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This document is intended to clarify the relationship between the
distribution of resolutions and the performance of their underlying
energy and direction estimators. We will give a short introduction on
basic statistical concept to base my arguments, then present the case of
energy and direction estimation.

Introduction

An estimator is a rule which gives the estimated value, or estimate,
Θ̂, for a true parameter Θ of a random observable X. The estimator
can be among other things, a reconstruction algorithm or a function,
which inputs data and outputs Θ̂. The mean squared error, variance,
and bias of the estimator are some of the most important quantities
that help determining the performance of the estimator.

The resolution Ø of a variable for a detector is a chosen parameter
which measures the performance of the estimator, and which roughly
communicates how close we can expect Θ̂ to be to Θ. It is important
to understand the relationship between the chosen Ø parameter
and the estimator in order to correctly interpret the meaning of the
resolution with respect to the performance of the detector.

Basic properties of estimators

The error is the difference between an estimate and the true value,

Err(Θ̂) ≡ Θ̂−Θ, (1)

and the mean squared error is, as the name suggests, the mean of the
squared errors,

MSE(Θ̂) ≡
〈(

Θ̂−Θ
)2
〉

. (2)

The deviation is the difference between an estimate and the expected
value of the estimator,

Dev(Θ̂) ≡ Θ̂− 〈Θ̂〉. (3)

The variance of an estimator is the expected square of its deviations,

Var(X) ≡ 〈(Θ̂−Θ)2〉. (4)

The standard deviation is simply the squareroot of the variance,

σ ≡
√

Var(X) =
√
〈(Θ̂−Θ)2〉. (5)
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The bias is the difference between the expected estimate and the true
value,

B(Θ̂) ≡ 〈Θ̂〉 −Θ. (6)

The mean squared error can also be expressed in terms of the vari-
ance and the bias,

MSE(Θ̂) = Var(Θ̂) + B(Θ̂)
2, (7)

for which reason the variance and bias will take the main focus from
now on. Fig.1 is an example of a biased estimator with a Gaussian
distribution.
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Figure 1: Example of the esti-
mation of a parameter Θ, with
B(Θ̂) = 1, Var(Θ̂) = 0.25, and
MSE(Θ̂) = 1.25

Fig.2 is an example of a 2-dimensional biased estimator with a
2-dimensional Gaussian distribution.

Energy resolution

We will now compare typical estimators for the energy and direction
of neutrino Cherenkov telescope events. These estimators are often
probability density function based maximum likelihood estimators
and are often called reconstruction algorithms, please take estimate to
mean reconstruction here.

An observable of interest in neutrino events is its energy, Eν.
We consider the neutrino energy estimator Êν(data). Let’s imag-
ine that we receive a monoenergetic flux of neutrinos with energy
Eν = 40 TeV. A distribution of the energy reconstruction could look
like Fig.3. The performance of this estimator can be calculated by
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Figure 2: Example of the
estimation of a parameter

Θ =

[
Θx

Θy

]
, with B(Θ̂) =

[
0.2
0

]
,

Var(Θ̂) =

[
0.04
0.01

]
, and

MSE(Θ̂) =

[
0.08
0.01

]
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Figure 3: Example distribution
of Êν, with B(Êν) = 5 TeV,
Var(Êν) = 16 TeV2, and
MSE(Êν) = 41 TeV2
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direct calculation on a large sample of measurements using Eqn.6,
Eqn.2, and Eqn.4,

Bias(Êν) ' 5 TeV

MSE(Êν) ' 41 TeV2

Var(Êν) ' 16 TeV2

However, we can also study the relationship between the perfor-
mance of the estimator and the properties of its distribution, notably
its mean µ and standard deviation σ:

µÊν
= 〈Êν〉 = Bias(Êν) + Eν (8)

σ2
Êν

= 〈
(
Êν − 〈Êν〉

)2〉 = Var(Êν) (9)

Clearly, neutrino telescopes deal with a large range of energies,
so a normalization is needed to look at the performance over the
whole energy range in single distribution. We therefore define a new
quantity, the relative energy difference Êν/Eν. Its distribution func-
tion could look like Fig.4 Again, we can find the relation between the
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Figure 4: Example distribution
of Êν/Eν, with B(Êν) = 5 TeV,
Var(Êν) = 16 TeV2, and
MSE(Êν) = 41 TeV2

properties of this distribution and the performance of the estimator.

µÊν/Eν
=
〈Êν〉
Eν

=
Bias(Êν)

Eν
+ 1 (10)

σ2
Êν/Eν

=
1

Eν
2 〈
(
Êν − 〈Êν〉

)2〉 = Var(Êν)

Eν
2 (11)
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If the distribution is well behaved, i.e. Gaussian or otherwise
single peaked and symmetric, the mean and standard deviation of
Êν/Eν can be used as average and resolution respectively. When the
distribution is non Gaussian, the median and FWHM, or other quan-
tities can be preferred to measure the average and resolution of the
estimator.

Angular resolution

Another observable of interest for neutrino telescopes is the incoming

direction of a neutrino, ~n =

1
θ

φ

, with estimate ~̂n =

1
θ̂

φ̂


We are interested in knowing the relationship between the true

and estimated direction.
Let’s imagine that we observe a flux of neutrinos from a given

source, all with the same incoming direction. We must first choose
a coordinate system in which to work. Spherical coordinates seem a
natural choice, so let’s plot a reasonable expectation for an estima-
tor located right above the horizon, at a zenith angle of θ = π/3,
shown in Fig. ??. If we repeat this experiment at a higher altitude,
say θ = 0.05, the distribution of the estimates looks like Fig. ??.
Clearly, spherical coordinates are not very useful since geometrical ef-
fects are introduced which depend on the location of the sky and not
on the performance of the estimator. We would like to find variables
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(b) Example distribution of ~̂n
in spherical coordinates with
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to measure the performance of the estimator which remain invariant
under rotations. We define the angle difference α along the zenith
angle, and the orthogonal angle difference β,

α ≡ sin−1 |pα −~n| (12)

β ≡ sin−1
∣∣∣pβ − ~̂n

∣∣∣ (13)

where we define

pα, pβ :

pαφ = ~nφ

(pα −~n) · (pβ − ~̂n) = 0
(14)

where pα and pβ are two points along the line of sight such that
pα · (pα −~n) = 0 and pβ · (pβ − ~̂n) = 0, see Fig. 6.1 This yields 1 If it seems surprising to you that

θ0 6= θ̂, imagine the same situation close
to the zenith, here it is clear that ~̂n is
pointing at a different θ.pα = cos(θ0 − θ)

sin θ0 cos φ

sin θ0 sin φ

cos θ0

 = cos(θ0 − θ)~n0

(15)

pβ = (sin θ0 sin θ̂ cos ∆φ + cos θ0 cos θ̂)

sin θ0 cos φ

sin θ0 sin φ

cos θ0

 = (sin θ0 sin θ̂ cos ∆φ + cos θ0 cos θ̂)~n0

(16)

Now, again looking at the spread of ~̂n in α and β in Fig. ??, we dis-
cover a difference between the distribution at low and high θ. This
time however, the effect is due to a real change in performance of the
detector which was introduced in the sample.

Unfortunately, the expression for the zenith angle θ0 of ~n0 is a very
complicated function of θ, θ̂ and ∆φ obtained by solving

cos θ

cos θ0
= cos ∆φ tan θ̂ sin (θ0 + θ) + cos (θ0 − θ), (17)

so it is not very useful to study the exact relationship between α,
β and the spherical coordinates. However it is clear from Eqn.17,
Eqn.15, and Eqn.16 that the two angle differences are functions
α(θ, φ, ∆θ, ∆φ) and β(θ, φ, ∆θ, ∆φ) where ∆θ ≡ θ̂ − θ and ∆φ ≡ φ̂− φ

are the errors of the zenith angle and azimuthal angle, respectively.
In general, due to heterogeneities of the detector, we cannot expect
the distributions of α and β to be constant nor proportional. In the
context of neutrino telescopes however, the distributions of α and
β are independent on the location of the source in the sky, which
is evidenced by performing the test above for various sources. This
assumption lets us assert that σα and σβ are independent of θ and φ.

A typical reconstruction algorithm will perform as shown in Fig.
??, albeit with non-Gaussian artifacts, but the main defining features
are present.
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Figure 6: Relation between α,
β, ~n, ~̂n and ~n0 in the spherical
coordinate system.
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• ~̂n is unbiased, 〈α〉 = 〈β〉 = 0

• The distribution of ~̂n is symmetrical about ~n, Var(α) ' Var(β)

With these assumptions in mind, the performance of the estimator
can safely be measured with a single parameter. We use the following
parametrization for a total angular difference (from now on simply
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angular difference) between the true and estimated neutrino direction,

γ ≡ cos−1
(
~̂n ·~n

)
(18)

= cos−1 (cos ∆φ cos ∆θ + cos θ cos θ̂(1− cos ∆φ)
)

(19)

= cos−1
(

1− cos2 β(tan2 α− 1)
2

)
(20)

We see that γ is related to α and β only. Knowing that β and α are
independent of the location in the sky, γ must be too. γ is also re-
lated to the errors of θ and φ with an added θ and θ̂ dependence as
evidenced in Fig. ??. Let’s now take a look at the distribution of γ in
Fig. 8 and connect its properties to the performance of the estima-
tor. The distribution vanished at the true value, which can seem odd
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Figure 8: Example distribu-
tion for the angular differ-

ence γ, with B(~̂n) =
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,

Var(~̂n) = MSE(~̂n) =
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since is is clear from Fig 6 that this is where most of the estimates
are. This is because the histogram has been plotted in equal bins of
γ, rather than the more natural equal bins of solid angle. We account
for this effect in Fig. 9 We can now recognize the symmetrical profile
of γ, which in this idealized case is the half-Gaussian distribution. Fi-
nally, we identify the properties of this distribution to the properties
of the estimator.

µγcorr =
σα

√
2√

π
=

σβ

√
2√

π
(21)

σγ
2
corr = σ2

α

(
1− 2

π

)
= σ2

β

(
1− 2

π

)
(22)



angular and energy resolution in neutrino telescopes 9

0 20 40 60

γ

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

P
(γ

(~̂n
))

∆
γ
π

((
γ

+
∆
γ

)2
−
γ

2
)

~̂n

~n

Figure 9: Example corrected
distribution for the angular

difference γ, with B(~̂n) =

[
0
0

]
,

Var(~̂n) = MSE(~̂n) =

[
10 deg
10 deg

]

Notice how the different parameters chosen for the resolution
result in very different interpretations of their distributions. Typically,
the angular difference will not follow a half-Gaussian distribution,
where, again, the median or other variables can be preferred to give
information about the estimator’s variance.

Conclusion

The distributions of quantities related to energy and direction estima-
tion have non-trivial relationships to the properties of the estimators.
In the case of the relative energy difference, the mean and spread
of the distribution inform the bias and standard deviation of the
energy estimator respectively. In the case of angular difference, the
mean and spread of the distribution inform the standard deviation
and the variance of the direction estimator respectively. Due to finite
statistics, every of these quantities have associated errors which can
also be estimated, all of which need to be assessed thoroughly in any
analysis of reconstruction to provide the full picture of how well the
detector is performing.


	Introduction
	Basic properties of estimators
	 Energy resolution
	 Angular resolution 
	Conclusion

