Categorizing misreconstructed fits for low-energy tracks

Recap

- Investigating the merit of exploiting Poissonian (no-)hit information in direction reconstruction
 - Low-energy (1-10 GeV) muon-neutrino MC-files; O(1e4) events
- Showed that there is a large tail of fits close to MC-truth, but with bad quality

Angular deviation versus quality

- Directional fit hypotheses can be ordered according to:
 - Decreasing quality
 - Increasing angular deviation w.r.t. MC-truth
- Large population of fits expected at:
 - High quality and small angular deviation
 - Low quality and high angular deviation
- But also see significant populations of fits in **other regions**
 - What fit directions have high angular deviation but yield good quality?
 - What fit directions have small angular deviation but yield bad quality ?

Low energy/short track, vertex close to detector edge, badly reconstructed energy, badly reconstructed vertex, ...

Categorization

- For each recontructed event, select fits whose directions lie closest to the MC-truth (i.e. best fits)
- Show how much the quality of these fits compares to the fit with maximal quality (y-axis), as function of the angular deviation (x-axis)
 - Some best fits have **bad relative quality**, despite being **well-reconstructed directionally**
 - There are also events where **best fit lies far from MC-truth**
 - Large population with excellent quality and well-reconstructed direction

Event geometry

- Categories 1 and 2 (misreconstructed) tend to be more populated by fits with:
 - Greater minimal distance to MC-track
 - Greater minimal distance to MC-vertex

Closest to MC-truth

Event geometry

- Event vertices may lie at or beyond the detector boundary, more than average in the 2 problematic regions
 - But no significant increase apparent in plots below

ORCA full detector ~120 m radius, Corresponds to ~15 in the plots below

Hit statistics

- Misreconstruction may also be related to low hit statistics
 - I.e. low 'NDF' = # hits # fit parameters
 - Indeed lower hit statistics for both regions of misreconstruction
- Should also be visible in event energies
 - Low energy <--> low hit statistics

Closest to MC-truth

Energy

- Misreconstruction may also be related to low hit statistics
 - I.e. low 'NDF' = # hits # fit parameters
 - Indeed lower hit statistics for both regions of misreconstruction
- Should also be visible in event energies
 - Low energy <--> low hit statistics

Closest to MC-truth

Conclusions

- Best quality != best reconstructed direction •
- Based on fractional quality and angular deviation w.r.t. MC-truth, • 3 categories have been made:
 - i.
 - Small angular deviation (good) with small fractional quality (bad) High angular deviation (bad) with high fractional quality (good) ii.
 - Small angular deviation (good) with high fractional quality (good) <u>iii</u>. Okay
- Underlying reasons for misreconstruction in i. and ii. have been scrutinized: ٠
 - Low(er) hit statistics seems to be a prime cause •
 - This invites us to think about incorporating hit information ٠ as a cross-check for the arrival-time based likelihoods

- Misreconstructed

EXTRA

Track length cross-check

- JStart and JEnergy provide mutual cross-check
- JStart:
 - Projects PMT hits back on track hypothesis under Cherenkov angle
 - Longitudinal distance between first projected hit (H_i) and last projected hit (H_f) approximates track length
- JEnergy:
 - Muon energy MLE based on number of hits and no-hits in cylindrical subdetector starting at H_i
 - Reconstructed energy can be converted into track length, based on muon energy loss

