Einstein Telescope: vacuum considerations

Jo van den Brand, Maastricht University and Nikhef, jo@nikhef.nl Webinar Technical Challenges Einstein Telescope, July 15, 2020

Contents

Motivation and overview of the vacuum system of Einstein Telescope

Examples from LIGO and Virgo

- Vacuum equipment construction
- Tube construction, cleaning & bake out procedure
- Performance, experience and hindsight

Research topics

- Conservative approach
- Some perhaps "wild" ideas

Acknowledgments:

- 1. LIGO-G1900137, Mike Zucker LIGO Caltech & MIT, NSF Workshop on Large UHV Systems for Frontier Scientific Research, LIGO Livingston Observatory, 29-31 January, 2019
- 2. Workshop report by Fulvio Ricci, Sapienza University of Rome, ET-KAGRA-meeting-Perugia-2019
- 3. Virgo Vacuum System 3G detector challenges, C. Bradaschia, A. Buggiani , A. Pasqualetti, D. Sentenac, T. Zelenova, Orosei, May 3, 2019
- 4. Gravitational wave detector vacuum systems, Harald Lueck, Aachen, June 2019

Einstein Telescope vacuum system

Three detectors that each consist of two interferometers: 6 ITFs in total

Each ITF has 20 km of main vacuum tube + several km of filter cavities

About 3 * $(2 * 30 + 2) \approx 130$ km of vacuum tube of about 1 m diameter (assumption)

Total volume: about 120,000 m³

Total surface area: about 420,000 m²

Target pressure of < 10⁻¹⁰ hPa

Hydrocarbon pressure < 10⁻¹⁴ hPa

For comparison LHC at CERN:

- Beam tubes: 2,000 m³

- Cryo-magnet insulation: 9,000 m³

- Cryo distribution line: 5,000 m³

Why do we need an ultra-high vacuum system?

- Reduce the phase noise due to residual gas density fluctuations along the beam path to an acceptable level
- Isolate test masses and other optical elements from acoustic noise
- Reduce test mass motion excitation due to residual gas fluctuations
- Reduce friction losses in the mirror suspensions → suspension thermal noise
- Contribute to thermal isolation of test masses and of their support structures
- Contribute to preserve the **cleanliness** of optical elements

Virgo design values

Gas species	Pressure [mbar]	Noise $[\sqrt{\text{Hz}}]$
Hydrogen	1×10^{-9}	9.7×10^{-26}
Water	1.5×10^{-10}	2.5×10^{-25}
Air	5×10^{-10}	5.6×10^{-25}
Hydrocarbons	1×10^{-13}	2.9×10^{-26}
Total	1.7×10^{-9}	6.2×10^{-25}

Einstein Telescope aims at an order of magnitude improvement

$$S_L(f) = \frac{4\rho (2\pi\alpha)^2}{v_0} \int_0^{L_0} \frac{1}{w(z)} e^{-2\pi f w(z)/v_0} dz$$

Fluctuations of the refractive index of residual gas limits sensitivity

Einstein Telescope layout: corner station

Low frequency towers (blue): height ≈ 20 m

High frequency towers (red): height ≈ 10 m

Towers for filter cavities and pick-off beams (yellow)

Einstein Telescope layout: arm cavities

Examples from LIGO, Virgo, GEO600 and KAGRA

Advanced LIGO and Virgo run simultaneously

Kagra joined in 2020 LIGO India approved

LIGO-India: construction has started (online 2024?)

The 4 km interferometer will be sited at Hingoli in Maharashtra, about 450 km from Pune

■ This site is also required to be away from sea.

coast by 100-200km

seismically quiet

■ Total land required was

about 300 acres minimum

Dual recycled Fabry-Perot interferometer

Two separate vacuum systems:

Beam tube vacuum

Essentially a long hole in the air (never to be vented!)

Highly "unconventional"

Equipment vessels (towers)

- Houses detector apparatus
- Isolation (valves), access (doors)
- Electrical, mechanical, optical systems
- Pumping & instrumentation

Einstein Telescope has 6 FP ITFs in a triangular topology

Vacuum Equipment

Vacuum Equipment: LIGO Hanford corner station

Modular vacuum equipment design

BSC chamber (boring symmetric chamber ...)

Dimensions: 2.8 m Ø x 5.5 m h

Upper third removable dome

Thin (10-15 mm) 304L SS shell with welded stiffeners, F&D heads

Combination of GTAW and plasma welding

Ports < 35 cm Ø: ConFlat™

Ports > 35 cm Ø: Dual O-ring

- Treated Viton elastomer
- Isolated pumped annulus between inner and outer seal
- Permeation and damage tolerant

BSC equipment installation

Livingston ETM Y BSC "Cartridge" Installation; 2-21-2014

HAM chamber (horizontal-axis module)

Operational aspects

Cryolinks to achieve UHV in the ITF arms of Advanced Virgo

Four cryogenic links installed and commissioned. Advanced Virgo requires an ultra-high vacuum with

pressures below 10⁻⁹ mbar

Four LN2 links: 10⁻¹⁰ mbar region

Designed by Nikhef

Involved experts from Demaco

Installed in Virgo and operational

Layout of vacuum valves

Pumping of non-condensable gases

Maglev turbos for initial evacuation only

Ion pumps assisted by NEGs in normal operation

NO rotating or vibrating machinery allowed during interferometer operation

Beam tubes

Beam tubes

304L SSt, 3.2 mm thick with external stiffeners

Raw stock air baked 36h @ 455C

Final J_{H2} < 1e-13 Tl/s/cm²

Coil spiral-welded into 1.2m tube 16m long

method adapted from sewer pipe industry

16 m sections cleaned, leak checked

FTIR analysis to confirm HC-free

Sections field butt-welded together in travelling clean room

Over 50 linear km of weld

Reinforcement ribs

Beam tube field assembly

I²R bake-out to desorb water

DC current of 2,000 A

3 weeks @ 160°C

34.6 m Ω

Final outgassing: J_{H20} < 2e-17 Tl/s/cm²

37.5 mΩ

Hindsight, and what should be done differently

Positive experience

Low-hydrogen steel air-bake process

Spiral-welded tube construction (with aggressive QA)

I²R bake-out heating

Modular chamber

Soft-wall modular cleanrooms for installation

Dual differentially-pumped O-rings on large flanges

Passive LN₂ cryo-traps

Ion pumps

Two highly proficient and cooperative subcontractors

- Chicago Bridge and Iron (beam tubes)
- Process Systems International (vacuum equipment)

Not so positive experience ...

Large gate valves

- Have had two develop bizarre leakage through stem
- Serious and increasing concerns about fragility of the mechanism

Microbial-induced corrosion

- Leaks caused by SSt-eating bacteria in Louisiana
- Tube environment was not climatecontrolled
- Vermin and moisture "disease vectors"

But LIGO's biggest regret of all is...

Budget constraints left LIGO no standing provision to vent, re-evacuate and re-bake beam tubes in case of future contingency

Exterior wall of vacuum beam tube

Interior wall of vacuum beam tube

Credit: D.P. Henkel, RIMKUS - Consulting group

Overview of possibilities for joint research

Slides to guide discussion

First attempt, so likely incomplete ...

Timeline Einstein Telescope

Sites qualification	now – 2023
ESFRI proposal submission	2020
ESFRI decision	2021
Site decision	2023
Research infrastructure operational design	2023 – 2025
Research infrastructure construction	2026 – 2032
Detector installation	2030 – 2034
Operation	2035

Exploratory topics for lowering the cost

Options for reducing the cost of conventional vacuum pipe technology

- Novel surface treatment techniques for conventional and non-conventional materials
- Meeting contaminant and H2O outgassing requirements

Nested vacuum systems

- Gettering options within the UHV sections of vacuum pipe
- Maintaining differential pressures with nested systems

Conventional vacuum pipe technology

Geometry for Einstein Telescope

- Configuration Single-wall metal tube
- Diameter About 1 m
- Arm length 10 km per arm (6 interferometers with 2 arms each ...)

Material Choices

- Austenitic stainless steel (304L) well understood and was chosen for LIGO and Virgo
- Carbon Steel referred to as "mild steel" or "plain carbon steel," proposed as a lower-cost alternative to stainless steel.
 - It could be attractive seen the case of steel produced through Ruhrstahl-Heraeus vacuum process during steel refining, resulting in low hydrogen content and extremely low hydrogen outgassing. Important factors must be considered: deoxidizing, grain size and shape (hot rolled or cold rolled), hardenability, weldability, inclusion content
 - Appropriate surface treatment needs to be developed to avoid rusting and other forms of corrosion and to prevent water adsorption. Both plasma deposition and wet chemistry deposition of various coatings should be investigated to find the optimum type of coating

Given the large amount of material required, there is an opportunity to go beyond commercially available carbon steels

Two concentric tube design

Independent inner and outer vacuum tubes

Sealed inner UHV vacuum tube, concentrically disposed inside an independent outer "guard" vacuum tube

Discuss with **coating suppliers and manufacturers.** TiN and DLC coatings seem promising. Use to **reduce corrosion by creating barrier layers** against incoming oxidizing species at the surface. These barriers may reduce the outgassing of lighter molecular gases released from the deeper metal layers

Development of such a process would require a cooperative arrangement between industry, steel-mill and research labs! Potential advantages for Einstein Telescope and for the companies involved in a new technological development

Production optimization

Local construction facility at Einstein Telescope site

Pickled and oiled coils ready for overseas shipment (Fos-sur-Mer)

SAWH API 5L pipes being inspected during the coating operation.

Thanks for your attention! Questions?

