A first look at hydrophones (from a Jpp perspective)

M. de Jong

Procedure (I)

- Run acoustic event builder
 - JAcousticsEventBuilder.sh <detector file> <run number>
 - creates[¶]
 <toashort file> KM3NeT_DDDDDDD_RRRRRRRR_toashort.root
 <event file> KM3NeT_DDDDDDDD_RRRRRRRR_event.root
- Run global fit procedure
 - JKatoomba.sh <detector file> (event file)+ <katoomba file>

[¶] DDDDDDDD and RRRRRRR correspond to detector identifier and run number, respectively.

Procedure (II)

- Run example script <Jpp>/examples/JAcoustics/JHydrophone.sh
 - JHydrophone.sh <detector file> <katoomba file> <toashort file>
 - # writes base module (x, y, z) and t_0 JBaseWriter -a <detector file>

 $0 \mu s$

• JHydrophone -f <katoomba file> -i <toashort file> # creates histograms

• Note that in this procedure:

- time offset of optical module \equiv average time offset of PMTs[¶]
- time offset of base module \equiv
- delay time of piezo sensor $\equiv 170 \ \mu s$
- delay time of hydrophone $\equiv 50 \ \mu s$

Procedure (III)

- Input data
 - (relative) hydrophone positions from Vincent B.
 - detector file and tripod positions as obtained from scans
 - see presentation at Calibration meeting d.d. 30 July 2020
 - ORCA detector 49, run 7600
- Histogram time residuals between:
 - estimated time-of-emission from hydrophone (= time-of-arrival corrected for propagation time)
 - 2. fitted time-of-emission from global fit (using only piezo sensor data)

Conclusions

- Time offset between base module and optical modules understood in terms of available data in detector file (or database)
- No data from hydrophones on string 1, 2 and 11
- Poor data from hydrophone on string 10
- Time residuals of hydrophones on string 3 and 9 within $\pm 300 \ \mu s$