PHOTON SHOWER DE/DX

MILO VERMEULEN — 27-2-2020

CONTENTS

- What is dE/dx?
- Goal of track and shower dE/dx
- Shower dE/dx determination method
- Photon shower dE/dx results
 - Comparison with positron showers

WHAT IS DE/DX?

- dE/dx is the energy deposition (dE) divided by the distance travelled (dx) of one given particle
- dE/dx is typically calculated per hit from its dQ/dx:
 - dQ = integral of deconvolved hit
 - $dx = wire pitch / cos(\theta)$

- Identifying particles based on their energy deposition is one of the technical goals of DUNE
- Example from DUNE TDR Vol. 2:

NCv forms a background to CCv_e interactions in DUNE

Distinction between e^{+/-} and γ showers useful

Focus on the start of a shower where the difference should be largest

SAMPLE

- Same as sample used for <u>π0 analysis</u>
- ~100k MC and ~100k data events
 - MC: PDSPProd2_MC_6GeV_reco_sce_datadriven
 - Data: protodune-sp_runset_5770_reco_v08_27_XX_v0

SAMPLE

- Same as sample used for <u>π0 analysis</u>
- ~100k MC and ~100k data events
 - MC: PDSPProd2_MC_6GeV_reco_sce_datadriven
 - Data: protodune-sp_runset_5770_reco_v08_27_XX_v0
- ▶ 6 GeV/c beam particles
 - Only select events with primary track
 - Only select daughters classified as shower by Pandora

- Apply some cuts as in π^0 selection, differences:
 - Opening angle does not improve photon purity, just helps to match photons from one π⁰ to each other
 - Shower distance to vertex cut turned out to be redundant: electrons are already removed with number of hits cut

Number of shower hits	> 100
Shower CNN score	> 0.8
Opening angle	< 1
Shower distance to vertex	> 10 cm
n ⁰ coloction cuto	

- Apply some cuts as in π^0 selection, differences:
 - Opening angle does not improve photon purity, just helps to match photons from one π⁰ to each other
 - Shower distance to vertex cut turned out to be redundant: electrons are already removed with number of hits cut

- Consider hits in initial part of shower
- Cylinder dimensions identical to that in positron studies
 - These dimensions seem to work well: good balance between purity and statistics

- Determine median of all hit dE/dx in cylinder
- Require > 4 hits in cylinder
 - Assures good representation of shower start
 - Selects well-reconstructed showers

RESULTS

Results look very promising

RESULTS

- Results look very promising
- Purity is good:
 Background mostly
 primary positrons

RESULTS

Separation between photons and positrons is very apparent

Comparison by Aaron

DISCUSSION

- MC and data do not match up exactly
- Due to calorimetry constants?

Comparison by Aaron

DISCUSSION

- MC and data do not match up exactly
- Due to calorimetry constants?

of data changed by ~1.5%

FUTURE WORK

- Reduce background by cutting on primary track CNN score
- Look at other beam momenta
 - Compare to 6 GeV/c sample, possibly combine
- Investigate peak around 2 MeV/cm

SUMMARY

- Determined the photon shower dE/dx in a method analogous to previous positron results by Aaron
- Good separation between photons and positrons
- Mismatch data and MC possibly solved with slightly modified calorimetry constants?

BACKUP

WHAT IS DE/DX?

► $dQ/dx \rightarrow dE/dx$:

- Normalisation factor: Convert charge on collection plane to charge in detector
- Space charge effects: build-up of ions in detector changes electron transport
- Calibration factor: Convert ADC/cm to MeV/cm

WHAT IS DE/DX?

- ► $dQ/dx \rightarrow dE/dx$:
 - According to modified box model

$$\frac{dQ}{dx} = \frac{Q_{hit}}{\text{pitch/cos}\,\theta} \operatorname{norm} \sigma(\overrightarrow{x}) / \text{calib}$$

$$\frac{dE}{dx} = \left(\exp\left[\frac{dQ}{dx}\frac{\beta_P}{\rho E_f(\overrightarrow{x})}W_{ion}\right] - \alpha \right) \frac{\rho E_f(\overrightarrow{x})}{\beta_P}$$

DUNE docDB by Ajib Paudel 15974

NUMBER OF HITS CUT

NUMBER OF HITS CUT

NORMALISATION: NUMBER OF HITS IN DE/DX CYLINDER

