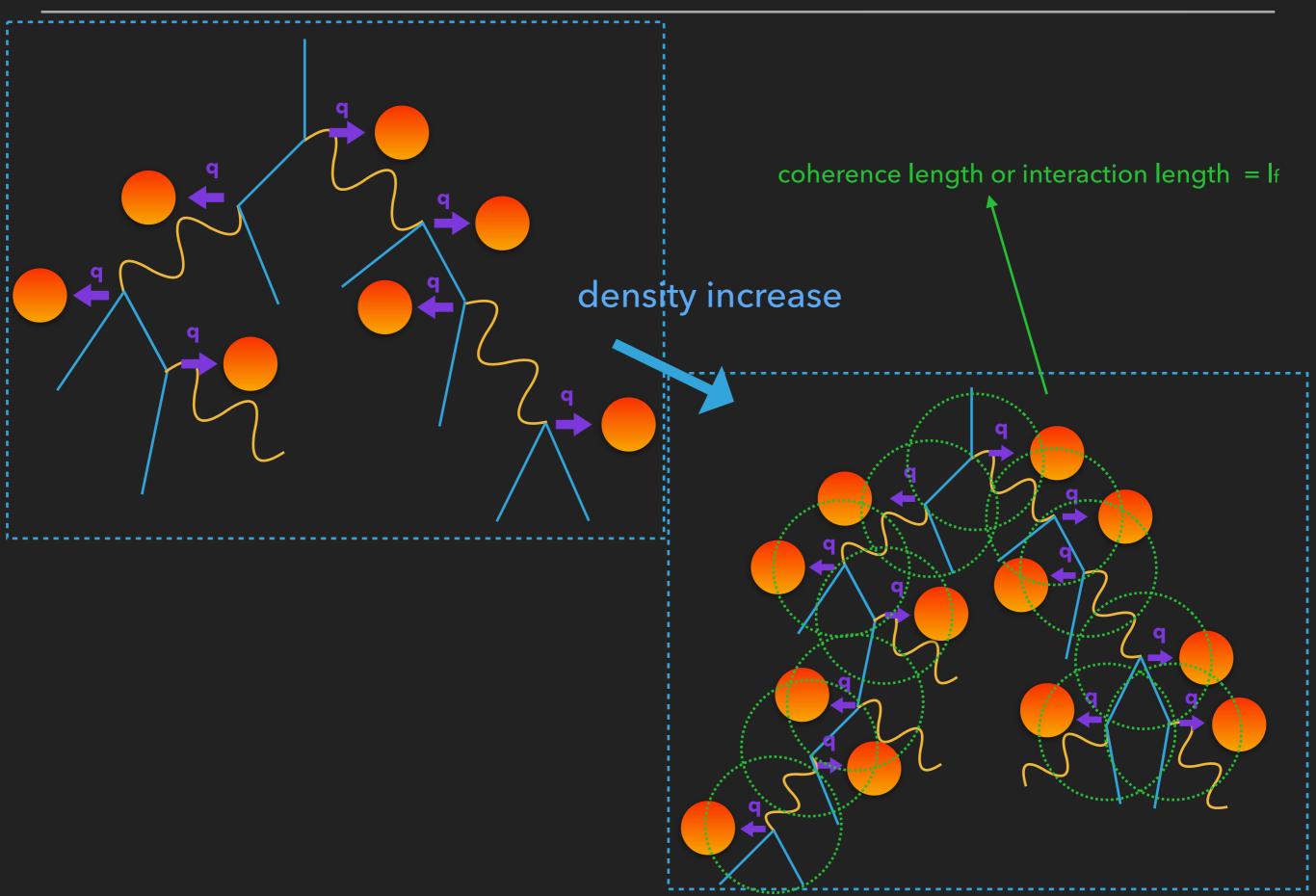
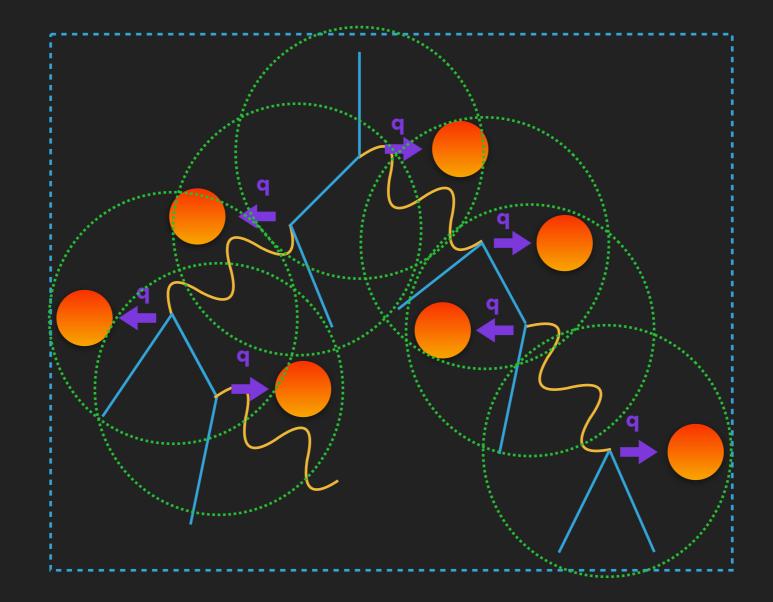
LPM EFFECT


KM3NET JUNIOR GROUP MEETING - 5/3/2020

CLARA GATIUS


LANDAU-POMERANCHUK-MIGDAL EFFECT:

Supression of the Bremsstrahlung and Pair Production cross-section at high densitites or high energies.

INTUITIVE APPROACH

increase particles energy -> increase coherence length or interaction length

P'e

q

Bremsstrahlung interaction

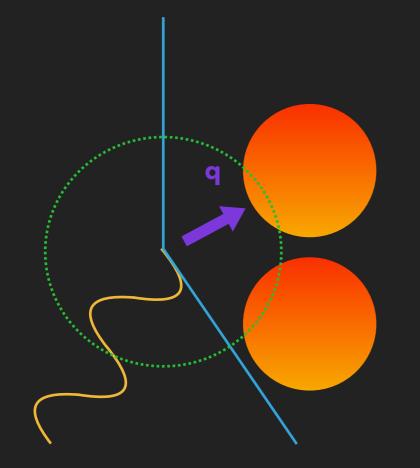
Pe

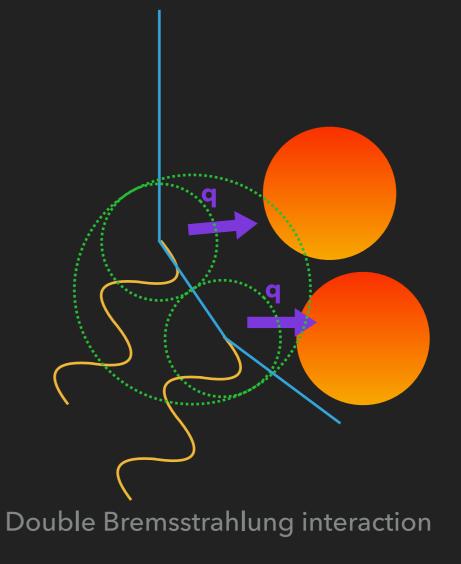
k

$$q_{\parallel} = p_{e} - p_{e}' - p_{\gamma} = \sqrt{(E/c)^{2} - (mc)^{2}}$$
$$-\sqrt{[(E-k)/c]^{2} - (mc)^{2} - k/c}$$
$$q_{\parallel} \sim \frac{m^{2}c^{3}k}{2E(E-k)}$$

as higher E -> smaller momentum transfer as lower k -> smaller momentum transfer

Some numbers to illustrate....


$$E = 1 EeV$$
, $k = 100 PeV \rightarrow q = 10^{-9} eV/c$


Uncertainty principle becomes rellevant!!!

$$E = 1 \text{ EeV}$$
, $k = 100 \text{ PeV}$ ->

COHERENCE LENGTH OR INTERACTION LENGTH

Bremsstrahlung interaction

increasing the number of	interactions	q	->	2q
Radiation intensity 🔿	c lf	lf	->	lf / 2
Rad	ioation intensity:	$\sim l_f^2$	->	$\sim 2 \cdot (l_f/2)^2$

3 sources of supression:

1. Multiple scattering of the e-

2. Interaction of the emitted photon with the medium (dielectric effect)

3. Pair creation by the emitted photon

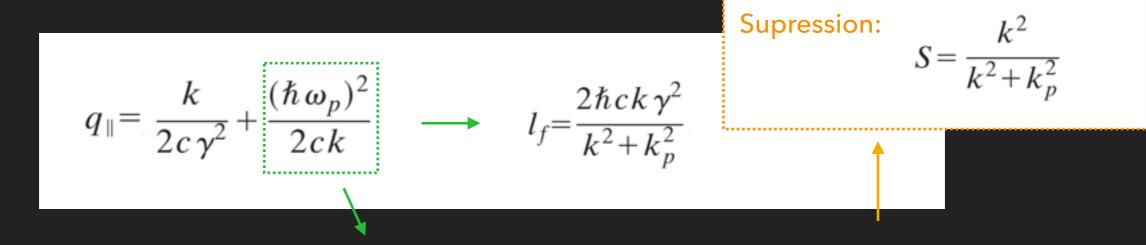
Multiple scattering of the e-

Supression:

$$S = \frac{d\sigma/dk}{d\sigma_{BH}/dk} = \frac{l_f}{l_{f0}} = \sqrt{\frac{kE_{LPM}}{E(E-k)}}$$

$$q_{\parallel} = \frac{km^2c^3}{2E(E-k)} + \frac{k\theta_{MS/2}^2}{2c} \longrightarrow l_f = l_{f0}\sqrt{\frac{kE_{LPM}}{E(E-k)}}$$

as bigger its contribution -> smaller lf -> more supressed cross-section


Condition for supression:

$$\begin{array}{ll} \theta_{MS/2} > 1/\gamma & \begin{array}{c} \text{higher E} = > \text{ higher limit for photon energy} \\ \hline & \\ k < k_{LPM} = \frac{E(E-k)}{E_{LPM}} & , \end{array} & \begin{array}{c} E_{LPM} = \frac{m^2 c^3 X_0 \alpha}{4\pi\hbar} \approx 7.7 \ \text{TeV/cm} \cdot X_0 \end{array}$$

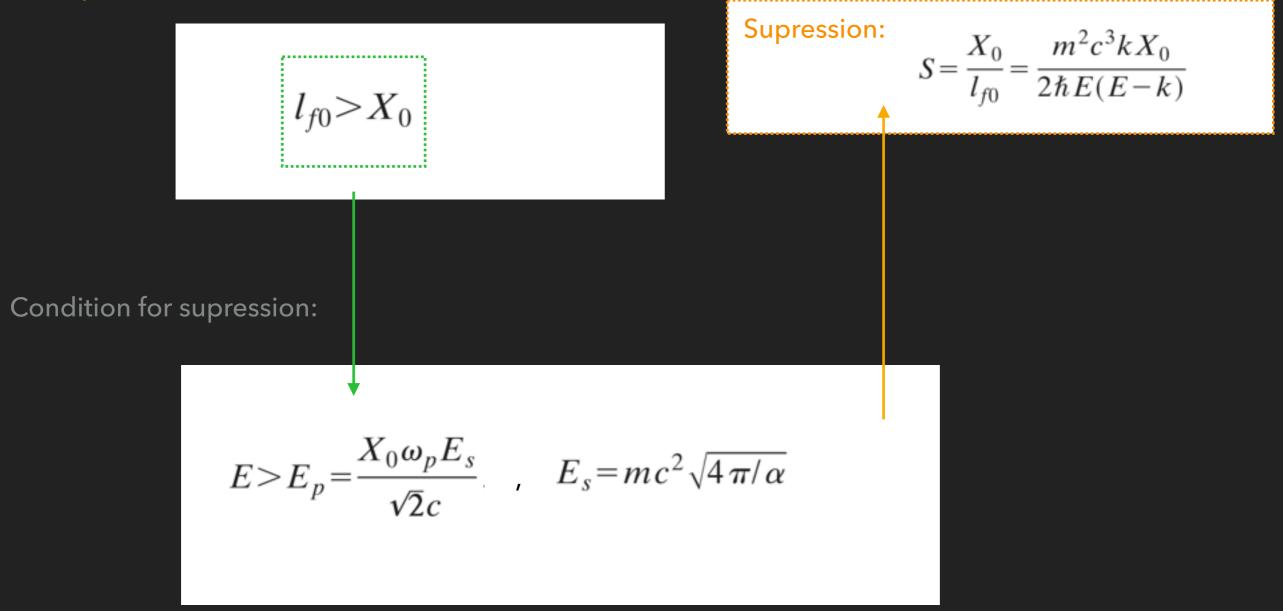
Material	Ζ	ρ (g/cm ³)	X_0 (cm)	E_{LPM} (TeV)	Y die	E_p
Hydrogen (liquid at BP)	1	0.07	865	6.6 PeV	1.4×10^{-5}	4.6 PeV
Helium (liquid at BP)	2	0.125	755	5.8 PeV	1.5×10^{-5}	4.3 PeV
Carbon	6	2.2	19.6	151	5.5×10^{-5}	410 TeV
Aluminum	13	2.70	8.9	68	6.0×10^{-5}	205 TeV
Iron	26	7.87	1.76	13.6	1.0×10^{-4}	67 TeV
Lead	82	11.35	0.56	4.3	1.1×10^{-4}	24 TeV
Tungsten	74	19.3	0.35	2.7	1.5×10^{-4}	20 TeV
Uranium	92	18.95	0.35	2.7	1.4×10^{-4}	19 TeV
Gold	79	19.32	0.33	2.5	1.5×10^{-4}	19 TeV
Air (STP)	-	0.0012	30400	234 PeV	1.3×10^{-6}	15 PeV
Water	-	1.00	36.1	278	3.9×10^{-5}	540 TeV
Std. rock	11	2.65	10.0	77	6.0×10^{-5}	230 TeV
	· · · · · · · · · · · · · · · · · · ·	/ · · · · · · · · · · · · · · · · · · ·		4	/	

- t.....t.

Dielectric effect

as bigger its contribution -> smaller If -> more supressed cross-section

Condition for supression:


$$k < k_p \qquad k_p = \gamma \hbar \omega_p \qquad \epsilon(k) = 1 - (\hbar \omega_p)^2 / k^2$$

$$y = k/E < y_{die} \qquad y_{die} = \hbar \omega_p / mc^2$$

E_p
4.6 PeV
4.3 PeV
410 TeV
205 TeV
67 TeV
24 TeV
20 TeV
19 TeV
19 TeV
15 PeV
540 TeV
230 TeV

SUPRESSION OF BREMSSTRAHLUNG

Pair production

Material	Ζ	ρ (g/cm ³)	X_0 (cm)	E_{LPM} (TeV)	y die	E_p
Hydrogen (liquid at BP)	1	0.07	865	6.6 PeV	1.4×10^{-5}	4.6 PeV
Helium (liquid at BP)	2	0.125	755	5.8 PeV	1.5×10^{-5}	4.3 PeV
Carbon	6	2.2	19.6	151	5.5×10^{-5}	410 TeV
Aluminum	13	2.70	8.9	68	6.0×10^{-5}	205 TeV
Iron	26	7.87	1.76	13.6	1.0×10^{-4}	67 TeV
Lead	82	11.35	0.56	4.3	1.1×10^{-4}	24 TeV
Tungsten	74	19.3	0.35	2.7	1.5×10^{-4}	20 TeV
Uranium	92	18.95	0.35	2.7	1.4×10^{-4}	19 TeV
Gold	79	19.32	0.33	2.5	1.5×10^{-4}	19 TeV
Air (STP)	-	0.0012	30400	234 PeV	1.3×10^{-6}	15 PeV
Water	-	1.00	36.1	278	3.9×10^{-5}	540 TeV
Std. rock	11	2.65	10.0	77	6.0×10^{-5}	230 TeV

÷.....

Material		Ζ	ρ (g/cm ³)	X_0 (cm)	E_{LPM} (TeV)	y _{die}	E _p
Hydrogen (liquid	at BP)	1	0.07	865	6.6 PeV	1.4×10^{-5}	4.6 PeV
Helium (liquid at	BP)	2	0.125	755	5.8 PeV	1.5×10^{-5}	4.3 PeV
Carbon						······	10 TeV
Aluminum)5 TeV
Iron	Iron $\mathbf{Pair} \sim \mathbf{k}^0$						7 TeV
Lead							4 TeV
Tungsten			2	$\searrow 4$	no		0 TeV
Uranium		Dielectric	₹ /		M- K12		9 TeV
Gold	dk	ic ^c	/				9 TeV
Air (STP)	dσ/dk	~ ²⁰ /	/				5 PeV
Water	ď	Ser /					40 TeV
Std. rock		~/			/ att		30 TeV
					BH	4-2	
		/				\rightarrow	
			k _{c-}	k _{c+}	k LPM		
			U-	k			
				**			

SUPRESSION OF BREMSSTRAHLUNG

Total supression...

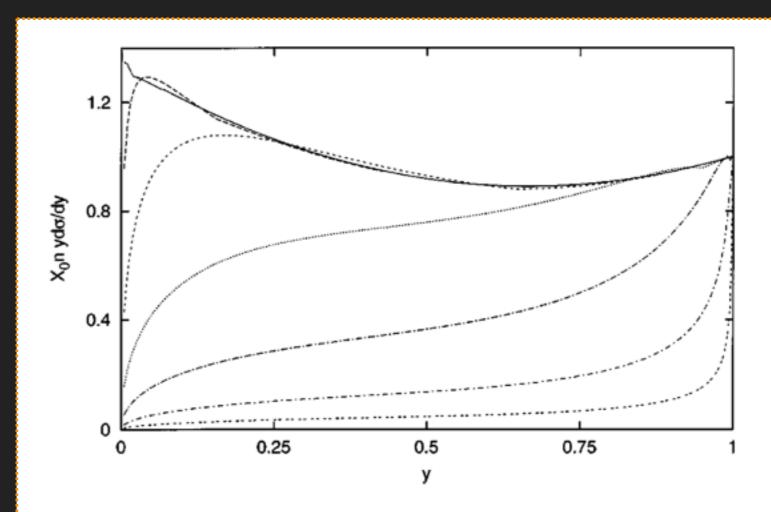
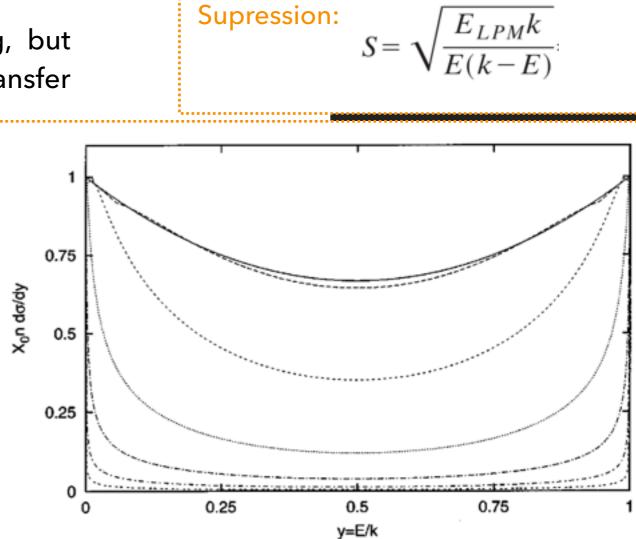
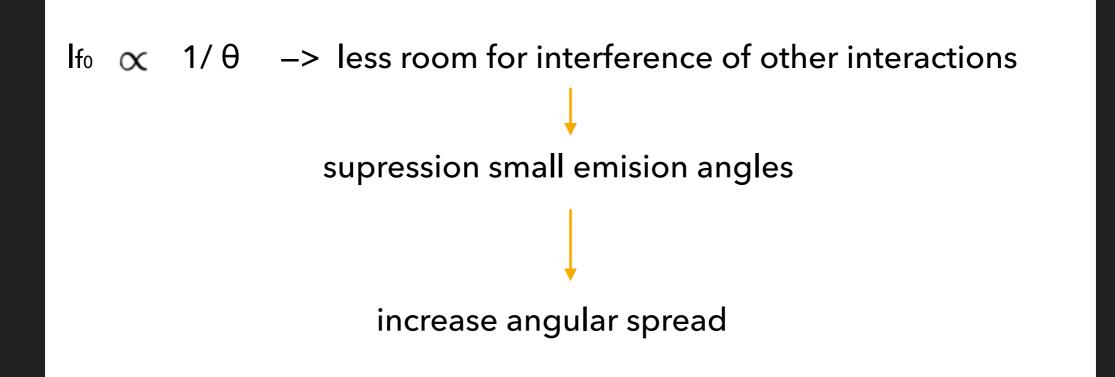



FIG. 9. Energy-weighted differential cross section for bremsstrahlung, $X_0 ny \, d\sigma_{LPM}/dy$, for various electron energies in a lead target, showing how the spectral shape changes: top curve, electrons of energies 10 GeV; remaining curves, 100 GeV, 1 TeV, 10 TeV, 100 TeV, 1 PeV, and 10 PeV (bottom curve). The units are fractional energy per radiation length.

source of supression: Bremsstrahlung.

Partically produced e- and e+ undergo Bremsstrahlung.

Identical approach as for multi-scattering, but now the contribution to the momentum transfer is given by the Bremsstrahlung of e- or e+



Supression:

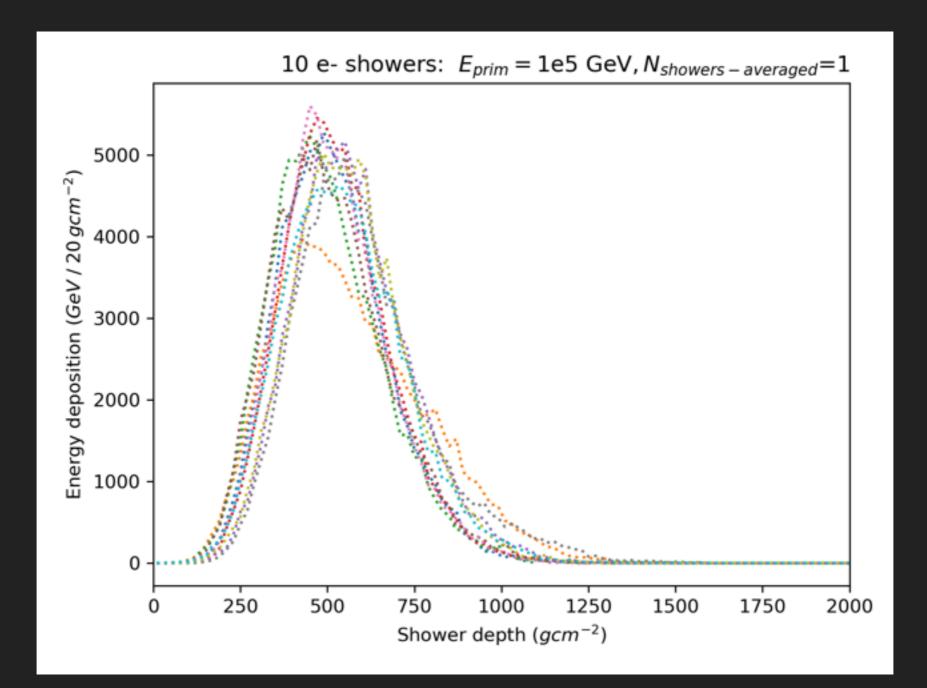
FIG. 10. Differential cross section for pair production, $X_0 n \, d\sigma_{LPM} / dy$, in lead for various photon energies, showing how the spectral shape changes. Cross sections are plotted for photons of energies 1 TeV (top curve), 10 TeV, 100 TeV, 1 PeV, 10 PeV, 100 PeV, and 1 EeV (bottom curve).

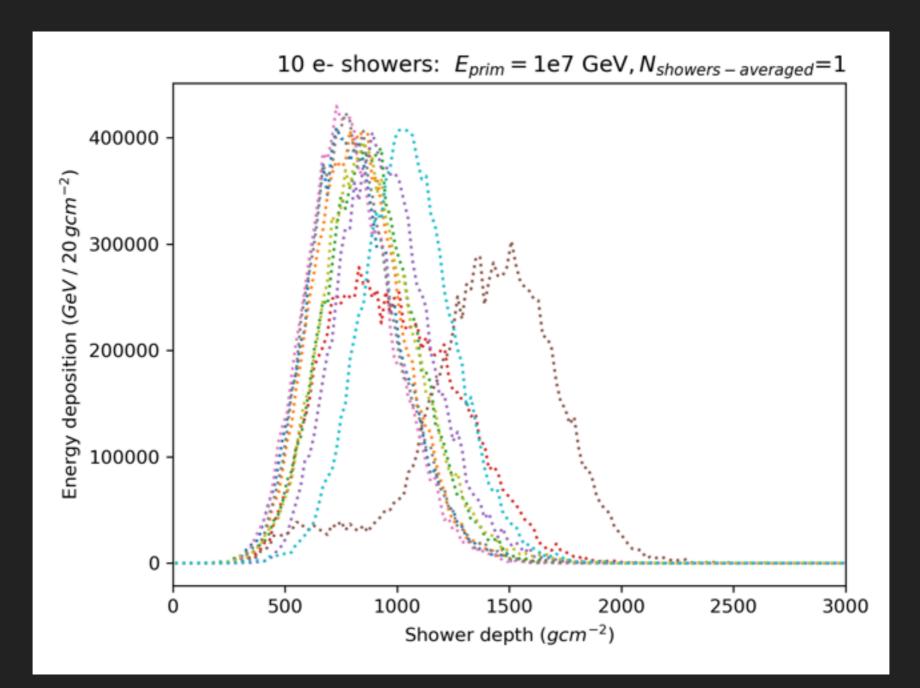
+ not only effect on particle spectrum, also effect on angular distribution !

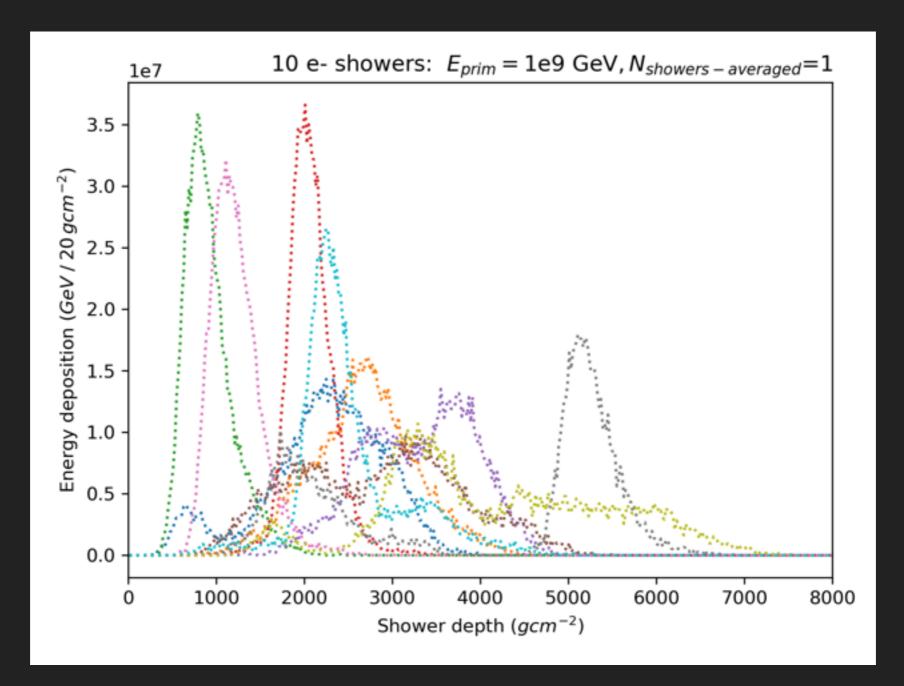
(by all types of supressions)

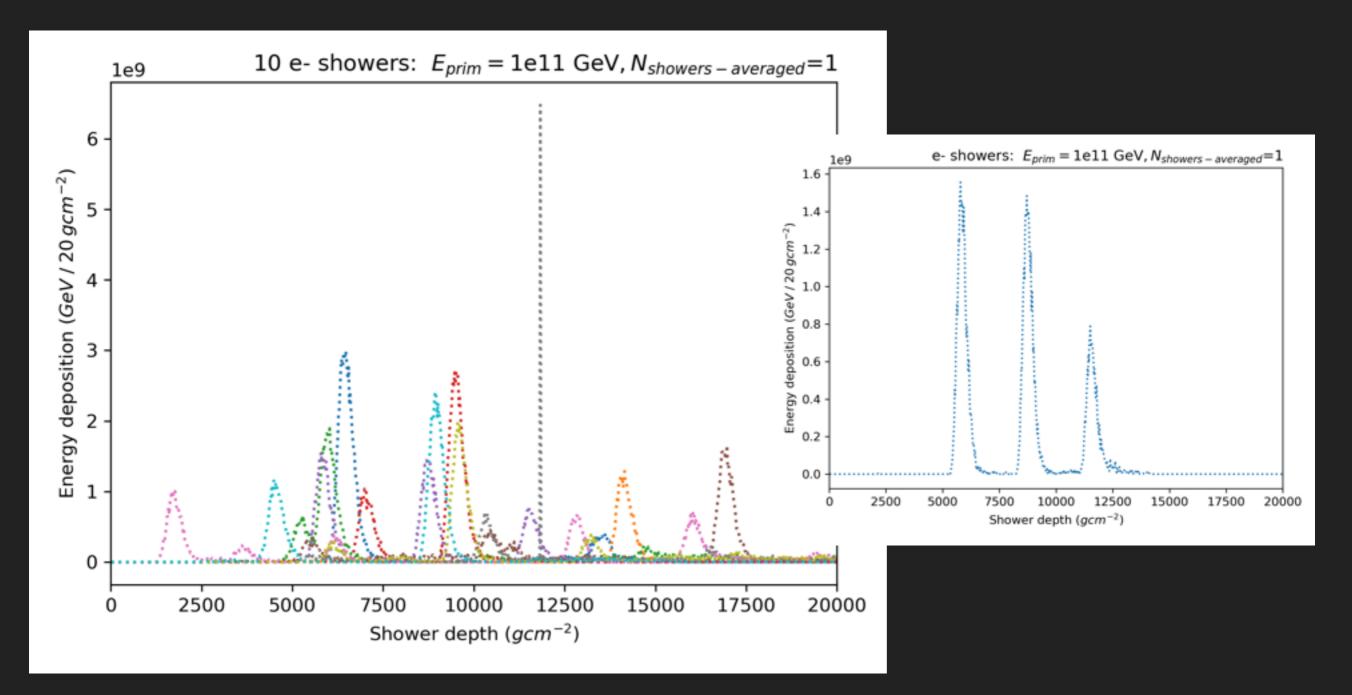
Improvements by Migdal:

- No use of an average scattering angle
- Addition of quantum effects: electron spin and photon polarization


Approach: calculation of averaged radiation per interaction and the following


interference between radiation from different collisions.


Bremsstrahlung:


$$\frac{d\sigma_{LPM}}{dk} = \frac{4\alpha r_e^2 \xi(s)}{3k} \{y^2 G(s) + 2[1 + (1 - y)^2] \phi(s)\} Z^2 \times \ln\left(\frac{184}{Z^{1/3}}\right),$$
Pair production:

$$\frac{d\sigma_{LPM}(\gamma \rightarrow e^+ e^-)}{dE} = \frac{4\alpha r_e^2 \xi(\tilde{s})}{3k} \left\{G(\tilde{s}) + 2\left[\frac{E^2}{k^2} + \left(1 - \frac{E}{k}\right)^2\right] \phi(\tilde{s})\right\}$$

1. Klein, S. Suppression of bremsstrahlung and pair production due to environmental factors. Rev. Mod. Phys. 71, 1501-1538 (1999).

2. Klein, S. R. Bremsstrahlung and Pair Creation: Suppression Mechanisms and How They Affect EHE Air Showers. (2000).

3. Migdal, A. B. Bremsstrahlung and pair production in condensed media at high energies. Phys. Rev. 103, 1811-1820 (1956).