Vibration attenuation

Eric Hennes, Nikhef

Webinar on technical challenges of the Einstein Telescope

July 15, 2020

Why vibration attenuation ?

• Gravitational waves cause tiny vibrations of the distance between test masses: typically 10⁻²⁰ - 10⁻¹⁸ m

We don't want to measure any other vibration than that (above a few Hz)

- On earth, there is not such a quiet place.
- Therefore, almost all **optics** require vibration attenuation:
 - test masses
 - beam splitter
 - mirrors of recycling and squeezing cavities
 - Numerous optical benches
- Moreover, alignment and locking of the interferometer 1 requires that the optics should not move too much below a few Hz

Vibration sources

1. Direct on the mirrors:

- thermal noise of mirror suspension & coating
- actuator noise
- radiation pressure noise
- Newtonian noise

2. From close by:

- pumps
- air conditioning
- sound sources
- cooling devices

3. From far away:

- micro-seismic waves
- wind
- human activity: traffic, factories,...
- (earth quakes, only damage control)

Reducing vibrations

1. Direct on the mirrors:

- thermal noise of mirror suspension & coating
- radiation pressure noise
- Newtonian noise
- actuator noise

2. From close by:

- pumps
- air conditioning
- sound sources
- cooling devices

3. From far away:

- micro-seismic waves
- wind
- human: traffic, factories,...
- (earth quakes: only damage control)

Choose large mirror mass to reduce it

------ Can partially be subtracted with seismic sensor array

Isolate mirror from vibration source

Isolation of mirrors from vibration sources

1. Direct on the mirrors:

- thermal noise of mirror suspension & coating
- radiation pressure noise
- Newtonian noise
- actuator noise

2. From close by:

- pumps
- air conditioning
- sound sources
- cooling devices

3. From far away:

- micro-seismic waves
- wind

Einstein

- human: traffic, factories,...
- (earth quakes: only damage control)

Choose large mirror mass to reduce it

- ------ Can partially be subtracted with seismic sensor array
 - Passive isolation (> 1 Hz):

o mechanical attenuation chain

viscoelastic or Eddy current (resonant) dampers
 Vacuum towers (no sound transmitted)

Actively (< 10 Hz) by sensing & actuation

 hierarchical control
 SISO, MIMO
 PID, Kalman,

Passive vibration attenuation:

Mechanical oscillator = vibration isolator above resonance

Introducing negative stiffness \rightarrow lower f_0

Horizontal: inverted pendulum

Geometric anti-spring filters @ Virgo

Magnetic anti-spring in Super Attenuator Elastic anti-spring in MultiSAS **Oppositely placed** permanent magnets Triangular blade springs **Filters** Load up to 750 kg GAS blade keystone tunable down to ~ 200 mHz F_{c} Blades: filter plate maraging steel, statically clamp loaded up to 1.6 GPa suffer from stress corrosion **Einstein** Nik[hef elescope ET pathfinder

:uation : voice coil + magnet pairs

Transfer Function

Einstein Telescope

Virgo Super-attenuator: 6-DOF cascade suspension

Suspension wire 9 m Magnetic antispring filters Inverted pendulum Base ring (IP) legs mirror Vibration attenuation, Webinar on technical challenges of Einstein Telescope, July 15, 2020 Nik hef ET pathfinder

ET pathfinder cryogenic suspension challenges

Felescope

- four inverted pendulum (IP) legs instead of three: overconstrained system!
- 2. Inverted pendula both in series and parallel
- 3. heat link wires will transfer cold finger vibrations to the marionette via HL ring, by-passing the suspension chain
- 4. conflicting demands on mirror wires; they should be:
 - short and thick to reach lower temperature
 - long and thin to reach better vibration isolation

ET pathfinder modeled transfer from ground to mirror

If CF moves with ground

\rightarrow on the edge

If CF moves more than ground \rightarrow CF needs vertical isolation (which is expected)

No challenge for ET vibration attenuation ?

Noise budget for the low- and high-frequency interferometer for the parameters used for the ET-D sensitivity curve as stated in table 10.

ET challenge for vibration attenuation ?

Advanced Virgo design sensitivity

ET challenge for vibration attenuation ?

- Yes, reduce vibration transfer from cold finger !! reduce vibrations of cold finger itself
- Yes, search for alternative for maraging steel to prevent spontaneous failures (due to stress corrosion...?)
- Yes, we need much more sensitive inertial sensors to improve low-frequency vibration control
- Yes, invent High-purity monocrystalline silicon suspension wire that can be connected

Folded pendulum acelerometer

Fig.1. Basic model of folded pendulum. A simple pendulum and an inverted pendulum are rigidly connected by a massless beam. The pendula arms are also massless, rigid and provided with suitable flexures.

Monolithic double pendulum accelerometer with interferometric sensing

