Toy MC vertex fit

Thijs van Eeden - 9th July 2020

Recap: single vertex fit (nueCC)

M-estimator vs likelihood with timing information
Distance along shower axis

Distance perpendicular to shower axis

Why do we stick at 1-2 m perpendicular to the shower axis?
Nanosecond precision $\rightarrow \sim \mathrm{cm}$ precision!

Toy experiment

- Place a neutrino in the origin [o, o, o]
- Loop through ARCA detector file and generate hits by random pulling from the PDF
- Reconstruct and plot the likelihood and see what resolutions we get

No elongation, all hits

Hits generated: 4132

- True vertex $=[\mathrm{o}, \mathrm{o}, \mathrm{o}]$, $\operatorname{dir}=[-1, \mathrm{o}, \mathrm{o}]$
- Fit likelihood pos = [0.006, -0.006, o.006]+-0.03
- D_along $=0.6 \mathrm{~cm}$, D_perp $=0.8 \mathrm{~cm}$

No elongation, all hits

Hits generated: 4132

- True vertex $=[0,0,0]$, dir $=[-1,0, o]$
- Fit likelihood pos: [0.006, -0.006, o.006]+-0.03
- D_along = o. 6 cm, D_perp $=0.8 \mathrm{~cm}$

No elongation, only first hits

Hits generated: 1145

- True pos $=[0,0, o]$, dir $=[-1,0, o]$
- Vertex from likelihood: [-0.23,-0.04,0.30]+-0.05
- D_along = 23 cm , D_perp $=30 \mathrm{~cm}$

No elongation, only first hits

Hits generated: 1145

- True vertex $[\mathrm{o}, \mathrm{o}, \mathrm{o}], \mathrm{dir}=[-1, \mathrm{o}, \mathrm{o}]$
- Vertex from likelihood: [-0.23, -0.04, o.30]+-0.04
- D_along = 23 cm, D_perp $=30 \mathrm{~cm}$

Shower elongation

- Resolutions are now in the order of cm (as expected)
- What about shower elongation?
- Vertex at $[\mathrm{o}, \mathrm{o}, \mathrm{o}],, \operatorname{dir}=[1, \mathrm{o}, \mathrm{o}]$

Taken from Claudio Kopper's thesis

- Light not emitted at vertex, but along shower axis

8 step elongation, all hits

Hits generated: 3451

- True pos $=[0,0, o], \operatorname{dir}=[-1,0, o]$
- Expectation from shower $\max =[-5.08,0, o]$

8 step elongation, all hits

Hits generated: $\mathbf{3 4 5 1}$

- True pos $=[0,0, o], \operatorname{dir}=[-1,0, o]$
- Expectation from shower $\max =[-5.08,0, o]$
- Vertex from likelihood: [-6.27,0.26,1.89]+-0.03
- D_along = 6.27 m, D_perp $=1.90 \mathrm{~m}$

8 step elongation, all hits

Time hit residuals

- Likelihood: very early hits are 'impossible'
- But.. Sometimes it goes OK

8 step elongation, all hits

Hits generated: $\mathbf{7 4 0 4}$

- True pos $=[0,0, o], \operatorname{dir}=[0,0,1]$
- Expectation from shower $\max =[0,0,5.08]$

Likelihood scan along z-axis, pos=[0.0,0.0,5.084432934806439]

Likelihood scan along y-axis, pos=[0.0,0.0,5.084432934806439]

8 step elongation, all hits

Hits generated: $\mathbf{7 4 0 4}$

- True pos $=[0,0, o], \operatorname{dir}=[0,0,1]$
- Expectation from shower $\max =[0,0,5.08]$
- Vertex from likelihood: [-0.29,0.13,6.89]+-0.03
- D_along $=6.89 \mathrm{~m}$, D_perp $=0.32 \mathrm{~m}$

Likelihood scan along y-axis, pos=[0.0,0.0,5.084432934806439]

8 step elongation, all hits

Hit time residuals

Residues with respect to: [-0.2874999999999989,0.1375,6.889374999999999]

- This one looks better

Next step

- Shower elongation generally messes up the position fit
- Include shower elongation in reconstruction
- Hopefully that increases the resolution

100 step elongation, all hits

Hits generated: $\mathbf{7 8 8 8}$

- True pos $=[0,0, o], \operatorname{dir}=[0,0,1]$
- Expectation from shower $\max =[0,0,5.08]$

100 step elongation, all hits

Hits generated: 7888

- True pos $=[0,0, o], \operatorname{dir}=[0,0,1]$
- Expectation from shower $\max =[0,0,5.08]$
- Vertex from likelihood: [-o.01, o.16, 8.36]+-0.03
- D_along = 8.36 m, D_perp $=0.16 \mathrm{~m}$

Likelihood scan along z-axis, pos=[0.0,0.0,5.084432934806439]

Likelihood scan along y-axis, pos=[0.0,0.0,5.084432934806439]

