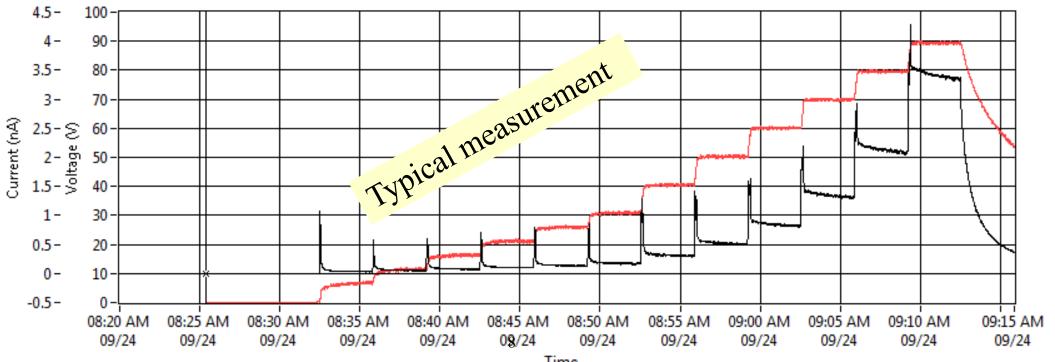
- It may not fill pinholes
- Does not always follow surface roughness well

- Creeps in every pinhole
- (with the soap measurements I noticed some light sensitivity)

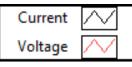

- What simulates best detector operation in gas?
 - Gas also fills every hole and unevenness

Which probe?

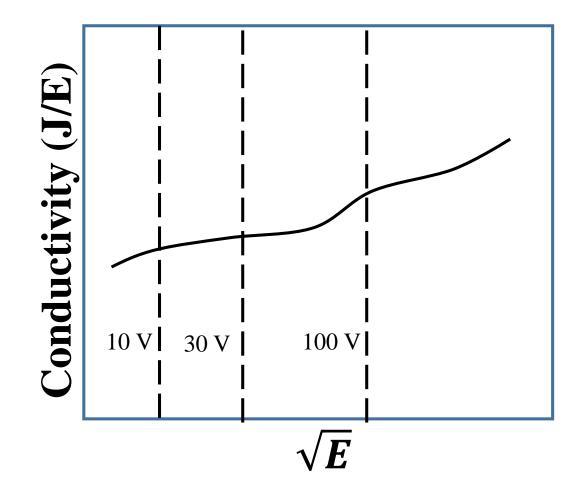
The **mercury** probe normally give stable, reproducible results


- The soap probe always gives higher conductivity
 - Sometimes well reproducible
 - But often unstable currents, discharge/breakdown like phenomena
- My guess: soap is sensitive for irregularities, pin holes, roughness of the layer
 - A layer with stable HV behavior in soap might give reliable HV protection
 - So soap may be used as a quality check for the layer

LabVIEW program


- Applying negative bias voltages of 0, 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80 and 90 V
 - The higher voltages were tested to check the discharge protection
- The average of 50 100 current measurements in the last 25 33% of the measuring period was registered
- Currents were sometimes a few pA => long time needed to stabilize
- Single negative bias voltage point takes 2 4 min
- Measuring one sample takes 30 50 min

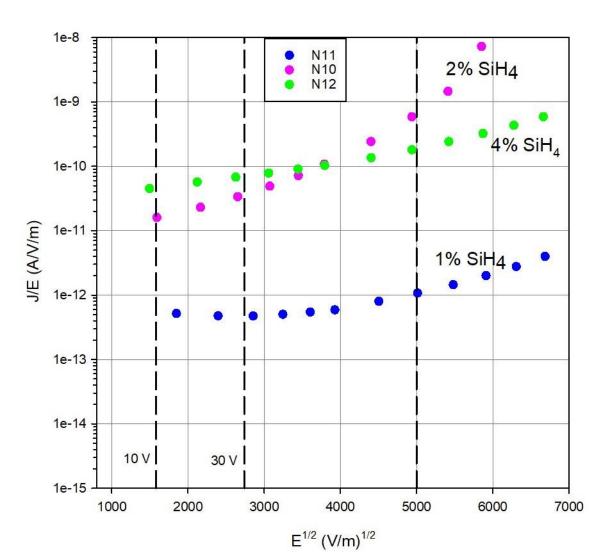
Current vs time


Measuring method

5 samples were also tested at **positive bias** No significant difference was observed

Way of plotting

- Conductivity vs square root of the field across the layer
- Common practice when studying electrical thin layer properties
- Three reference lines plotted as potentials across 4 µm protection layer
 - 10 V => 75% gain for T2K gas
 - 30 V => 40% gain for T2K gas
 - 100 V => 5% gain for T2K gas
- We aim for the <u>highest conductivity</u>
 - Giving the highest rate capability


Sample N10 – N12 Plasma power 250 W

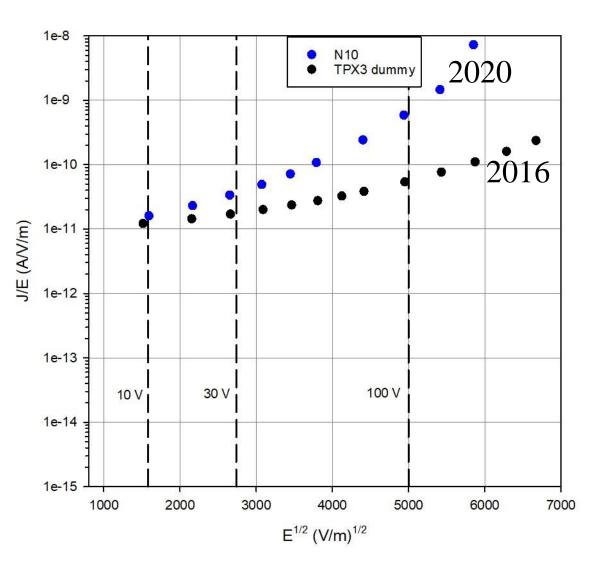
- Conductivity of N10 (2% silane, reference) grows largely at higher fields
- Conductivity of N11 (1% silane) is much lower, too low to be useful

- Conductivity of N12 (4% silane) shows much less variation than N10
 - Higher conductivity at low fields

Conductivity (J/E) vs square root electric field ($E^{1/2}$)

Sample N10, N11, N12 Layer thickness 2 µm SixNy Layer production Feb 2020 IZM Tests by Hg probe Fred Hartjes, Nikhef (Bussum)

Comparing reference sample N10 with earlier measurements

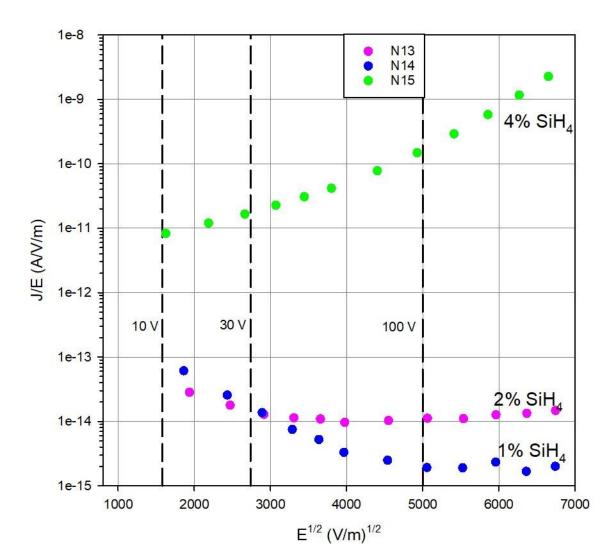

Production of **test samples in 2016**

- Using a bare silicon substrate covered with the protection layer (TPX3 dummy)
- At low layer potentials N10 and TPX3 dummy converge but for higher potentials the conductivity of N10 grows more rapidly
 - Less good spark protection??

Conductivity (J/E) vs square root electric field $(E^{1/2})$

Sample N10 and TPX3 dummy (bare si substrate)

Layer thickness 2 and 4 µm SixNy Layer production Feb 2020 IZM and 2016/2017 TPX3 dummy file <TPX3_dummy_4um_SiN_W3.txt> date 7-2-2017 Hg file <N10 repeated.txt> date 23-9-2020 Fred Hartjes, Nikhef (Bussum)

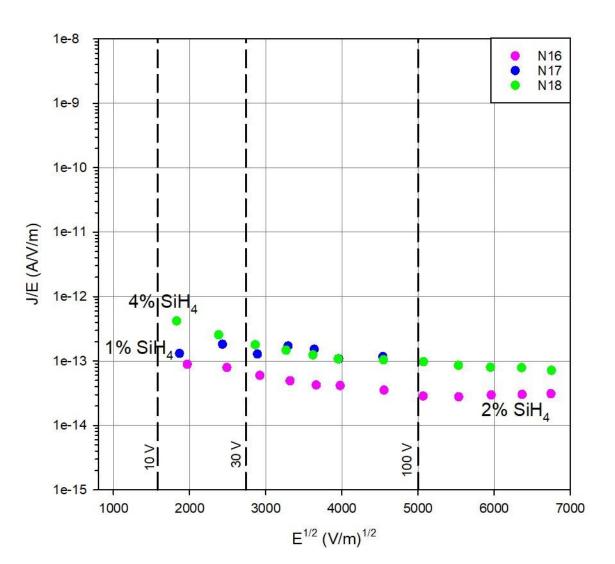


Sample N13 – N15 Plasma power 450 W

Sample N13, N14, N15

Layer thickness 2 µm SixNy Layer production Feb 2020 IZM Hg measurements Fred Hartjes, Nikhef (Bussum)

- N15 (4% silane) is best, but still not as good as N12 or N10
- N13 and N14 have very low conductivity
 - Hard to measure (pA currents)

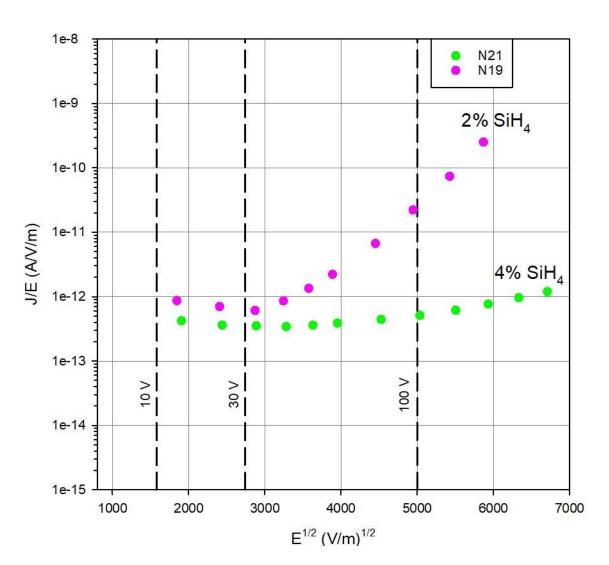


Sample N16 – N18 Plasma power 900 W

Conductivity (J/E) vs square root electric field ($E^{1/2}$)

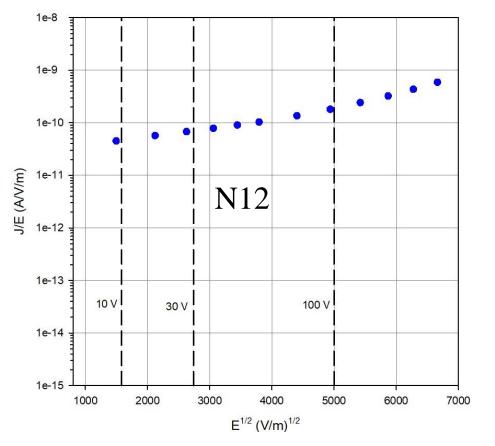
Sample N16, N17, N18 Layer thickness 2 µm SixNy Layer production Feb 2020 IZM Hg measurements Fred Hartjes, Nikhef (Bussum)

- All very low conductivity, almost no effect on silane concentration
- Observed differences on conductivity between various silane concentration not significant

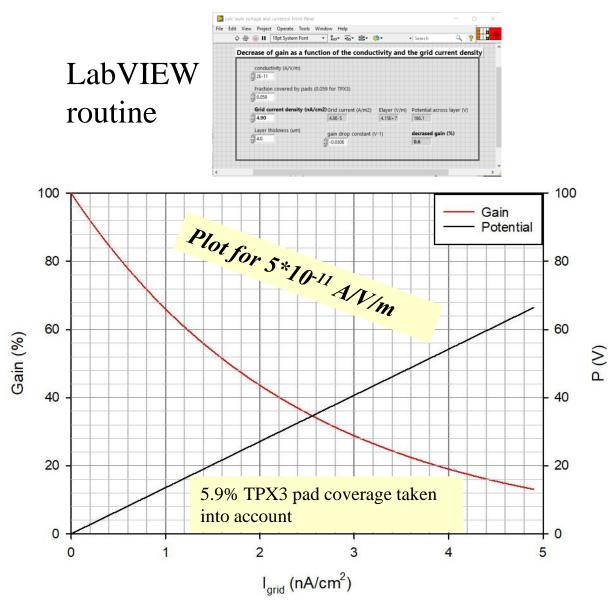


Sample N19 and N21 Plasma power 250 W low frequency plasma

- Surprisingly the 4% silane sample has a lower conductivity than the 2% one
- All conductivities are lower than the reference sample N10

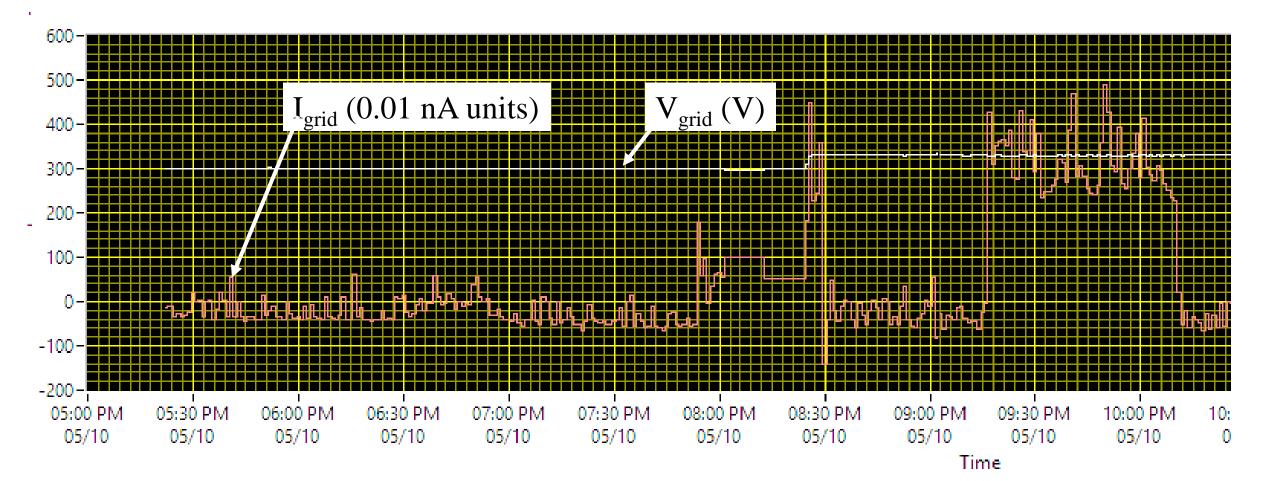

Sample N19 and N21 Layer thickness 2 µm SixNy Layer production Feb 2020 IZM

Hg measurements Fred Hartjes, Nikhef (Bussum)



- The highest conductivity from these samples is given by **N12**
 - 4% silane, 250 W, HF
 - Conductivity @ 10 V: 5*10⁻¹¹ A/V/m
 - Conductivity @ 30 V: 8*10⁻¹¹ A/V/m
 - => at 2.5 nA/cm² we have a gain drop of 50% for T2K gas
 - **Reference sample**: 50% gain drop at **0.7 nA/cm²**

15


Gain as a function of conductivity and grid current

Grid currents during 2018 testbeam in Bonn

- 1 nA @ 300 $V_{grid} => 0.4 \text{ nA/cm}^2$
- 2.7 nA @ 330 $V_{grid} => 1.1 \text{ nA/cm}^2$

Covered surface by beam ~ 2.5 cm^2

Additional remarks and conclusions

I found some indication of a **temperature dependence**

- Conductivity increasing at higher temperatures
- During operation the chips have a temperature increased by 10 20 °C, this may significantly enhance the rate capability
- In Bonn the chip temperature was possibly ~ $40 \,^{\circ}\text{C}$
- At my home I have no opportunity to study this effect
- Most samples show **worse performance** compared to the reference N10
- Only N12 has higher conductivity but the improvement compared to N10 is limited
 A significant improvement can be achieved by enlarging the TPX3 pad size by postprocessing
- Before using the recipe of N12 on a new batch of chips, at first extensive tests have to be done to check the reproducibility of the process and the spark protection (maybe by the soap probe as well)