П⁰ STUDIES AT PROTODUNE-SP

Nikhef

Milo Vermeulen

BACKGROUND

- \bullet π^0 are produced in hadronic interactions
- Decay almost immediately: $\pi^0 \rightarrow \gamma\gamma$

Potential to mimic electron shower • Background to $\nu_e + n \rightarrow e^- + p$ Output Can be used to calibrate shower energy reconstruction with known π⁰ mass

П⁰ INVARIANT MASS

- Photons in ProtoDUNE-SP nearly all originate from π^0 particles
- Can reconstruct π⁰ invariant mass from pure photon sample

Beam particle

п^о Studies at ProtoDUNE-SP – Milo Vermeulen – 22-9-2020

П⁰ INVARIANT MASS

- π^0 invariant mass = 135 MeV/c²
- $\bullet \ m_{\pi} = \sqrt{2E_1E_2(1 \cos\theta)}$
- \bullet from direction of showers

П⁰ INVARIANT MASS

п⁰ Studies at ProtoDUNE-SP – Milo Vermeulen – 22-9-2020

Nikhef

• Used most of the ProtoDUNE Production 2 runs • 1, 2, 3, 6, 7 GeV/c

- 340k MC events, 200k beam events
- Our Content of Cont

Output Consider only beam track and daughter particles

Beam track

п⁰ Studies at ProtoDUNE-SP – Milo Vermeulen – 22-9-2020

Reconstructed showers

Reconstructed tracks

SHOWER SELECTION

Pandora assigns track or shower status to reconstructed objects • Complementary: track/em-like score from CNN by Aidan Reynolds

п^о Studies at ProtoDUNE-SP – Milo Vermeulen – 22-9-2020

SHOWER SELECTION

Pandora assigns track or shower status to reconstructed objects • Complementary: track/em-like score from CNN by Aidan Reynolds

SHOWER SELECTION

Pandora assigns track or shower status to reconstructed objects • Complementary: track/em-like score from CNN by Aidan Reynolds

п^о Studies at ProtoDUNE-SP – Milo Vermeulen – 22-9-2020

Pandora classification

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

 $(E_{reco}^{-}-E_{MC})/E_{MC}$

Relative energy difference vs shower size Central peak lined up with 0 by hand Multiplicative factor to capture charge loss, clustering inefficiencies, etc.

п^о Studies at ProtoDUNE-SP – Milo Vermeulen – 22-9-2020

Pandora classification

Number of hits is a good indicator for reconstruction quality Energy reconstruction improves > 50 hits

п^о Studies at ProtoDUNE-SP – Milo Vermeulen – 22-9-2020

Pandora classification

3

2.5

1.5

0.5

50

Angle between shower and parent [rad]

Number of hits is a good indicator for reconstruction quality Angular reconstruction improves > 50 hits

Pandora classification

3

2.5

2

1.5

0.5

50

Angle between shower and parent [rad]

Number of hits is a
 good indicator for
 reconstruction quality
 Angular
 reconstruction
 improves > 50 hits

п^о Studies at ProtoDUNE-SP – Milo Vermeulen – 22-9-2020

Pandora classification

- Number of hits also
 very useful for cutting
 out leftover electrons,
 protons, pions
- Result: quite pure photon sample
- Cut efficiency: 46% Purity: 72% \rightarrow 91%

Pandora classification

SHOWER SELECTION – HITS AT START

Output Convenient metric: number of hits at start of shower • "Start" defined as cylinder around initial part of shower object More hits generally means shower start is in the right place More cylinder hits = better reconstruction

п⁰ Studies at ProtoDUNE-SP – Milo Vermeulen – 22-9-2020

SHOWER SELECTION – HITS AT START

п^о Studies at ProtoDUNE-SP – Milo Vermeulen – 22-9-2020

Pandora classification Particle CNN score Number of coll. hits

SHOWER PAIR ANGLE

Our of the second se angle than related photon shower pairs

п⁰ Studies at ProtoDUNE-SP – Milo Vermeulen – 22-9-2020

Pandora classification Particle CNN score Number of coll. hits Number of cylinder hits

SHOWER PAIR ANGLE

Our of the second se angle than related photon shower pairs

п⁰ Studies at ProtoDUNE-SP – Milo Vermeulen – 22-9-2020

Pandora classification Particle CNN score Number of coll. hits Number of cylinder hits

SHOWER PAIR ANGLE

Our of the second se angle than related photon shower pairs

shower'

Also require exactly 1 shower pair that passes the cuts per event

Shower 2

 π^0 vertex

Pandora classification Particle CNN score Number of coll. hits Number of cylinder hits

Number of events (MC scaled to data)

П⁰ INVARIANT MASS – RESULTS

- Very clear peak around 135 MeV/c²
- Width of signal peak from energy / angle reconstruction
- Main background from multiple π⁰ events

П⁰ INVARIANT MASS – RESULTS

- Easiest solution: look at
 - lower energy events
- Fewer π⁰ produced at

once

• Great purity, lower statistics

П° INVARIANT MASS – CALIBRATION

- Step 1: find correction in MC from good shower pairs • Align peak with exact π^0
 - mass
 - After aligning shower energy by hand, only 1% offset remained

П° INVARIANT MASS – CALIBRATION

- Step 1: find correction in MC from good shower pairs • Align peak with exact π^0
 - mass
 - After aligning shower energy by hand, only 1% offset remained

П⁰ INVARIANT MASS – CALIBRATION

Number of

• Step 2: fit data to MC (blue histogram) • Perform χ^2 test between data and MC for a range of biases

п⁰ Studies at ProtoDUNE-SP – Milo Vermeulen – 22-9-2020

П⁰ INVARIANT MASS – CALIBRATION

- Step 2: fit data to MC (blue histogram)
 - Perform χ^2 test between data and MC for a range of biases
 - Dip approximated with parabola: central value of ~94%

п⁰ Studies at ProtoDUNE-SP – Milo Vermeulen – 22-9-2020

Idea taken from MicroBooNE arXiv:1910.02166v1

П° INVARIANT MASS – CALIBRATION

- Step 2: fit data to MC (blue histogram)
 - Perform χ^2 test between data and MC for range of biases
 - Dip approximated with parabola: central value of ~94%

CONCLUSIONS

- Output Clear π⁰ invariant mass peak
- Much to improve upon in terms of shower energy and direction reconstruction
- Energy bias between MC and data for this sample seems to be ~ $6 \pm 0.5\%$
 - Likely partly due to other bias (angle, shower shape, ...)

п^о Studies at ProtoDUNE-SP – Milo Vermeulen – 22-9-2020

• Used most of production 2 datasets

Beam momentum [GeV/c]

MC definition

1	PDSPProd2_MC_1GeV_reco_sce_datadriven	protodune-sp_runset_5387_reco_v08_27_XX_v0
2	PDSPProd2_MC_2GeV_reco_sce_datadriven	protodune-sp_runset_5432_reco_v08_27_XX_v0
3	PDSPProd2_MC_3GeV_reco_sce_datadriven	protodune-sp_runset_5786_reco_v08_27_XX_v0
6	PDSPProd2_MC_6GeV_reco_sce_datadriven	protodune-sp_runset_5770_reco_v08_27_XX_v0
7	PDSPProd2_MC_7GeV_reco_sce_datadriven	protodune-sp_runset_5204_reco_v08_27_XX_v0

Data definition

MC-RECO MATCHING

- Each reconstructed object is assigned one main MC contributor
- Based on highest number of hits contributed
- Origin of hits found through BackTracker

Other photon, disregarded

п⁰ Studies at ProtoDUNE-SP – Milo Vermeulen – 22-9-2020

MC-RECO MATCHING

- Many useful properties from comparing reconstructed object to parent MCParticle
- Completeness, purity
- Relative energy difference
- Angle between MC and reconstructed particle

п⁰ Studies at ProtoDUNE-SP – Milo Vermeulen – 22-9-2020

 $\frac{E_{reco} - E_{MC}}{E_{MC}}$

Reconstructed shower

MC photon

SHOWER CNN SCORE

п^о Studies at ProtoDUNE-SP – Milo Vermeulen – 22-9-2020

SHOWER ENERGY RECO QUALITY

improves quality of sample

п^о Studies at ProtoDUNE-SP – Milo Vermeulen – 22-9-2020

Pandora classification

SHOWER DIRECTION RECO QUALITY

improves quality of sample

п^о Studies at ProtoDUNE-SP – Milo Vermeulen – 22-9-2020

Pandora classification

OPENING ANGLE RECO QUALITY

• Various ways to determine photon opening angle

п^о Studies at ProtoDUNE-SP – Milo Vermeulen – 22-9-2020

OPENING ANGLE RECO QUALITY

Various ways to determine photon opening angle

п⁰ Studies at ProtoDUNE-SP – Milo Vermeulen – 22-9-2020

RUN COMPARISONS (FROM MC)

• π⁰ events between runs very similar

п⁰ Studies at ProtoDUNE-SP – Milo Vermeulen – 22-9-2020

Nikhef

RUN COMPARISONS (FROM MC)

 Number of π⁰s per event differs a lot
 Clear increase in π⁰ production at higher beam momenta

п^о Studies at ProtoDUNE-SP – Milo Vermeulen – 22-9-2020

7 GeV/c

RUN COMPARISONS (FROM MC)

Energy reconstruction according to modified box model Method described in DocDB 18355 Energy losses of ~15%

taken into account

п⁰ Studies at ProtoDUNE-SP – Milo Vermeulen – 22-9-2020

Nik hef

SHOWER SELECTION – CYLINDER HITS

п⁰ Studies at ProtoDUNE-SP – Milo Vermeulen – 22-9-2020

SHOWER SELECTION – CYLINDER HITS

п^о Studies at ProtoDUNE-SP – Milo Vermeulen – 22-9-2020

Consider hits in this cylinder Shower 4 cm 1 cm

11

П⁰ INVARIANT MASS – CUTS

Used extra tough cuts to select this nice event:

Shower CNN score > 0.8	
Hits included in cylinder > 4	
Median dE/dx> 3 and < 6MeV/cm	

п^о Studies at ProtoDUNE-SP – Milo Vermeulen – 22-9-2020

CUT SUMMARY

Shower cuts

Pandora classification	shower
Particle CNN score	> 0.6
Number of coll. hits	> 50
Number of cylinder hits	> 1

п^о Studies at ProtoDUNE-SP – Milo Vermeulen – 22-9-2020

Event cuts

Beam particle Pandora classification

track

2

< 1 rad

Number of cut-passing showers per event

Angle between showers

П⁰ INVARIANT MASS – COMPARISON

Пº INVARIANT MASS – EFFICIENCY

- Efficiency of π⁰ reconstruction is predictably low
- Shape of efficiency partially explained by photon efficiency

п^о Studies at ProtoDUNE-SP – Milo Vermeulen – 22-9-2020

