Negative ion measurements

Kees Ligtenberg

Lepcol meeting

March 22, 2020

Kees Ligtenberg (Nikhef)

Negative ion measurements

March 22, 2020 1 / 23

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Nik hef

Negative ion measurements by Fred

Run 1042

- Ar/iC4H10/CS2 95/4.5/0.5 gas mixture
- Drift field is $-280 \,\text{V/cm}$
- Grid voltage is -380 V

Run 1043 - 1051

- Ar/iC4H10/CS2 95/5/1.4 gas mixture
- $\bullet\,$ Drift field is $-150\,V/cm$ to $-400\,V/cm$
- Grid voltage is −380 V

Kees Ligtenberg (Nikhef)

Negative ion measurements

≣ ▶ ৰ ≣ ▶ ≣ ∽ ৭.ে March 22, 2020 2/23

< ロト < 同ト < 三ト < 三ト

Diffusion in pixel plane Run 1042

 $\sigma_x^2 = D_T^2 z + \sigma_{x0}^2$

Kees Ligtenberg (Nikhef)

March 22, 2020 3 / 23

Nik hef

Diffusion as a function of E-field Run 1043 – 1051

Fitted with c/\sqrt{E}

Kees Ligtenberg (Nikhef)

Negative ion measurements

March 22, 2020 4 / 23

Nik hef

 $\sigma_{\rm x0}$ as a function of E-field Run 1043 – 1051

Nikhef イロトイグトイミト ミークへへ Negative ion measurements March 22, 2020 5/23

Kees Ligtenberg (Nikhef)

Fit of all z-residual slices per run

Use exponentially modified Gaussian distribution for main peak: exGaus(constant, σ , λ , μ) + gaus(constant₂, σ_2 , μ_2)+ offset

Global fit (per run):

- ratio of peak heights (fixes constant₂)
- exponential slope λ
- ratio of mobility (fixes μ_2)

Per slice:

- σ and σ_2
- 1 μ
- 1 constant
- offset

イロト イロト イヨト イヨト

Fit of z-residuals at a specific drift distance $_{\mathsf{Run}\ 1050}$

E-field is 450 V/cm and z = 36.66 mmFit with gaus(p0,p1,p2) + gaus(p3,p4,p5) + offset

Kees Ligtenberg (Nikhef)

Negative ion measurements

March 22, 2020 7 / 23

Fit of z-residuals at a specific drift distance $_{\mathsf{Run}\ 1050}$

E-field is 450 V/cm and z = 36.66 mm Fit with $exGaus(constant, \sigma, \lambda, \mu) + gaus(constant_2, \sigma_2, \mu_2) + offset$

Kees Ligtenberg (Nikhef)

Negative ion measurements

March 22, 2020 8 / 23

Fit of z-residuals at a specific drift distance Run 1042

At z = 6.76 mm

Kees Ligtenberg (Nikhef)

Negative ion measurements

Э March 22, 2020 9/23

 $\exists \rightarrow$

イロト イロト イヨト イ

Sac

Fit of z-residuals at a specific drift distance Run 1042

At z = 16.77 mm

Kees Ligtenberg (Nikhef)

Negative ion measurements

Э March 22, 2020 10/23

- b

Fit of z-residuals at a specific drift distance Run 1042

At z = 26.77 mm

Kees Ligtenberg (Nikhef)

Negative ion measurements

Э March 22, 2020 11/23

イロト イロト イヨト イヨト

Sac

Fit of z-residuals at a specific drift distance $_{\mathsf{Run}\ 1042}$

At z = 36.77 mm Fit the second peak also with an exponentially modified Gaussian?

Kees Ligtenberg (Nikhef)

Negative ion measurements

March 22, 2020 12 / 23

Drift velocity Run 1042

The first peaks lags the second peak by approximately 8%

Kees Ligtenberg (Nikhef)

Negative ion measurements

March 22, 2020 13 / 23

Drift velocity by E-field Run 1043 - 1051

hef 990 < □ > < 同 > 1 3 Negative ion measurements March 22, 2020 14 / 23

Kees Ligtenberg (Nikhef)

lon mobility Run 1043 – 1051

Nikhef イロトイクトイミト ミークへへ Negative ion measurements March 22, 2020 15/23

Kees Ligtenberg (Nikhef)

lon mobility ratio Run 1043 – 1051

Kees Ligtenberg (Nikhef)

Negative ion measurements

March 22, 2020 16 / 23

3

Nik hef

Ratio of ion peak height Run 1043 – 1051

The height of the second peaks is about 6% of the first peak height

As Jan noted, the integral should be compared instead

Kees Ligtenberg (Nikhef)

Negative ion measurements

March 22, 2020 17 / 23

< A >

Diffusion in drift direction

Run 1042

from width of leading peak

 $\sigma_z^2 = D_L^2 z + \sigma_{z0}^2$

Kees Ligtenberg (Nikhef)

Negative ion measurements

March 22, 2020 18 / 23

Diffusion in drift direction of subleading peak Run 1042

《 □ 》 《 큔 》 《 큔 》 《 큰 》 《 큰 》 Negative ion measurements March 22, 2020

19/23

Kees Ligtenberg (Nikhef)

Diffusion coefficient as a function of E-field Run 1043 – 1051

Fitted with c/\sqrt{E}

Kees Ligtenberg (Nikhef)

Negative ion measurements

March 22, 2020 20 / 23

 σ_{z0} as a function of E-field Run 1043 - 1051

hef 990 3 March 22, 2020 21/23

Negative ion measurements

Mean free path as a function of E-field Run 1043 – 1051

Kees Ligtenberg (Nikhef)

Negative ion measurements

March 22, 2020 22 / 23

Conclusions

- The diffusion coefficients behave as expect
- The drift velocity and mobility can be determined
- At large field strengths, the mean free path is not negligible
- A global fit using a exponentially modified Gaussian improves the fit Next steps:
 - Fit the second peak also with (the same?) exponential Gaussian
 - Take a high statistics run and try to resolve some ion peaks

イロト イボト イヨト イヨト