

Outlook

- L1 hit time difference
 - Method
- Inter-DOM distance
 - Method
 - Results
- Time calibration
 - Method
 - Results

Method

- Cherenkov cone induces L1 hits
- Light arrival time measured
- Look at L1 coincidences in neighbouring DOMs in time window
- Arrival time difference per DOM pair
- Time depends on incoming angle
- Trigger level, no assumptions from reconstruction

2020-02-21 3

Hit selection

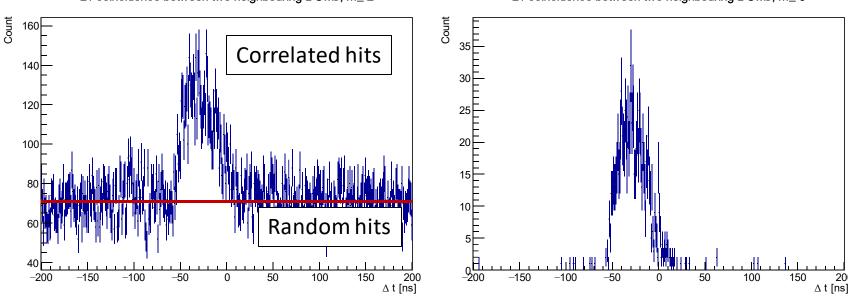
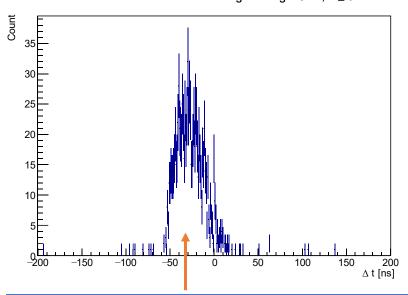
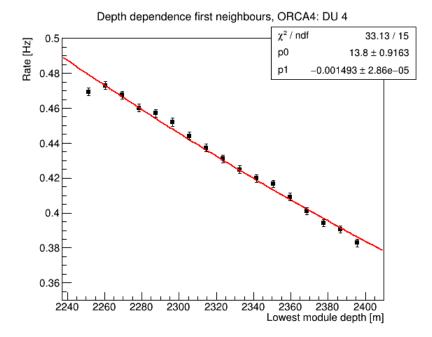



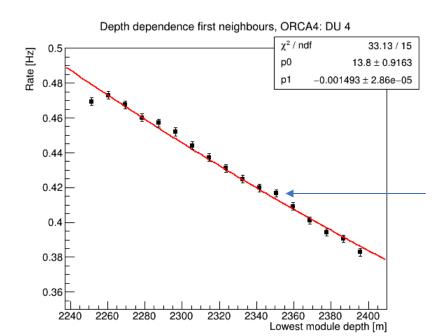
Figure: Arrival time difference of L1 hits between two DOMs in ORCA4 DU3. Left: multiplicity 2, right multiplicity 3

• Using multiplicity 3 suppresses a lot of background: P(m = 3 on DOM i | m = 3 on DOM i + 1)

Depth dependence: L1 time difference


L1 coincidence between two neighbouring DOMs, m≥ 3

Area = correlated hit count.


Hits that are on both DOM i and DOM j

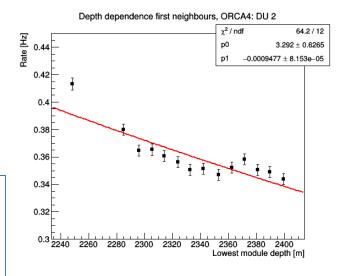
$$rate = \frac{count_{i,j}}{runtime}$$

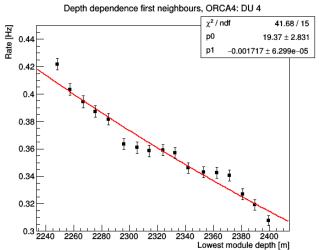
Rates for one DU:
Depth dependence of correlated rate
between neighboring DOMs

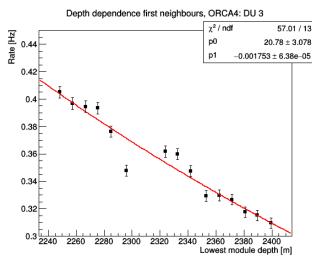
Inter-DOM distance calibration

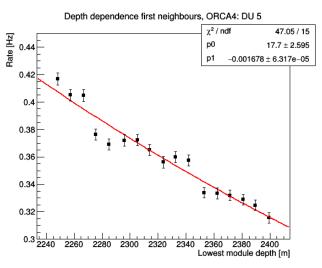
d(model, data) is a measure for the inter-DOM distance

$$d = \frac{-1}{\lambda} \log(\frac{R}{A})$$

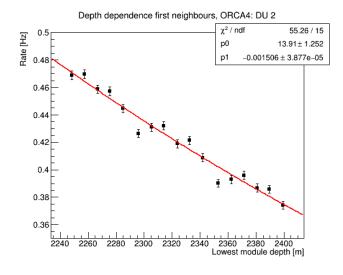

Model the rate as function of depth:

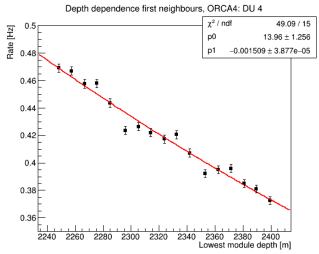

$$R = Ae^{-\lambda d}$$

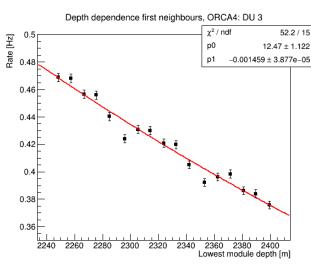

Inter-DOM distance

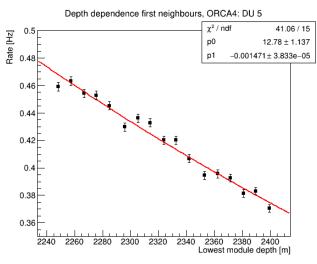

Depth dependence of L1 correlations

Runs 5900-5930
(4 days, downscale=20)
Multiplicity 3
Applied corrections:
Dead PMT channels,
High rate veto,
(Effective) PMT efficiency

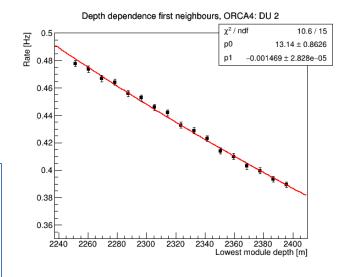


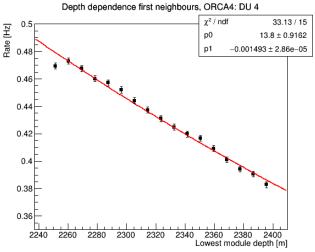


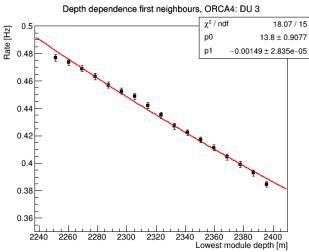


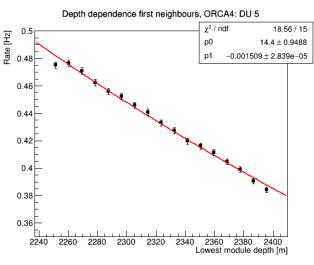

Depth dependence: nominal PMTs

Detector geometry: from DB Multiplicity 3 Nominal PMTs: Light scale = 2 Q = 0.5 25M muons (16 hrs)

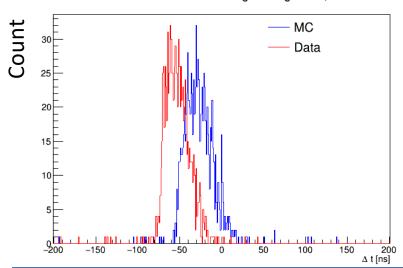







Depth dependence: perfect detector:

JDetector:
5 lines, 9x20m spacing
Multiplicity 3
Nominal PMTs:
Light scale = 2
Q = 0.5
50M muon (32 hrs)

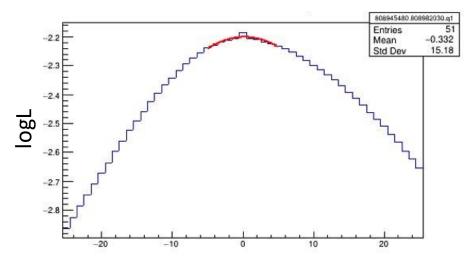


	Calculated Depth (DU4) [m]	Difference [m]	Depth [m]	Difference [m]	Simple error [m]	Propagate d error [m]	
JDetect 5 lines, Multipl Nomina Light sc Q = 0.5 25M mi	2401.56		2400.04		3.56	62.95	
	2390.9	10.65	2391.04	9	3.53	62.80	14: DU 3
	2376.71	14.19	2382.04	9	3.49	62.61	
	2367.21	9.49	2373.04	9	3.47	62.48	18.07 / 15 13.8 ± 0.9077 -0.00149 ± 2.835e-05
	2356.46	10.74	2364.04	9	3.44	62.33	
	2348.81	7.65	2355.04	9	3.42	62.23	
	2343.13	5.68	2346.04	9	3.40	62.15	· ·
	2331.13	11.99	2337.04	9	3.37	61.99	
	2322.43	8.7005	2328.04	9	3.35	61.87	2380 2400 nodule depth [m]
	2310.57	11.859	2319.04	9	3.32	61.72	\4: DU 5
	2302.96	7.61055	2310.04	9	3.30	61.61	14.4 ± 0.9488 -0.001509 ± 2.839e-05
	2293.7	9.26429	2301.04	9	3.28	61.49	
	2288.46	5.23863	2292.04	9	3.27	61.42	
	2278.96	9.50059	2283.04	9	3.24	61.29	4
	2266.93	12.0309	2274.04	9	3.21	61.13	
	2259.19	7.73423	2265.04	9	3.20	61.03	2380 2400 nodule depth [m]

Time calibration

Time calibration: 1 DOM

L1 coincidence between two neighbouring DOMs, m≥ 3



Shift the time-offset j of the data for one DOM-DOM pair to optimize a likelihood:

$$L_{ij} = \prod_{N_{bins}} P(N_k^{data} | N_k^{MC}) = \prod_{N_{bins}} \frac{m_k^{d_k} e^{-m_k}}{d_k!}$$

Time offset
$$l$$
: $L_{ij}^l = \prod_{N_{bins}} P(N_{k+l}^{data}|N_k^{MC})$

Likelihood time-offset between DOMs

Fit polynomial to the log-likelihood to find the optimal t0: LL works on bin-by-bin basis, it has 1 ns accuracy

$$\log(L) \approx A_{i,j} (t_{0i,j} - B_{i,j})^2 + C_{i,j}$$

Time calibration: more DOMs

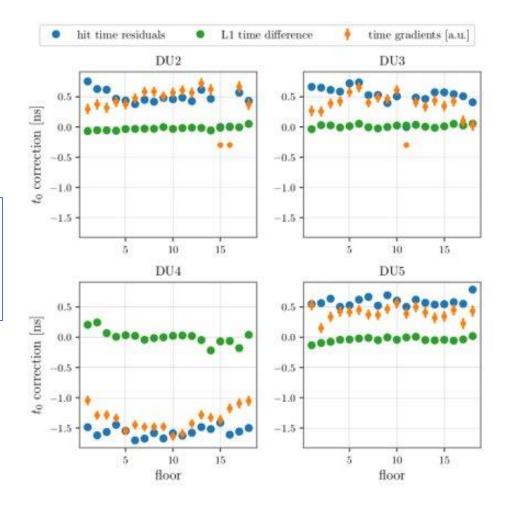
 Optimizing the time-offset for a set of DOMs i,j simultaneously:

$$Q_{i,j} = \prod_{i \neq j} L_{ij} \to \log Q_{i,j} = \sum_{i \neq k} \log L_{i,j}$$
$$\frac{\partial}{\partial t_k^0} \left(\sum_{i \neq j} \log L_{ij} (t_i^0 - t_j^0) \right) = 0$$

 Depending on selection criteria (first neighbor, one DU, entire detector) solve a linear equation of the shape:

$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \end{bmatrix} = 4 \cdot \begin{bmatrix} \sum_{i \neq 0} [A_{0,i}] & -A_{0,1} & -A_{0,2} & \cdots \\ -A_{1,0} & \sum_{i \neq 1} [A_{1,i}] & -A_{1,2} & \cdots \\ -A_{2,0} & -A_{2,1} & \sum_{i \neq 2} [A_{2,i}] & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} \cdot \begin{bmatrix} t0_0 \\ t0_1 \\ t0_2 \\ \vdots \end{bmatrix} - 4 \cdot \begin{bmatrix} \sum_{i \neq 0} [A_{0,i} \cdot B_{0,i}] \\ \sum_{i \neq 1} [A_{1,i} \cdot B_{1,i}] \\ \sum_{i \neq 2} [A_{2,i} \cdot B_{2,i}] \end{bmatrix}$$

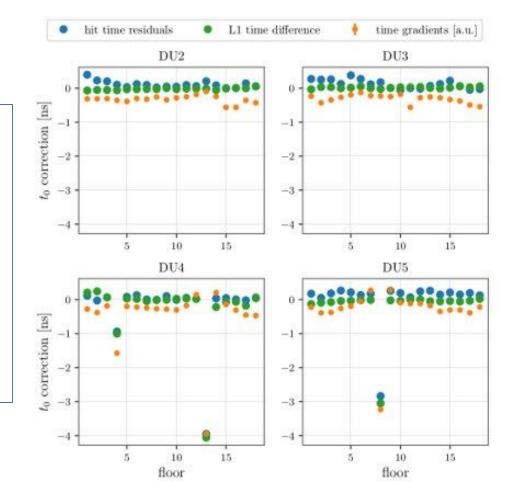
2020-


Blind study

- Daniel Guderian uses 2 methods:
 - Hit time residuals
 - Time gradients
- Both time intensive but exhaustive! (time, rotations, distances, etc)
- Lodewijk Nauta uses:
 - L1 hit time difference
- Very fast but only fits time offsets
- Colleague of Daniel created 3 detx files with different adjustments

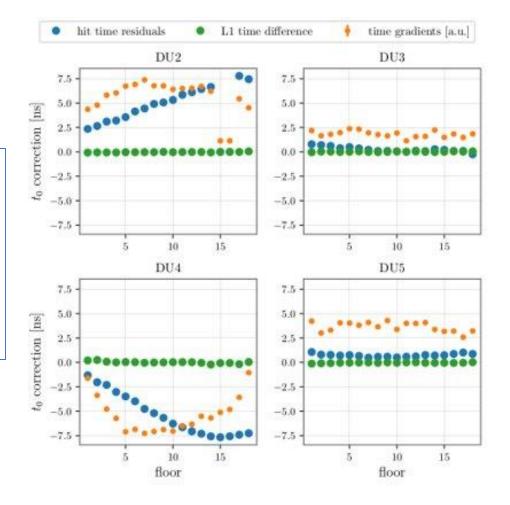
Hit time calibration vs L1dt calibration: modification a

Adjustment: DU4 had 2ns offset


mod a: -S "4 add 2"

Hit time calibration vs L1dt calibration: modification b

Adjustment: DU4DOM4 +1ns DU4DOM13 +4ns DU5DOM8 +3ns


mod b: -M "808981510 add 1" -M "808972593 add 4" -M "808981864 add 3"

Hit time calibration vs L1dt calibration: modification c

Adjustment: Shrinking to DU2 Stretching to DU4

mod c: -S "2 mul -0.02" -S "4 mul 0.02"

Next

- Error on Inter-DOM distance is too large
- Lower the error → more data?

- Does work for outliers
- Time calibration (seems to) contain a degree of freedom
- Remove degree by adding constraints (inter-DU)