

THE EINSTEIN TELESCOPE

SCIENCE AND INSTRUMENTATION

Prof. Andreas Freise

01.07.2020, Webinar on: Technical challenges of the Einstein Telescope

A very quick introduction to gravitational wave astronomy

Earth and Moon

Image: NASA, ESA, Zolt Levay (STScl)

Neutron Star

Black Hole

Amsterdam

Credits: R. Hurt/Caltech-JPL

Observing Gravitational Waves:

Gravitational waves change the **distance** between objects.

[http://www.einstein-online.info]

Data ... recorded by LIGO on the 14th of September 2015, at 09:50:45 UTC Hanford, Washington (H1) Livingston, Louisiana (L1)

Ground-based network

Planned observations with current detectors

The case for the Einstein Telescope

So, Galileo, now that you discovered Jupiter's moons, do we need this new 'telescope' for anything else?

Probing the history of the universe

Current detectors

Einstein Telescope

[Credits: NASA, ESA, P. Oesch and B. Robertson (University of California, Santa Cruz), and A. Feild (STScI)]

Image by Evan Hall and Salvatore Vitale

Strange Matter in Neutron Stars

Figure by Jocelyn Read, see also arXiv:1306.4065

Einstein Telescope Vision for a new large-scale European gravitational wave observatory

Credit: LIGO/T. Pyle

noise from single photons

https://gwic.ligo.org/3Gsubcomm/documents/GWIC_3G_R_D_Subcommittee_report_July_2019.pdf

Design tool: noise budget

Reducing vibrations Simulation: Maria Bader z [m] 12L 0 x [m]

ET is planned for a depth of >200m

Higher-power and ultra-stable lasers

Advanced Sensing and Control

Xylophone design: enabling low-frequencies

Low laser power, cryogenic, long suspensions

High laser power, room temperature, `normal' suspensions

Triangle configuration

The Einstein Telescope hosts three independent detectors in a **triangle configuration**

Provides:

- full signal capture in both polarisations
- redundancy for 24/7 operation

6 laser interferometers, each 10km long!

Large underground facility

Einstein Telescope (ET)

The Einstein Telescope is the vision for a European **GW Observatory**, a large underground facility with a **50+ years lifespan**, expected to host a number of **different experiment/technologies**. Timeline:

- 2010 ET conceptual design completed
- 2020 Forming the ET collaboration, design update
- 2021 ESFRI roadmap
- 2023 Site Selection
- 2025 Full Technical Design
- 2026 Infrastructure realisation start (excavation,)
- 2032+: installation / commissioning / operation

ET Site Selection

ET has two site candidates with community support and political support: a) Limburg, a cross-border region in the Netherlands, Belgium, Germany, and b) Sardinia Italy

The site will be chosen after detailed studies on seismic activity. But many other aspects will drive the decision, including industry engagement and socio-economic returns.

VU VRIJE UNIVERSITEIT AMSTERDAM

[Michele Punturo]

ETpathfinder R&D laboratory

Focus of ETpathfinder:
new mirror material → silicon
cold mirrors → 10K to 120K
new wavelengths → 1.5-2.1 μm
quantum noise suppression
Not the real focus, but also
10⁻⁸ mBar vacuum system
modern controls technology
active vibration attenuation
lots of optics: lasers, mirrors, etc.

More details on the technology in the next talk.

Extra Slides

Interferometer R+D

Table-top interferometry

for i, n in Numerical if n.type is NodeType.OPTICAL: selmodelling x, s_f_idx, i

for freq in range(Nf):

self.M().add_diagonal_elements(Nhom, self.find

s_rhs_idx += Nf * Nhom
s_f_idx += Nf

elif n.type is NodeType.MECHANICAL or n.type is NodeTy #(index, RHS index, frequency index, num freqs, num self.__node_info[n] = (i, s_rhs_idx, s_f_idx, 1, 1 # Should mechanical motions have multiple frequenc self.M().add_diagonal_elements(1, self.findex(n, 0 s_rhs_idx += 1 s_f_idx += 1

else:

raise Exception("Not handled")

_done = {

Store all the edge owners we'll need to loop over and ca self.__edge_owners = [] # use set for unique edges for el in set(self.__nx.get_edge_attributes(self.model.net self.__edge_owners.append(el())

From Idea to Implementation

10 to 30 years is a good time scale to go from idea to an implementation/application of a new concept or technology