

Nikhef/Bonn LepCol meeting, April 6, 2020

Measuring the free electron path (λ) at low CS₂ concentration

- At low CS₂ concentration we see a tail of shorter drift times from electrons that are not captured immediately
- One may easily measure the mean free path of the ionization electrons by fitting the rising edge of the drift time peak
- Assuming the electrons have about a thermal energy, the life time in the CS_2 mixture would be constant
 - => λ is expected to be proportional to the drift velocity

Measurements of Kees at 26-3-2020

- Using the 8-quad testbox and the UV laserbeam
 - $Ar/iC_4H_{10}/CS_2 95/4.9/0.1$
 - V_{grid} -380 V
 - Z = 22.4 + 0.1 mm
- E = 150 500 V/cm in 8 steps
 - The measurement at 100 V/cm could not be used
- Measurements on two places
 - Chip 2
 - Chip 1
- **T**oT
 - ≈ 1050 ns chip 2 ($\epsilon = 90\%$)
 - ≈ 1300 ns chip 1 ($\epsilon = 95\%$)

Fitting the measured curve

Rising edge of curve fitted with:

 $\psi = C * exp (x/\lambda) \dagger$

- Apart from E = 150 V/cm the free path slope is much wider than the Gaussian slope
- The drift time peak at 100 V/cm was completely Gaussian

N. Dongari, Y. Zhang and J. Reese, Molecular free path distribution in rarefied gases Journal of Applied Physics, 44(12):125502 · March 2011

Free electron path vs E

Free path (λ) vs drift field (E_d)

0.1% CS₂

- Looks like a linear dependence on E
- But fitted straight line suggest $\lambda = 0$ at E = 100 V/cm
 - Not possible

Free electron stay vs E

- Thermal electrons:
 - Expected to be independent from E
- Assuming more than thermal energy at higher fields
 - > more collisions per unit of time
 - => **shorter** stay at higher fields
- But longer stay observed at higher fields
- Obviously electrons with higher kinetic energy are less likely to be captured by a CS₂ molecule

Free travel time (T) vs drift field (E_d) 0.1% CS₂

Fred Hartjes

Nikhef/Bonn LepCol meeting, April 6, 2020

Drift velocity (single point) vs E

Less accurate because of

- single point calculation
- Highly asymmetric drift time spectrum => bad Gaussian fit
- Values only used to calculate λ in μm

Drift velocity (Vd) vs drift field (E_d)

Nikhef/Bonn LepCol meeting, April 6, 2020

No agreement with earlier measurement at 0.1% CS₂

- Reason unknown
- Same mixture bottle for both runs
- Rather short flush for the first measurement
 - 3 x the chamber volume
- Probably longer flush for the second measurement
 - 5 x the chamber volume?
- Maybe the gas in the bottle was not sufficiently mixed
- At present we don't have reliable data to check if λ is inversely proportional to the CS₂ concentration

Conclusions on free path measurements

- Strong dependence of the mean free path of the electrons on the drift field
 - More than expected
- The electron energy significantly depends on the drift field for the applied Ar/iC_4H_{10} mixture
 - => more collisions per unit of time at high drift fields
 - But longer stay of the ionization electron was measured at higher fields
- Obviously the ionization electron is less easy captured by a CS₂ molecule at higher kinetic energy

- Measured free path does not agree with an earlier measurement
- => we cannot check the dependence of the free path on the CS₂ concentration