

Negative ionic drift

‹#>

Nikhef/Bonn LepCol meeting, March 23, 2020

First result: pure Ar + 1.2% CS₂

- Drift time about 2.6 ms across 12 mm
- Rms = 0.0416 M ns \approx 180 μ m
- Ar/CS₂ 98.8/1.2
 - **Run** 1017V
- Grid -300 V
- $E_d = 280 \text{ V/cm}$
- **ToT 750 ns**
- Sparking at higher grid voltages
- Measurement done in the 8-quad testbox

Now with quencher (isobutane)

- Ar/iC₄H₁₀/CS₂ 90/9/1 run 1025
- Vgrid = -430 V
- ToT 1750 ns
- Z = 12 mm
- Double peak (iC_4H_{10} ?)
- But main peak still well symmetric

Dependencies on the drift field E measured (run 1043 – 1051)

- 9 different fields from 100 to 500 V/cm
- High CS₂ concentration
 - $Ar/iC_4H_{10}/CS_2 93.6/5/1.4$
- Vgrid = $-380 \text{ V} => \text{ToT} \approx 1000 \text{ ns}$
- Assumption: kinetic energy of the ions thermal, not depending on E_d
 - 3/2 kT
- => we expect several first order dependencies
- $\bullet V_d \propto E_d \qquad \text{Proven hereafter}$
- **Diffusion** $\sigma^2 \propto^{-1} E_d \approx$ **proven hereafter for** σ_L
- Mean free path of electrons $\lambda \propto E_d$
 - The number of collisions per second does not depend on E_d
- $\lambda \propto^{-1} CS_2$ concentration different relation seen

Drift velocity $V_d \propto E_d$

• $Ar/iC_4H_{10}/CS_293.6/5/1.4$

- Excellent proportionality
 - Fit well passing the origin

J

Diffusion measured by observing the width of the time peaks

- $Ar/iC_4H_{10}/CS_2 93.6/5/1.4$
- From Gaussian fit through drift time peak

250 V/cm

Longitudinal diffusion $\sigma^2 \propto^{-1} E_d$

E (V/cm)

Linear fit forced to pass the origin

Deviations at $E \ge 300 \text{ V/cm}$ • Effect from free path tail?

Longitudinal diffusion in μ m/ \sqrt{cm}

• $Ar/iC_4H_{10}/CS_2 95/4.5.0.5$

• At 500 V/cm we pass the 100 μ m/ \sqrt{cm} line

Nikhef/Bonn LepCol meeting, March 23, 2020

E (V/cm)

Free path length measured at low CS₂ concentration

- 0.1% CS₂
 - Ar/iC₄H₁₀/CS₂ 95/4.9/0.1, run 1035
- V_{grid} -380 V
- E = 280 V/cm
- ToT 1100 ns
- Z = 12 mm
- Curve fitted with: $\psi \propto \exp(-x/\lambda)$ †
- $\lambda = 0.18 \text{ ms} => 774 \mu \text{m}$ for 0.1 % CS₂

N. Dongari, Y. Zhang and J. Reese, Molecular free path distribution in rarefied gases Journal of Applied Physics, 44(12):125502 · March 2011

Nikhef/Bonn LepCol meeting, March 23, 2020

Fred Hartjes

Unexpected free path effect at 1.4% CS₂

- Free path expected to be inversely proportional to the CS₂ concentration
- Electron attachment by CS₂ may be less efficient at higher field (500 V/cm) due to the higher electron energy?
- Needs more investigation
 - Measurements at different fields using the 0.1% CS₂ mixture

11

Mean free path vs CS2 concentration

- Various Ar/iC₄H₁₀ mixtures
 4.5 10% iC₄H₁₀
- Data converted to E = 280 V/cm
 - Conversion $\lambda \propto E$ (assuming that the electrons still have the thermal energy
- More or less linear dependence
 - Non-linear behavior at high CS₂ concentrations??
 - Electron capture depending on the drift field??

Mean free path (λ) vs CS₂ concentration (C)

Ar + iC4H10 (4.5 - 10%) March 3 - 10, 2020

Updated conclusions on negative ions

- Excellent proportionality of Vd vs E remains also for extended field range
 - Ions can be well described as being thermal
- Second peak remains unidentified
- σ_L behaves more or less as expected
 σ² ∝⁻¹ E_d
- At E = 500 V/cm we pass the 100 μ m/ \sqrt{cm} limit
- Mean free path of electrons does NOT show the expected dependence on the CS₂ concentration

