VistaUpdate from the Dark Matter Group

Patrick Decowski, Auke-Pieter Colijn, Tina Pollmann

XENONnT Installation Finished

- XENONnT installation continued during Corona
- Final systems being installed \bullet
- Commissioning imminent

Large-scale Xe detectors

<u>XENONnT</u>

8.5t of LXe total **2020 - 2025**

DARWIN

50t of LXe total Global effort **Start in 2027**

- Design study started in 2009
- Lol submitted to LNGS, invited to submit a CDR
- Lol submitted to ESPP
- Lol Submissions to Snowmass'21
 - Europe: DARWIN (50 ton LXe)
 - US: "G3 DM Experiment" (40-100 ton LXe)
 - China: PandaX-XT (30-100 ton LXe)
- Strong push to combine European + US efforts
- Funding requests being prepared in CH, DE, F, IT

CDR	TDR	Construction		Science
2021	2023	2024	2027	

DARWIN

DARWIN Collaboration

From Nikhef: Colijn Decowski Pollmann

Ultimate Dark Matter Experiment

DARWIN will explore the remaining accessible WIMP parameter space with this technology

- Explore other DM candidates:
 - \bullet
 - **Dark Photons**: vector bosonic DM candidates

Axion-like particles: pseudo-scaler bosonic DM candidates

DARWIN: Is the v Majorana?

World-Competing 0v2ß sensitivity

$$(T_{1/2}^{0\nu})^{-1} = G_{0\nu}(Q, Z) |M_{0\nu}|^2 \langle m_{\beta\beta} \rangle^2$$
Phase Space factor
Nuclear Matrix Element
Interesting physic
Effective Majorana mass: $\langle m_{\beta\beta} \rangle = \left| \sum_{i=1}^{3} U_{ei}^2 m_i \right|$

DARWIN, EPJC 80, 808 (2020); arXiv:2003.13407

DARWIN will have world-competing 0v2ß sensitivity, covering most of the Inverted Ordering

Unique: Low-Energy Solar Neutrinos

DARWIN sensitive to: Elastic scattering of solar v on Xe electrons **Coherent Neutrino-Nucleus Scattering**

1% measurement of solar pp-neutrinos

Map out the vacuum to matter oscillation transition

Detailed measurement of other V components allows to determine metallicity of the Sun

Non-standard neutrino interactions

Other Neutrino Physics

- Extremely rare radioactive decays \rightarrow important input for nuclear models
 - Detailed $2\nu 2\beta$ spectrum of ¹³⁶Xe
 - Double-electron capture in ¹²⁴Xe
 - (with depleted target) double-beta in ¹³⁴Xe and ¹²⁶Xe \bullet
- Galactic supernova \bullet
- Enhanced neutrino magnetic moment

• sensitive to all active neutrino species from Type-Ia and failed core-collapse supernovae

Hundreds of events will allow detailed v measurements

R. Lang et al, PRD 94 (2016) 10, 103009; arXiv:1606.09243

(~150 citations already)

XAMS: Local LXe R&D

Hamamatsu S13370-3025CN 3x3 mm² active area

R&D for large liquid Xe detectors:

- Substituting SiPMs in the top array
- Background measurements, e.g. ²¹⁴Pb spectrum
- Optimizing anodes
- LXe properties

E. Hogenbirk et al., NIM A840 (2016) 87, arXiv:1602.01974 E. Hogenbirk et al., JINST 13 (2018) 05, P05016, arXiv:1805.12562

-20

E. Hogenbirk et al., JINST 13 (2018) 10, P10031, arXiv:1807.07121

20

10

0

x (mm)

Multi-purpose VUV excitation experiment

Study the response of light detectors and materials to LXe and LAr scintillation light

New faculty/staff Tina Pollmann (UvA/Nikhef) setting up new lab

Pollmann et al, EPJC 79 (2019) 8, 653; arXiv:1905.03044 Pollmann et al, EPJC 79 (2019) 4, 291; arXiv:1806.04020

Relic Neutrino Detection with PTOLEMY

- R&D phase in 2020-2025: Proof of concept
- Dutch contributions

R&D

- Theory (UvA)
- Tritium-graphene targets (RU)
- RF detection of electrons (UvA/TNO)
- Expect decision on NWA-ORC mid-November

Applicants: Colijn (UvA/Nikhef), de Groot (RU/Nikhef), Ando (UvA), Zeitler (RU), van Rossum (TNO), Lock (THUAS)

DARWIN

- DARWIN will be a low-background ultra-rare physics observatory
 - <u>Ultimate</u> dark matter experiment: \bullet
 - Explore remaining WIMP parameter space
 - Sensitivity to other DM candidates and models
 - <u>Unique</u> or <u>world-class</u> **neutrino physics** sensitivity:
 - Are neutrinos Majorana?
 - Detailed determination of the solar neutrino flux
 - Other neutrino properties
- "Secondary" experiments, with "low-background physics" cross-pollination
 - Detection techniques, background mitigation
- Essential R&D at Nikhef

Pitch

Backup

DARWIN: A Low Background Observatory NR

• WIMP searches

- Spin-independent
- Spin-dependent and inelastic interactions
- - Alternative dark matter candidates
 - Coupling to electrons via axio-electric effect
- Supernova neutrinos
 - Sensitivity to all neutrino flavors (via CEvNS)
 - Complementarity to large-scale neutrino detectors
- - Predicted by SM, only very recently observed!
- Low-energy solar neutrinos: pp, ⁷Be
 - Test/improve solar model, test neutrino models
- Neutrinoless double beta decay

 - No enrichment in ¹³⁶Xe required

As detector size increases physics channels open up

 Solar axions and galactic axion-like particles (ALPs) ER

 Coherent neutrino-nucleus scattering (CEvNS) NR

• Lepton number violating process, effective Majorana mass

NR

ER

ER

Low-energy ER Excess in XENON1T

Comparison to other 0v2ß Experiments

Experiment	Isotope	Sensitivity $T_{1/2}^{0 u}$ [yr]	$egin{array}{llllllllllllllllllllllllllllllllllll$	Exposure time [yr]	Ret
DARWIN (baseline)	$^{136}\mathrm{Xe}$	2.4×10^{27}	18-46	10	thi
DARWIN (ν dominated)	136 Xe	$6.2 imes 10^{27}$	11-28	10	\mathbf{thi}
KamLAND2-Zen	$^{136}\mathrm{Xe}$	6×10^{26}	37-91	5	
PandaX-III	$^{136}\mathrm{Xe}$	1×10^{27}	28-71	3	
NEXT-HD	$^{136}\mathrm{Xe}$	$3 imes 10^{27}$	16-41	10	
nEXO	136 Xe	$9.2 imes 10^{27}$	9-23	10	
SNO+-II	$^{130}\mathrm{Te}$	$7 imes 10^{26}$	20-70	5	
AMoRE-II	$^{100}\mathrm{Mo}$	$5 imes 10^{26}$	15 - 30	5	
CUPID	¹³⁰ Te / ¹⁰⁰ Mo	$(2-5) \times 10^{27}$	6-17	10	
LEGEND-1000	76 Ge	1×10^{28}	11-28	10	

Table 4: Comparison of $T_{1/2}^{0\nu}$ and $m_{\beta\beta}$ sensitivity limits (90% C.L.) between DARWIN and future $0\nu\beta\beta$ experiments. For experiments using ¹³⁶Xe the $m_{\beta\beta}$ ranges are calculated with the nuclear matrix element ranges from [36], those using other isotopes are taken from [37].

