Solar Atmospheric Neutrinos

Kenny CY Ng Marie Curie Fellow, GRAPPA, UvA

5/3/2020 Joint Nikhef+GRAPPA Neutrino Meeting

Sun - Cosmic-ray Beam Dump

Solar Atmospheric Gamma-ray Puzzle

- High Flux, O(10)% efficiency at 100 GeV
- Time variation solar Min-Max
 - (2x @1 GeV, 10x @ 100 GeV)
- Morphology changes
- Dip at ~ 30 GeV, mostly at solar min.
- Hard Spectrum, $\sim E^{-2.2}$

- KCYN+ PRD, 2016
- Linden+ PRL. 2018
- Tang+ PRD, 2018

The Sun as a TeV Source?

HAWC ICRC2019

Sun - Astrophysical Neutrino Source

• Dilute atmosphere, larger neutrino flux

Seckel+ 1991, Moskalenko+, 1993, Ingelman+ 1996, Hettlage+ 2000, Fogli+ 2003 C.A. Argüelles+ *1703.07798* Joakim Edsjo+ 1704.02892

Sun - Astrophysical Neutrino Source

Icecube 1912.13135

KCYN+ 2017

First IceCube search

Sun - Dark Matter Detector

Neutrino telescope the most sensitivity prob for SD cross sections

Sun - Dark Matter Detector

TeV Neutrinos cannot escape the core of the Sun

KCYN+ 2017

Sun - Dark Matter Detector

Leane, KCYN, Beacom 1703.04629

- Unlock
 - Gamma rays
 - Electrons, muon, etc
- Unsuppressed
 - Neutrinos!
- Less absorption (ν)
- Lower density (ν)
- Decay tail (ν, γ)

Batell, Pospelov, Ritz, Shang, 0910.1567 Bell, Petraki, 1102.2958 Feng, Smolinsky, Tanedo, 1602.01465 Arina, Backovic, Heisig, Lucente, 1703.08087

Niblaeus, Beniwal, Edsjo, 1903.11363 etc

Synergy between gamma rays and Neutrinos

Niblaeus, Beniwal, Edsjo, 1903.11363

Solar ATM neutrinos- The case for KM3NeT

IceCube https://arxiv.org/abs/1907.06714

Much better angular resolution!

+ lower atmospheric neutrino background
+ similar signal strength

sensitivity comparable to tracks

+ intrinsically much better energy resolution

KM3NeT — The power of cascades?

letter of intent Effective Area for v_e KM3NeT 10³ Effective area [m²] 10⁴ cos θ -1.0 - -0.8 10² 10³ 0.6 - -0.4 -0.2 - 0.0 10² 0.2 - 0.4 101 0.6 - 0.8 10 $A_{\rm eff} [m^2]$ 10⁰ 10^{-1} **10**⁻¹ u 10^{-2} **10**⁻² 10⁻³ | 10-3 10^{-4} 10³ 10^7 10 E_v [GeV] 10^{-4} 10⁴ 10⁵ 10⁶ 10⁸ 10² 10³ 104 105 106 107 108 10⁹ Neutrino Energy [GeV]

10x larger effective area at 100 TeV?

5/3/2020 Joint Nikhef+GRAPPA Neutrino Meeting

IceCube 2015

ITFA workshop 2020: Searching for DM decays with KM3NeT

Fig. 1. Field of view of a neutrino telescope at the South Pole (top) and in the Mediterranean (bottom), given in galactic coordinates. A 2π -downward sensitivity is assumed; the grey regions are then invisible. Indicated are the positions of some candidate neutrino sources.