The ALICE Programme

Nikhef VISTA - Wednesday October 21 - 2020

D

Nikhef

Raimond Snellings

Nikhef/UU Group: 6 staff, 3 postdocs, 10 PhD's **Publications: 303** Theses: 26 University Partner: Utrecht University Investment Phase 1&2: 6.3 M Personal Grants: 8.1 M

The ALICE Programme

- What happens to matter when you heat and compress it to extreme magnitudes which existed in the primordial universe?
 - Phase transition to a **quark-gluon-plasma**
 - QCD in the regime of extreme matter with emergent phenomena
 - Unique conditions to study QCD
 - Temperature $\approx 10^{12} \text{ K} 10^{5}$ times larger than the core of the sun
 - Magnetic fields $\approx 10^{18} \text{ G} 10^{10}$ times larger than in the lab
 - Initial angular momentum of order $J = 10^7$, of which a fraction is transferred to the interaction region
 - Properties of the quark-gluon-plasma are still not well understood
 - Theoretically complicated (IQCD, AdS/CFT, pQCD, Hydro, ...)
 - Experimentally studied with high-energy nuclear collisions at the LHC: the ALICE experiment

The ALICE Programme

- Dutch ALICE group (Nikhef+UU) is participating in the ALICE experiment at the LHC as a leading group
 - Leading positions in ALICE
 - Very productive in data analysis using different probes of the quark-gluon plasma:
 - our group produced the most cited publications
 - Significant and visible contribution to the detector hardware

The ALICE Collaboration: 41 countries, 176 institutes, ~1800 members

ITS 1 (2010-2018)

• The ITS 1 consisted of 6 layer of silicon detectors

- Nikhef led the construction of the outer two layer of the ITS (silicon strip detectors) and assembled half of the ITS
- This detector worked almost perfectly for the last decade, due to Nikhef's continuous support for its operation
- Important for almost every physics analysis in ALICE

Now a museum piece

4

ITS 2 (MAPS ALPIDE, 2021-2030)

Change of technology: new tracker based on monolithic CMOS sensors!

- Thin sensor with on-chip digital readout (~10m²)
- Improve impact parameter resolution by a factor of 3
 - ➡ Get closer to the IP: first layer 39 -> 22 mm
 - → Reduce material budget: 1.14% -> 0.3% X₀ per layer or better
 - Increase pixel density 50 x 425 µm -> 20 x 20 µm
- High standalone tracking efficiency and pt resolution
 - ➡ Increase granularity 6 -> 7 layers with reduced pixel size
 - → Larger radial extent 39-430 mm -> 22-430 mm
- Fast PbPb (and pp) readout
 - ➡ Instantaneous luminosity: 6x10²⁷ cm⁻²s⁻¹ gives hadronic interaction rate of 50kHz
 - ➡ ITS 1 slow, maximal readout at 1 kHz
 - In new setup Pb-Pb collisions are readout at > 50 kHz and pp at > 2 MHz

Currently being tested at CERN, installation in Point 2 02-2021

The ALICE Programme 2010-2020

Govert Nijs, Wilke van der Schee, Umut Gursoy and RS

Nikhef VISTA - Wednesday October 21 - 2020

- Strong Nikhef contribution to many of the key ALICE measurements
- Global Bayesian theoretical analysis to extract QCD properties
 - Dutch theoretical contributions (AdS/CFT, LQCD, relativistic viscous hydrodynamics, transport theory, ...)
- Theoretical work connecting quark properties at LHC and properties m stars (GRASP and ITF)

Recent PhD thesis: Govert Nij quark gluon plasma and neutr

 New developments to measure and and spin transport properties of the (experiment and theory)

The ALICE Programme 2020-2025

Upgraded ITS 2, in fully upgraded ALICE detector, allows us to collect 100x more data with higher precision Physics: e.g. determine the EM properties of the QGP

@Nikhef: R&D on 4D-tracking

- Currently there are exciting developments for new Silicon detectors
 - → Large surface area (affordable)
 - ➡ Extremely thin
 - Radiation hard
 - ➡ Fast timing
- CERN is strongly invested in strategic R&D programme for future experiments (started January 2020)
 - R&D carried out with external groups from universities and national labs
- Nikhef currently involved in work package 1.2
 - ➡ ALICE, ATLAS, LHCb and Nikhef R&D
 - → ALICE for ITS 3 (2025) and interested in ALICE 3 (2030)
 - LHCb interested in "ChronoPix" vertex detector, prototype (2025) and full detector (2030)
 - ATLAS interested in High Granularity Timing Detector and possible MAPS inner tracker (2030-2035)

1.1	Hybrid Pixel Detectors
	Hybrid pixel sensors with advanced featu performance readout ASICs. These devel high-resolution timing and high-rate app
	Read more
13	Module Development
1.5	
	Within the EP R&D the module work on the study and development of new m CMOS pixel detectors and their integration
	Read more
	Memo to Nikhef DT
	Expression of Interes
	Authors: Kazu Akiba

Figure 5: Position of the HG HGTD between a radius of 1

WORK PACKAGES

l Detectors	1.2	Monolithic Pixel Detectors					
vith advanced features to be combined with high ASICs. These developments target small pixels, g and high-rate applications and comprise		Development of monolithic CMOS sensors for the innermost radii for maximum performance, and for the outer-layers as cost effective pixel trackers with high granularity and low material budget					
5 😣		Read more 20 Q					
elopment	1.4	Simulation and Characterization					
D the module work package (WP 1.3) focusses elopment of new module concepts for hybrid and and their integration for future applications		Detector simulations and modelling of radiation damage, as well as the development of dedicated characterization setups and flexible data-acquisition systems for testing purposes. Mailing List					
3 Q		Read more 4					

17-10-2019

n of Interest to Invest in R&D and Detector construction for LHC Si detectors

Authors: Kazu Akiba, Niels van Bakel, Martin van Beuzekom, Paul Kuijer, Marcel Merk, Raimond Snellings, Hella Snoek, Wouter Verkerke

TD within the ATLAS Detector. The HGTD acceptance is defined as the surface covere	d by the
20 mm and 640 mm at a position of $z = \pm 3.5$ m along the beamline	

ITS 3 (MAPS, 2025-2030)

Chip size is traditionally limited by CMOS manufacturing

- New option: stitching and bending
- Can we get thinner?

Reduce material budget:

type	side	Ground poisied plasma	Dumps	thickness (µm)	(MPa)	modulus	(MPa)	(mm)	\mathbf{X}_{0}	per	laye
Blank	Front	Ground	No	15-20	1263	7.42	691	2.46		-	-
Blank	Back	Ground	No	15-20	575	5.48	221	7.72		\frown	
IZM28	Front	Ground	Yes	15-20	1032	9.44	636	2.70	<u>ar</u> '	7	
IZM28	Back	Ground	Yes	15-20	494	2.04	52	32.7		•	
Blank	Back	Polished	No	25-35	1044	4.17	334	7.72			
IZM28	Back	Polished	Yes	25-35	482	2.98	107	24.3	٦m		
Blank	Back	Plasma	Yes	18–22	2340	12.6	679	2.50			
IZM28	Front	Plasma	Yes	18–22	1207	2.64	833	2.05			
IZM28	Back	Plasma	Yes	18–22	2139	3.74	362	4.72			

- Contribute to analog and dig
 - Our design is at Tower Semic
- Contribute to data transmiss
- Contribute to mechanical design
- 2020-2022 prototyping chips
- 2022-2023 full-scale prototype + final chip

INFN

replace innermost 3 layers ITS 2

The ALICE Programme 2025-2030

Upgraded ITS 3, in fully upgraded ALICE detector, allows us collect 100x more data with even higher precision Physics: e.g. determine the in-medium hadronization properties and energy loss mechanisms

$\Lambda_b \to \Lambda_c^+ \pi^- (\Lambda_c^+ \to p K^- \pi^+)$ significance

ALICE 3 (2030-

From Werner Riegler

~ 100 cm

- Completely new experiment
 - → Material budget: 0.05% X₀ per layer (~10) CMOS layers)
 - Magnetic Field: 0.2 and 0.5 T
 - Rapidity coverage: up to 8 rapidity units
 - Trying to get as close to the beam as possible
 - Improved Velo like and new solutions
 - ➡ Time measurements: outer layer ~ 20 ps
 - More timing layers and different silicon pixel technologies considered Nikihef

20 May \mathbf{C} -det [physics.ins \mathbf{O} 12 902.0 arXiv:1

A next-generation LHC heavy-ion experiment

List of authors in appendix

Abstract

The present document discusses plans for a compact, next-generation multipurpose detector at the LHC as a follow-up to the present ALICE experiment. The aim is to build a nearly massless barrel detector consisting of truly cylindrical layers based on curved wafer-scale ultra-thin silicon sensors with MAPS technology, featuring an unprecedented low material budget of 0.05% X₀ per layer, with the innermost layers possibly positioned inside the beam pipe. In addition to superior tracking and vertexing capabilities over a wide momentum range down to a few tens of MeV/c, the detector will provide particle identification via time-of-flight determination with about 20 ps resolution. In addition, electron and photon identification will be performed in a separate shower detector. The proposed detector is conceived for studies of pp, pA and AA collisions at luminosities a factor of 20 to 50 times higher than possible with the upgraded ALICE detector, enabling a rich physics program ranging from measurements with electromagnetic probes at ultra-low transverse momenta to precision physics in the charm and beauty sector.

> Geneva, Switzerland 2 May 2019

Version 2

ALICE in the LHC Wonderland

- The Nikhef ALICE group is very productive and has a large impact on the ALICE programme
 - Connected to the Nikhef and Utrecht Theory department, joint effort on heavy-ions and gravitational waves
 - Connected to GW as well in GRASP
- Current ITS 2 installation well on track

Nikhef VISTA - Wednesday October 21 - 2020

- Strong future programme and ambitions!
 - Started with R&D for ITS 3 and ALICE 3
 - Joint Nikhef R&D programme for 4D-tracking with the detector R&D and other LHC groups
 - Funding required for 4D tracking R&D, Physics analysis and building ALICE 3, initially ~0.5-1 M for ITS 3 and ALICE 3 R&D, ~~~4-5 M for ALICE 3

ALICE group Zoom meeting

Nikhef VISTA - Wednesday October 21 - 2020

13

ALICE group Zoom meeting

Nikhef VISTA - Wednesday October 21 - 2020

14

