Update on tau status

Robert Bormuth

Leiden University and Nikhef November 10, 2015

Tau toy MC v3

Method

Added flight length calculation from event energy

Reduced tau shower energy to be 75 % of tau energy (neutrino)

Small steps to full toy (simulate some energy spectrum and draw random bjorken y)

Default aashowerfit on toy

Applying aashowerfit on the toy MC we find for second vertex resolution

Default aashowerfit on toy

Applying aashowerfit on the toy MC we find for distance between reco vertices

Method

Perform a simultaneous log likelihood fit for a two shower event based on time residuals

 $L = log(P(hit_{t1}|vertex_1) + P(hit_{t1}|vertex_2) + P(hit_{t1}|bkg))$

Extract $P(hit_{t1}|vertex_1)$ from histogram via spline fit, extract $P(hit_{t1}|bkg)$ from difference between simulations with and without bkg (and compare to expected result form calculation) Fit start parameter are taken from single shower fits.

Spline fit

- use method Aart gave me (spline fit which can be forced to be monotonous)
- use simulated single e.m. shower events (n 100) without bkg simulation
- calculate residuals to shower maximum (since we reconstruct shower maximum and this should make it ≈ energy independent)
- use same hit selection as in reconstruction

Hit selection

- Merge all hits on PMT within 300 ns
- Make a L1 selection with $\Delta t \leq 20 \text{ ns}$
- all L1 within ±800 ns from input shower

Why not simply all hits? Computing time in order of 5 min per event...

Spline fit

Two shower fit performance

