

Gating grid tryout to reduce ion backflow

Fred Hartjes
NIKHEF

Nikhef/Bonn LepCol meeting April 6, 2020

Test setup of the gating grid

- Peter's suggested distance to the primary grid is very small (250 μm)
- => we cannot put such a grid on an existing quad or in the 8-quad testbox without damaging the existing grids
- For a tryout we may best use an existing TPX3 chip board (from the 2017 testbeam in Bonn) with a bare TPX3 chip on it
 - Equipped with a laser window
 - Drift distance 15 mm

Assembling the gating grid

- Using the Micromegas grids that were specially designed for TPX3
- Mount the primary grid on a bare TPX3 chip
 - Only SiN protection
 - Attaching with Araldite by glue wetted pillars
- Mount the gating grids on top of the primary grid
 - Attaching with Araldite by glue wetted pillars
- $=> \approx 60 \ \mu m$ distance between the grids
- We might increase this to ~ 1 mm by using a G10 frame
- But any distances between 60 µm and 1 mm will be very hard or impossible to realize

Testing the gating grid

- Using the non-attenuated UV laser beam
 - We probably have to illuminate the full surface of the drift cathode to get sufficient primary electrons
 - (in the 8-quad testbox we were using the ionization of 8 chips)
- We might have to replace the existing gas envelope of conducting Semitron 490 HR
 - Might have a too unstable cathode current
 - Alternative Ertalyte gives microdischarges
- Challenge to measure a much reduced ion backflow

