

Negative ionic drift

Being investigated

Fred Hartjes NIKHEF

Nikhef/Bonn LepCol meeting March 9, 2020

First result: pure Ar + 1.2% CS₂

- Drift time about 2.6 ms across 12 mm
- Rms = 0.0416 M ns \approx 180 μ m
- Ar/CS₂ 98.8/1.2
 - **Run** 1017V
- Grid -300 V
- $E_d = 280 \text{ V/cm}$
- **ToT 750 ns**
- Sparking at higher grid voltages
- Measurement done in the 8-quad testbox

Now with quencher (isobutane)

- Ar/iC₄H₁₀/CS₂ 90/9/1 run 1025
- Vgrid = -430 V
- ToT 1750 ns
- Z = 12 mm
- Double peak $(iC_4H_{10}?)$

How low may the CS_2 concentration be? $0.1\% CS_2$ Time range histogram

- Ar/iC₄H₁₀/CS₂ 95/4.9/0.1, run 1035
- V_{grid} -380 V
- E = 280 V/cm
- **ToT** 1100 ns
- Z = 12 mm
- Curve fitted with: $\psi = x/\lambda * \exp(x/\lambda) \dagger$
- $\lambda = 0.11 \text{ ms} => 470 \ \mu\text{m}$ for 0.1 % CS₂
- After deconvolution for diffusion 430 μm estimated

*N. Dongari, Y. Zhang and J. Reese, Molecular free path distribution in rarefied gases Journal of Applied Physics, 44(12):125502 · March 2011

Are there ions with much longer drift time?

- No other laser tracks visible up to 100 ms
 - => no ions with longer drift time involved
- Accidental cosmic track present

Dependencies on the drift field E measured

- 6 different fields from 150 to 400 V/cm
- $Ar/iC_4H_{10}/CS_2 95/4.5.0.5$
- Vgrid = $-380 \text{ V} => \text{ToT} \approx 1000 \text{ ns}$
- Kinetic energy of the ions probably mainly thermal, not depending on E_d
 3/2 kT
- => we expect several **first order dependencies**
- **V**_d \propto E_d **Proven hereafter**
- **Diffusion** $\sigma^2 \propto^{-1} E_d \approx$ **proven hereafter for** σ_L
- Mean free path of electrons $\lambda \propto E_d$
 - The number of collisions per second does not depend on E_d
- $\lambda \propto^{-1} CS_2$ concentration

Nikhef/Bonn LepCol meeting, March 9, 2020

Drift velocity $V_d \propto E_d$

• $Ar/iC_4H_{10}/CS_2 95/4.5.0.5$

Precise proportionality

Fred Hartjes

Longitudinal diffusion $\sigma^2 \propto^{-1} E_d$

hist. count

2.2M 2.37714M

Plot 1

- $Ar/iC_4H_{10}/CS_2 95/4.5.0.5$
- Not measured for E = 350 and 400 V/cm
 - Tail from finite mean free path
- Limited accuracy of the measured points
 - Fit does not pass the origin (0,0)

1.8M

drift time (ns)

2M

• Effect from λ tail?

Z = 12 mm

400 V/cm

1.6M

Time range histogram 1200-

1000 -

800-

600-

400-

200-

0-17

1.37714M

count

Longitudinal diffusion in μ m/ \sqrt{cm}

- $Ar/iC_4H_{10}/CS_2 95/4.5.0.5$
- Not measured for E = 350 and 400 V/cm
 - Tail from finite mean free path
- At 250 V/cm $\sigma_L = 150 \,\mu\text{m}/\sqrt{\text{cm}}$
- To go down to 75 μ m/ \sqrt{cm} we need E = 1 kV/cm

Ar/iC4H0/CS2 95/4.5/0.5 Vgrid = -380V ToT ~ 1000 ns Run 1036 - 1041 6-3-2020 Longitudinal diffusion (σ_L) vs drift field (E)

10

Conclusions on negative ions so far

- Detecting negative ions instead of electron we are entering a completely unknown domain
- Using a GridPix detector (integrated grid on a pixel chip, 50 um gap), negative ions from CS₂ are easily detected
 - Probably the attached electron is stripped in the high avalanche field and can thus create an avalanche in the regular way
 - At 1% CS₂ the required grid voltage is only elevated by $\approx 10\%$
- The negative ion mobility is about **4 orders of magnitude smaller** than for electrons
- To create negative ions, CS_2 is a quite acceptable additive with efficient electron capture
 - No serious environmental hazard (unlike SF_6)
 - Personal risk is reduced by the strong smell
 - As long as you hardly smell it or not at all, it is safe
 - Mean free path of electrons 43 μ m * %C_{CS2} vapour @ E = 280 V/cm

Conclusions on negative ions so far cntd

- Under certain conditions (9% iC_4H_{10}) a double peak is **sometimes** seen
- The ratio between the two peaks corresponds about to the ratio of the components of the gas mixture $(Ar/iC_4H_{10} 90/9)$
 - But for a repeated measurement the second peak is hardly visible
- There is no easy way to identify the measured ion peaks
 - Both mass and cross section of the molecules in the gas mixture are unknown
 - Maybe we do not see CS_2 ions at all, but only Ar and/or iC_4H_{10} ions??

Conclusions on negative ions so far cntd

- Track detecting with negative ions has certain limited advantages
- Diffusion is modest for higher drift fields (< 100 μ m @ 1 kV/cm)
- The absence of electronic time walk is a clear advantage
 - => Accidental cosmic tracks often look very narrow
- For large TPCs (drift gap in the meter range) with quite low drift fields and thus elevated diffusion, the asymmetric λ tail is not visible
 - => lower CS₂ concentrations are possible
- But for smaller TPCs (drift gap in the decimeter range) where we will profit from the reduced diffusion at higher drift fields, the λ tail in σ_L may become dominant => use high CS₂ concentrations (> 1%)
- At 1% CS₂ we have $\lambda \approx 43 \ \mu m$ at E_d = 280 V/cm
 - We may easily increase the CS_2 concentration until 3% easily or 30% (more effort)
 - But we do not know the long term effects of CS₂ vapour affecting the detector materials
 - Intil now the 8 quad testbox has been exposed a few times for < 2 hours at 0.5 1% CS_2 Nikhef/Bonn LepCol meeting, March 9, 2020 13

Fred Hartjes