First look at data

Valentin Pestel
Nikhef KM3NeT group meeting
09/07/2020

What am I doing? Playing with ORCA4 data!

- Work strongly based on Jannik's analysis: wiki, git
- Mainly for educational purposes

Work around 2 points mainly:

- Data and MC comparison and quality over time
- Understanding and improvements of neutrino selection

Data/MC(muons) ratio evolves over long time period :

Time evolution

Outliers: wrong MC run duration?

Two different run duration available:

- runDuration (DAQ): available in the data header
- runDuration (DB): available in the database

Very good correlation between Data/MC discrepancies and runDuration discrepancies ...

Data/Muons (corrected) = data / MC * runDuration(DB)/runDuration(DAQ)

Remove the outliers. Can it be a wrong duration in MC production?

Still to explain/study: Bio-luminescence event and long time decreasing trends.

Correction with event weighting

Previous situation:

MC muons weight = livetime (DB) / livetime(MC header)

New situation:

MC muons weight = livetime (DAQ) / livetime(MC header)

Very few outliers now

Jannik's cuts summary

n_doms_cher_cond >= 5

Number of DOMs meeting Cherenkow condition (see <u>"Cherenkov condition"</u> - by Anna Sinopoulou at Caserta meeting, modified)

n_trig_doms_cher_cond >= 3

Same as previous but also triggered DOMs.

ntrighits_chercond_downFacing - ntrighits_chercond_upFacing >= 0

ntrighits_chercond_downFacing >= 5

nhits_chercond_downFacing - nhits_chercond_upFacing >= 10

nhits >= 20

Number of hits used in track reco (fitinf[3]). Remove pure noise events in data.

tot_max_trighit < 240

Qup/nhits>5-0.045*Qup

Qup ->best likelihood for upgoing track.

Qup/nhits>2.0

Qup-Qdn > 40

Qdn -> best likelihood for down going tracks

dz > 0

rtrk < 35 (m)

Track vertex distance to detector center

1.*(ztrk-lowest_dom_z+10)>rtrk || 1.*(ztrk-lowest_dom_z+10)>35.)

Quite empirical cut

For now, focus on the green one

Cuts effects on data: (84 days of data)

% of events after cut

Next step: look at the effect when all other cuts are applied.

Cuts effects on data: (84 days of data)

With these cuts:

- ~ 4.3 nu/day
- Full Jannik's cuts, 3 nu\day expected
 - \circ eff = ~10-12% efficiency

Too much muons?:

- data muons =/= neutrinos
- Still a problem in muon weighting?

Events per day after cuts

```
data
                          70.964 +- 0.9188
                muons
                          71.986 +- 1.5838
             nu mu CC
                          1.713 + 0.0086
           a nu mu CC
                                +- 0.0091
             nu mu NC
                                +- 0.0028
                          1.085 + - 0.0146
              nu e CC
data - muons residual
                          -1.022 + -1.831
            neutrinos
                          4.165 +- 0.019
```


Perspectives

Data/MC time evolution:

- Try to correlate environnemental data and maybe calibration data to explore the long term decreasing trend
- Is there something in particular to look in bio-luminescence period?

Neutrino signal extraction:

- Finish to reproduce Jannik's analysis (cuts not include yet, plots etc ...)
- Try new variables (multivariate PID etc ... e.g. Jerzy talk from collab meeting)

And wait for ORCA6 data ...

Data used:

Processing v5.40

- data: /sps/km3net/repo/data/KM3NeT 00000044/v5.40/reco/
- mc Muons: /sps/km3net/repo/mc/atm muon/KM3NeT 00000044/v5.40/reco/
- mc Nu : /sps/km3net/repo/mc/atm_neutrino/KM3NeT_00000044/v5.40/reco/
 - mcv5.40.genhen_numuCC_10GeV.sirene.jterbr
 - mcv5.40.genhen anumuCC 10GeV.sirene.jterbr
 - mcv5.40.gsg_muonNC-NC_1-500GeV.km3sim.jterbr
 - mcv5.40.gsg_elecCC-CC_1-500GeV.km3sim.jterbr

In this presentation, ~ 84 days of data